屎肠球菌EF1对仔猪小肠黏膜屏障功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
屎肠球菌是公认的益生乳酸菌,能改善肠道健康、促进动物生长以及提高宿主的免疫力。本论文以从健康仔猪中分离得到的一株屎肠球菌(Enterococcus faecium)EF1为材料,通过仔猪体内试验和体外细胞试验研究其对肠黏膜屏障的调节作用。主要的研究内容和结果如下:
     试验1:屎肠球菌EF1对断奶前仔猪小肠黏膜屏障功能的影响。随机选取胎次、窝产仔数和出生时间相近、体重差异不显著的6窝杜×长×大外三元新生仔猪,分为2个组,每组3窝。仔猪出生后,在其开始吮吸母乳前,经口灌服10%的灭菌脱脂乳溶液(对照组)或含屎肠球菌EF1(5~6×108CFU/mL)的10%灭菌脱脂乳溶液(益生菌组),灌服量为2mL/头·天,之后每隔1天灌服1次,共灌服3次。母猪饲料不添加抗生素。仔猪于12日龄开始饲喂教槽料,免疫程序及其他饲养管理方式按常规方法进行。试验仔猪于25日龄称空腹重后,每窝随机选2头,采集前腔静脉血,然后心脏放血屠宰,采集各部位样品。结果表明,与对照组相比,益生菌组断奶前仔猪的日增重提高30.73%(P<0.01),腹泻率下降43.21%(P<0.05);肠道菌群多样性没有明显变化,但菌群组成得到改善,厚壁菌的比例显著增加,拟杆菌、变形菌和梭杆菌门的比例都明显减少:空肠黏膜sIgA分泌显著增加,溶菌酶基因表达显著降低;空肠和回肠黏膜的DAO活性增强,而ITF含量则显著减少,表明小肠黏膜完整性得到改善;空肠黏膜的ocln基因表达显著下调,zo-1基因表达无显著变化,血清DAO活性有少量增加,表明肠上皮选择通透性轻微增加;回肠黏膜TNF-α、空肠黏膜IFNγ以及空肠和回肠黏膜IL-1、IL-6、IL-12和IL-8的含量都显著减少,而空肠和回肠黏膜IL-10以及空肠黏膜TGF-β1分泌增加,tgf-β1基因表达量也显著上调;空肠黏膜tnf-α基因表达和TNF-a分泌都显著上调,而回肠黏膜TGF-β1和IFNγ的分泌都没有显著变化。进一步研究发现,空肠黏膜tlr2、tlr9和traf6基因表达上调,提示它们参与了屎肠球菌EF1的先天免疫调节作用。综上可见,新生仔猪口服屎肠球菌EF1可通过改善肠道微生态平衡,调节化学屏障和机械屏障功能以及双向性调节先天免疫应答,显著改善断奶前仔猪肠道健康,从而促进生长,并降低腹泻。
     试验2:屎肠球菌EF1对断奶后仔猪小肠黏膜屏障功能的影响。试验1仔猪于25日龄断奶,继续饲喂教槽料。试验仔猪于断奶后一周(32日龄)称空腹重,采集前腔静脉血,然后心脏放血屠宰,采集各部位样品。结果表明,与对照组相比,益生菌组仔猪日增重提高320.84%(P<0.01),腹泻率降低71.42%(P<0.05)。与对照组相比,益生菌组肠道菌群多样性减少,但菌群结构得到改善,厚壁菌数量变化不大,变形菌数量明显减少,而拟杆菌数量则显著增加,从而调整了微生态平衡,并促进碳水化合物的消化和吸收;空肠黏膜sIgA含量没有明显改变,但胃的pH值显著下降;空肠黏膜DAO活性显著提高,ITF含量显著下降,血清DAO活性下降,内毒素的含量保持很低的水平,说明肠上皮完整性得到保护;空肠黏膜的IL-10、IL-6、IFN-γ和IL-8的含量都没有明显改变,但TGF-β1含量显著减少,而TNF-α、IL-1β和IL-12的水平显著提高,表明空肠促炎应答增强。综上可见,新生仔猪口服屎肠球菌EF1促进仔猪在断奶后一周内的生长和肠道健康,减轻断奶应激对空肠黏膜完整性、消化吸收功能以及微生态平衡的不利影响,增强化学屏障和机械屏障功能以及先天免疫应答活性。
     试验3:屎肠球菌EF1对Caco-2细胞的影响。
     (1)粘附试验。Caco-2细胞分别与屎肠球菌EF1(EF组)或者E. coli K88(EC组)共孵育,检测各自的粘附率;Caco-2细胞与屎肠球菌EF1和E. coli K88共孵育(EF+EC组),或者Caco-2细胞先与屎肠球菌EF1共孵育,再与E. coli K88共孵育(EF-EC组),或者Caco-2细胞先与E. coli K88共孵育,再与屎肠球菌EF1共孵育(EC-EF组),分别检测E. coli K88的粘附率。结果表明,EF组的粘附率高于EC组;与EC组相比,EF+EC组、EF-EC组和EC-EF组E. coli K88的粘附率都显著下降。综上可见,屎肠球菌EF1对Caco-2细胞的粘附力比E. coliK88强,且能通过竞争、排斥和置换作用阻止E. coli K88粘附Caco-2细胞,阻止E. coli K88入侵。
     (2)屎肠球菌EF1对Caco-2细胞代谢活性和细胞膜完整性影响的试验。Caco-2细胞分别与PBS (CT组)、屎肠球菌EF1(EF组)、E. coli K88(EC组)共孵育,或者经屎肠球菌EF1预孵育的Caco-2细胞再与E. coli K88共孵育(EF-EC组),检测细胞内、外的AKP和LDH水平。结果表明,与CT组相比,EF组Caco-2细胞内的AKP活性下降,但高于EC组,而LDH活性则显著增加;细胞上清液中的AKP和LDH活性都显著下降。与EC组相比,EF-EC组细胞内的AKP活性变化不大,但LDH活性显著提高;细胞上清液中的AKP和LDH含量都显著减少。综上可见,屎肠球菌EF1能维持Caco-2细胞膜的完整性和正常代谢活性,并能阻止E. Coli K88对细胞膜和代谢活性的破坏作用。
     (3)屎肠球菌EF1对Caco-2细胞免疫调节作用及机理研究。Caco-2细胞分别与PBS(CT组)、屎肠球菌EF1(EF组)、E. coli K88(EC组)共孵育,或者经屎肠球菌EF1预处理的Caco-2细胞再与E. coli K88共孵育(EF-EC组),检测细胞因子IL-10和APRIL的分泌以及屎肠球菌EF1调节Caco-2细胞先天免疫和获得性免疫应答相关基因的表达谱。结果表明,与CT组相比,EF组的IL-10水平显著提高,而EC组则检测不到IL-10;APRIL的含量也显著增加,但低于EC组。EF-EC组的APRIL含量显著低于EC组,而IL-10的含量则显著高于CT组。表明屎肠球菌EF1刺激Caco-2细胞产生较强的抗炎和较低水平的促炎应答,并减弱Caco-2细胞对大肠杆菌K88的炎症应答程度,促进免疫应答平衡。PCR array分析结果显示,屎肠球菌EF1双向性调节Caco-2细胞先天免疫和获得性免疫应答相关基因的表达。其中表达显著上调的基因有24个,包括ccl2、cdld、 cxcr4、defb4、dmbtl、ifnal、ifnb1、illf5、illf6、illrapl2、illrl2、illrn、 ly96、ncf4、pglyrp3、ptafr、sftpd、tlr3、tlr4、tlr6、tlr8、tlr10、tnf,显著下调的基因有20个,分别是adora2a、casp1、casp4、cd14、colec12、ifngr1、ill2rb2、 illf7、illf8、illf9、illr1、irakl、mif、nlrc4、pglyrpl、pglyrp2、ppbp、tlr2、tollip, traf6。这些基因主要参与先天免疫应答、炎症反应以及抗菌防御作用,其中dmtb1、 tlr10、tlr6、illf6和tnf可能与屎肠球菌EF1免疫调节机制密切相关。
     试验4:屎肠球菌EF1对RAW264.7细胞先天免疫应答的影响。RAW264.7细胞分别与PBS(CT组)、屎肠球菌EF1(EF组)、E. coli K88(EC组)共孵育,或者经屎肠球菌EF1预处理后再感染大肠杆菌K88(EF-EC组),检测细胞因子以及PGE2和02·-的分泌水平。结果发现,与CT组相比,EF组的IL-10、TNF-α、IFNγ、IL-6以及02·-水平显著增加,但都小于EC组;而IL-1β、IL-12和PGE2的含量都没有显著变化。表明屎肠球菌EF1引起巨噬细胞产生较低水平的免疫应答。与EC组相比,IL-10、TNF-α、IFNγ、IL-1β和PGE2的水平都显著提高,而O2·-的含量则明显下降,表明屎肠球菌EF1增强RAW264.7细胞对大肠杆菌K88的先天免疫应答程度,且能避免过度炎症应答,维持免疫平衡。
     综上所述,口服屎肠球菌EF1促进断奶前和断奶后仔猪生长和肠道健康的益生作用在于改善肠道微生态平衡、调节肠黏膜化学屏障和机械屏障功能以及先天免疫应答;屎肠球菌EF1通过阻碍粘附、保护肠上皮细胞代谢活性和膜的完整性、减轻肠上皮细胞促炎反应以及增强巨噬细胞炎症应答来抵抗大肠杆菌K88的感染;屎肠球菌EF1对肠黏膜、肠上皮细胞以及巨噬细胞有双向性免疫调节作用;屎肠球菌EF1调节先天免疫的分子机理与TLRs介导的信号传导途径有关。
Enterococcus faecium has been widely used as probiotics due to their functioning ability to improve intestinal health, exhibit a growth-enhancing effect, and enhance the immunity of the host. Aprobiotic strain Enterococcus faecium EF1isolated from a healthy piglet was evaluated for its ability to modulate intestinal mucosal barrier functions with both in vivo and in vitro studies.
     The main contents and results are as follows:
     Trial1:The effects of Enterococcus faecium EF1on small intestinal mucosal barrier functions of pre-weaning piglets were studied to improve our understanding of the underlying mechanisms of this probiotic strain.6litters newborn piglets ([Large White×Landrace]×Duroc)(no significant deviation in body weight) were randomly divided into two groups,3litters per group. Immediately after birth and before the first sucking, piglets of control group were administered10%sterilized skim milk2mL piglet-1day-1by oral gavage, and the probiotics group received10%sterilized skim milk2mL piglet-1day-1with addition of viable Enterococcus faecium EF1(5~6×108CFU/mL) for the first time, and other two of oral gavages were carried on the alternative odd days3rd and5th day post partum. Piglets were housed in standard farrowing crates with sows and subjected to routine management practices. The diet of sows contained no added antibiotics throughout the trial. From day12onward, piglets had free access to a supplemented pre-starter feed and ad libitum access to water. The feeding trial was conducted for25days. Results showed that oral administration of Enterococcus faecium EF1increased daily body weight gain by30.73%(P<0.01) while decreased diarrhea rate by43.21%(P<0.05). No significant modifications were found for the diversity of intestinal flora, but the composition of microflora was improved, which would exert beneficial effects by decreasing the growth of gram-negative bacteria (e.g., Bacteroidetes spp., Proteobacteria spp., and Fusobacteria spp.) while allowing an increase in the number of gram-positive bacteria (e.g., Firmicutes spp.) when Enterococcus faecium EF1were administered. As compared with control group, jejunal mucosal sIgA production was up-regulated significantly, while the lys expression was down-regulated in the probiotics group. In addition, Enterococcus faecium EF1enhanced DAO activities but decreased ITF content in both jejunal and ileal mucosa thereby improving small intestinal integrity in sucking piglets, ocln expression was down-regulated obviously in jejunal mucosa induced by Enterococcus faecium EF1, while zo-1expression was not significantly changed, and level of serum DAO activity increased, indicating the mucosal permeability increased. When Enterococcus faecium EF1were administered, the concentrations of many pro-inflammatory cytokines, including ileal mucosal TNF-a, jejunal mucosal IFN-y, as well as IL-1, IL-6, IL-12, and IL-8in both jejunal and ileal mucosa decreased dramatically, but the production of anti-inflammatory cytokine IL-10in both jejunal and ileal mucosa and jejunal mucosal TGF-β1, as well as tgf-β1mRNA expression in the jejunal mucosa significantly increased, thus enhancing the immune tolerance of the small intestine. Moreover, jejunal mucosal TNF-a secretion increased and tnf-α mRNA expression levels also improved significantly in probiotics group, indicating a local physiological inflammatory immune response occurred in jejunal mucosa. However, ileal mucosal TGF-(31and IFN-y production were similar in both probiotics and control group. A further important finding was that levels of tlr2, tlr9, and traf6mRNA epression were up-regulated in probiotics group, suggesting they would be involved in signaling pathway of immuno-modulation by Enterococcus faecium EF1. Taken together, oral administration of Enterococcus faecium EF1could promote growth performance and decreased diarrhea rate through regulating microbial ecological balance, functions of chemical and physical barrier, as well as innate immune responses in pre-weaning piglets.
     Trial2:The effects of Enterococcus faecium EF1on small intestinal mucosal barrier functions of weaning piglets were evaluated. In this trail, we used the same experimental protocol as in Trial1. Piglets were weaned at25days of age and fed the pre-starter diet during the first week following weaning. Results showed that as compared to control group, oral administration of Enterococcus faecium EF1could increase daily body weight gain of weaning piglets by320.84%(P<0.01) while decrease diarrhea incidence by71.42%(P<0.05). As compared with control, Enterococcus faecium EF1declined the diversity of intestinal flora, but the composition of micro flora improved, the change in amount of Firmicutes bacteria was not significant, while the number of Proteobacteria spp. reduced markedly. However, the amount of Bacteroidetes spp was increased obviously, indicating that the balance of microflora improved and carbohydrate digestion and absorption enhanced. No changes were observed in sIgA concentration in the jejunal mucosa, while pH value in the stomach reduced markedly. There was an increase in the jejunal mucosal DAO activity and a decrease in serum DAO activity and in jejunal mucosal ITF level. Moreover, the serum endotoxin concentrations maintained at a very low level, suggesting that epithelial integrity was sustained. Furthermore, Enterococcus faecium EF1down-regulated the production of TGF-β1significantly while secretion of TNF-a, IL-1β and IL-12was enhanced in the jejunal mucosa. Whereas production of IL-10, IL-6, IFN-γ, and IL-8unchanged, indicating that pro-inflammatory response was activated to increase the capability to inhibit pathogenic bacteria invation. Taken together, Enterococcus faecium EF1given after birth promoted growth performance and improved the intestine health, prevented detrimental effects of weaning stress on jejunal mucosal integrity, the capacity of digestion and absorption, as well as microbial ecological balance, and enhanced functions of chemical barrier and mechanical barrier, as well as innate immune responses in the piglets during the first week of weaning.
     Trial3:The study aimed at determining the effects of Enterococcus faecium EF1on Caco-2cells.
     1) Adhesion. Caco-2cells were co-cultured with Enterococcus faecium EF1(EF group) and E. coli K88(EC group), respectively. In addition, Coco-2cells were co-incubated with both Enterococcus faecium EF1and E. coli K88(EF+EC group), or Caco-2cells were pre-cultured with Enterococcus faecium EF1and then following co-incubating with E. coli K88(EF-EC group), or Caco-2cells were co-cultured with E. coli K88firstly, and then co-incubated with Enterococcus faecium EF1(EC-EF group), the adhesion rate of E. coli K88was examined, respectively. Results showed that a higher adhesion in EF group than in EC group. As compared with EC group, the adhesion rate of E. coli K88declined significantly in EF+EC group, EF-EC group and EC-EF group. Taken together, the capacity of Enterococcus faecium EF1to adhere to Caco-2cells was greater than that of E. coli K88. Moreover, Enterococcus faecium EF1had activity against E. coli K88adhesion by exclusion, displacement and competition.
     2) The effects of Enterococcus faecium EF1on metabolic activity and membrane integrity of Caco-2cells. Caco-2cells were co-cultured with PBS (CT group), Enterococcus faecium EF1(EF group), and E. coli K88(EC group), respectively. In addition, Caco-2cells were pre-incubated with Enterococcus faecium EF1and then followed by challenging with E. coli K88(EF-EC group). Both the intracellular and extracellular AKP and LDH activities were measured. Results showed that as compared with CT group, intracellular AKP activity decreased significantly in EF group, while it was much higher than that in EC group. However, intracellular LDH content increased clearly in EF group. Furthermore, both extracellular AKP and LDH activities declined obviously in EF group. In addition, when compared with EC group, no significant change in intracellular AKP activity was observed, whereas a remarkable up-regulation of LDH concentration was found. Moreover, both extracellular AKP and LDH activities declined markedly in EF group. These results indicated that Enterococcus faecium EF1was capable of protecting Caco-2cells monolayer integrity from the damage induced by E. coli K88and maintaining the normal physiological level of AKP and LDH.
     3) The immune modulations of Enterococcus faecium EF1on Caco-2cells and the underlying mechanisms. Caco-2cells were co-cultured with PBS (CT group), Enterococcus faecium EF1(EF group), and E. coli K88(EC group), respectively. In addition, Caco-2cells were pre-incubated with Enterococcus faecium EF1and then followed by infecting with E. coli K88(EF-EC group). Cytokines of IL-10and APRIL secretion, as well as the differential expression profile of innate and adaptive immune response related genes in Caco-2cells were measured. Results showed that as compared with CT group, IL-10level increased significantly in group EF, while no IL-10secretion was detectable in group EC. The production of APRIL improved markedly, while the level was much lower than that in EC group, indicating that Enterococcus faecium EF1induced both immune tolerance and activation. In addition, the APRIL content was much less in group EF-EC than that in group EC, while IL-10concentration was much higher in group EF-EC than that in CT group, suggesting that Enterococcus faecium EF1may attenuate the pro-inflammatory response in Caco-2cells induced by E. coli K88challenge to promote homeostasis. Furthermore, we demonstrated that Enterococcus faecium EF1served a dual role in modulating genes involved in the innate and adaptive immune responses by PCR array technology. The mRNA levels of24genes were significantly increased, including ccl2, cdld, cxcr4, defb4, dmbtl, ifnal, ifnbl, ill0, illf5, illf6, illrapl2, illrl2, illrn, ly96, ncf4, pglyrp3, ptafr, sftpd, tlr3, tlr4, tlr6, tlr8, tlr10and tnf while the levels of adora2a, casp1, casp4, cdl4, colecl2, ifngrl, ill2rb2, illf7, illf8, illf9. illrl, irakl, mif nlrc4, pglyrp1, pglyrp2, ppbp, tlr2, tollip and traf6were noticeably suppressed. These genes are involved in innate immune response, inflammatory response and host defense to bacteria. Among those, five genes (dmtbl, tlr10, tlr6, illf6and tnf) may contribute to immuno-modulating properties of Enterococcus faecium EF1.
     Trial4:Effects of Enterococcus faecium EF1on production of cytokines, prostaglandin E2and superoxide anion in a murine macrophage cell line, RAW264.7was investigated. RAW264.7cells were co-cultured with PBS (CT group), Enterococcus faecium EF1(EF group), and E. coli K88(EC group), respectively. In addition, RAW264.7cells were pre-incubated with Enterococcus faecium EF1and then followed by challenging with E. coli K88(EF-EC group). The results showed that as compared with CT group, an increased release of IL-10, TNF-α, IFN-γ, IL-6, and O2·-in EF group were observed, while these cytokines concentrations were far lower than that in group EC. However, no significant affects on IL-1β, IL-12, and PGE2secretion were examined, indicating that Enterococcus faecium EF1was capable of triggering a moderate innate inflammatory response on direct contact with RAW264.7. In addition, when RAW264.7cells were firstly treated with Enterococcus faecium EF1and then infected with E. coli K88, the production of IL-10, TNF-α, IFN-γ, IL-1β, and PGE2in response to E. coli K88were apparently increased, while O2-significantly suppressed, suggesting that Enterococcus faecium EF1may enhance the ability of macrophages to prevent E. coli K88invation and keep the balance of immune response by improving both pro-inflammatory and anti-inflammatory cytokines production, as well as regulating seretion of PGE2and O2.
     To sum up, these findings revealed that orally administered Enterococcus faecium EF1after birth was effective to improve growth and decrease diarrhea incidence by reversing microbiota disruption, improving functions of intestinal mucosal chemical and physical barrier, as well as innate immune response in small intestine in both of pre-weaning and weaning piglets. Enterococcus faecium EF1resisted against infection with E. coli K88by preventing adhesion, protecting metabolic activity and integrity of membrane of intestinal epitheliums, attenuating pro-inflammatory response in intestinal epitheliums, as well as promoting inflammatory response in macrophages. Furthermore, Enterococcus faecium EF1served a dual role in triggering innate immune response in mucosa, Caco-2cells, as well as in RAW264.7macrophage cells, and exhibiting both pro-inflammatory and anti-inflammatory activities, which would contribute to the improvement of intestinal immune homeostasis. Toll-like receptor signaling pathway might be involved in the observed immuno-modulating property of Enterococcus faecium EF1.
引文
Abdelaziz D. H., Amr K., Amer A. O. Nlrc4/Ipaf/CLAN/CARD12:More than a flagellin sensor. The International Journal of Biochemistry & Cell Biology,2010, 42:789-791.
    Abreu M. T., Vora P., Faure E., Thomas L. S., Arnold E. T., and Arditi M. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. Journal of Immunology,2001,167:1609-1616.
    Abreu M. T., Arnold E. T., Thomas L. S., Gonsky R., Zhou, Y. Hu B., and Arditi M. TLR4 and MD-2 expression is regulated by immune-mediated signals in human intestinal epithelial cells. The Journal of Biological Chemistry,2002,277: 20431-20437.
    Abreu M. T., Fukata M., and Arditi M. TLR Signaling in the Gut in Health and Disease. The Journal of Immunology,2005,174:4453-4460.
    Ahmad-Nejad P., Hacker H., Rutz M., Bauer S., Vabulas R. M. and Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. European Journal of Immunology,2002,32:1958-1968.
    Akira S. and Takeda K. Toll-like receptor signaling. Nature Reviews Immunology, 2004,4:499-511.
    Akira S., Uematsu S., and Takeuchi O. Pathogen recognition and innate immunity. Cell,2006,124:783-801.
    Alander M., Satokari R., Korpela R., Saxelin M., Vilpponen-salmela T., Mattlla-Sandholm T., and von Wright A. Persistence of Colonization of Human Colonic Mucosa by a Probiotic Strain, Lactobacillus rhamnosus GG, after Oral Consumption. Applied and Environmental Microbiology,1999,65(1):351-354.
    De Angelis M., Siragusa S., Caputo L., Ragni A., Burzigotti R., and Gobbetti M. Survival and persistence of Lactobacillus plantarum 4.1 and Lactobacillus reuteri 3S7 in the gastrointestinal tract of pigs. Veterinary Microbiology,2007,123: 133-144.
    Arce C., Ramirez-Boo M., Lucena C., and Garrido J. J. Innate immune activation of swine intestinal epithelial cell lines (IPEC-J2 and IPI-2I) in response to LPS from Salmonella typhimurium. Comparative Immunology Microbiology and Infectious Diseases,2010,33:161-174
    Arrunategui-Correa V. and Kim H. S. The role of CD1d in the immune response against Listeria infection. Cellular Immunology,2004,227:109-120.
    Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Immunology,2008,8:411-420.
    Baba N., Samson S., Bourdet-Sicard R., Rubio M., and Sarfati M. Commensal bacteria trigger a full dendritic cell maturation program that promotes the expansion of non-Trl suppressor T cells. Journal of Leukocyte Biology,2008,84:468-476.
    Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Seminars in Cancer Biology,2004,14:171-179.
    Banerjee P., Merkel G. J., and Bhunia A. K. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathogens,2009,1(8):1-11.
    Barbara J. A. J., Van Ostade X. and Lopez A. F. Tumour necrosis factor-alpha (TNF-α):The good, the bad and potentially very effective. Immunology and Cell Biology.1996,74:434-443.
    Barksby H. E., Lea S. R., Preshaw P. M., and Taylor J. J. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clinical and Experimental Immunology,2007,149:217-225.
    Benyacoub J., Czarnecki-Maulden G. L., Cavadini C., Sauthier T., Anderson R. E., Schiffrin E. J., and von der Weid T. Supplementation of Food with Enterococcus faecium (SF68) Stimulates Immune Functions in Young Dogs. Journal of Nutrition, 2003,133:1158-1162.
    Benyacoub J., Perez P. F., Rochat F., Saudan K. Y., Reuteler G., Antille N., Humen M., De Antoni G. L., Cavadini C., Blum S., and Schiffrin E. J. Enterococcus faecium SF68 Enhances the Immune Response to Giardia intestinalis in Mice. The Journal of Nutrition,2005,135(3):1171-1176.
    Berkes J., Viswanathan V. K., Sarkovic S. D., and Hecht G. Intestinal epithelial responses to enteric pathogens:effect on the tight junction barrier, ion transport, and inflammation. Gut,2003,52(3):439-451.
    Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature,2004,430:257-263.
    Beutler B. A. TLRs and innate immunity. Blood,2009,113(7):1399-1408.
    Bisht K., Choi W. H., Park S. Y, Chung M. K., Koh W. S. Curcumin enhances non-inflammatory phagocytic activity of RAW264.7 cells. Biochemical and Biophysical Research Communications,2009,379:632-636.
    Bleau C., Monges A., Rashidan K., Laverdure J.-P., Lacroix M., Van Calsteren M.-R., Millette M., Savard R., and Lamontagne L. Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. Journal of Applied Microbiology,2010,108:666-675.
    Bleicher P. A., Balk S. P., Hagen S. J., Blumberg R. S., Flotte T. J., and Terhorst C. Expression of murine CD1 on gastrointesti-nal epithelium. Science,1990,250: 679-682.
    Blumberg R., Terhorst C., Bleicher P., McDermott F., Allan C., Landau S., Trier J., and Balk S. Expression of a nonpolymorphic MHC class I-like molecule, CD1d by human intestinal epithelial cell. The Journal of Immunology,1991,147:2518-2524.
    Bohmer B. M., Branner G. R., and Roth-Maier D. A. Precaecal and faecal digestibility of inulin (DP 10-12) or an inulin/Enterococcus faecium mix and effects on nutrient digestibility and microbial gut flora. Journal of Animal Physiology and Animal Nutrition,2005,89:388-396.
    Boone D. L., Turer E. E., Lee E. G, Ahmad R. C, Wheeler M. T., Tsui C., Hurley P., Chien M., Chai S., Hitotsumatsu O., McNally E., Pickart C., and Ma A. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunology,2004,5:1052-1060.
    Boudry G, Peron V., Huerou-Luron I. L., Lalles J. P., and Seve B. Weaning Induces Both Transient and Long-Lasting Modifications of Absorptive, Secretory, and Barrier Properties of Piglet Intestine. Journal of Nutrition,2004,134:2256-2262.
    Brint E. K., Xu D., Liu H., Dunne A., McKenzie A. N., O'Neill L. A., and Liew F.Y. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nature Immunology,2004,5:373-379.
    Broom L. J., Miller H. M., Kerr K. G., and Knapp J. S. Effects of zinc oxide and Enterococcus faecium SF68 dietary supplementation on the performance, intestinal microbiota and immune status of weaned piglets. Research in Veterinary Science, 2006,80:45-54.
    Brown D.C., Maxwell C.V., Erf G. F., Davis M. E., Singh S., and Johnson Z. B. The influence of different management systems and age on intestinal morphology, immune cell numbers and mucin production from goblet cells in post-weaning pigs. Veterinary Immunology and Immunopathology,2006,111:187-198.
    Burns K., Clatworthy J., Martin L., Martinon F., Plumpton C., Maschera B., Lewis A., Ray K., Tschopp J., and Volpe F. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nature Cell Biology,2000,2:346-351.
    Burns K., Janssens S., Brissoni B., Olivos N., Beyaert R., and Tschopp J. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. Journal of Experimental Medicine,2003,197:263-268.
    Caballero-franco C., Keller K., De Simone C., and Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. American Journal of Physiology Gastrointestinal and Liver Physiology,2007, 292(1):G315-G322.
    Cammarota M., De Rosa M., Stellavato A., Lambert M. i, Marzaioli I., Giuliano M. In vitro evaluation of Lactobacillus plantarum DSMZ 12028 as a probiotic:Emphasis on innate immunity. International Journal of Food Microbiology,2009,135:90-98.
    Camussi G., Bussolino F., Salvidio G., Baglioni C. Tumour necrosis factor/cacheetin stimulates peritoneal maero-phages, polymorphonuclear neutrophils. and vascular endothelial cells to synthesize and release platelet-aetivating faetor. Experimental Medicine,1987,166:1390-1404.
    Canani R. B., Cirillo P., Terrin G., Cesarano L., Spagnuolo M. I., De Vincenzo A., Albano F., Passariello A., De Marco G., Manguso F., and Guarino A. Probiotics for treatment of acute diarrhoea in children:randomised clinical trial of five different preparations. British Medical Journal,2007,335:340-346.
    Canchis P., Bhan A., Landau S., Yang L., Balk S., and Blumberg R. Tissue distribution of the non-polymorphic major histocompati-bility complex class I-like molecule, CD1d. Immunology,1993,80:561-565.
    Candela M., Perna F., Carnevali P.,et al.Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells:Adhesion properties, competition against enteropathogens and modulation of IL-8 production. International Journal of Food Microbiology,2008,125:286-292.
    Cao X.-Y., Dong M., Shen J.-Z., Wu B.-B., Wu C.-M., Du X.-D., Wang Z., Qi Y.-T., Li B.-y. Tilmicosin and tylosin have anti-inflammatory properties via modulation of COX-2 and iNOS gene expression and production of cytokines in LPS-induced macrophages and monocytes. International Journal of Antimicrobial Agents,2006, 27:431-438.
    Carey C. M., Kostrzynska M., Ojha S., and Thompson S. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. Journal of Microbiological Methods,2008,73:125-132.
    Cario E. and Podolsky D. K. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infecttion and Immunity,2000,68(12):7010-7017.
    Cario E.. Gerken G., Podolsky D.K. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology, 2004.127:224-238.
    Cario E. Bacterial interactions with cells of the intestinal mucosa:Toll-like receptors and NOD2. Gut,2005.54:1182-1193.
    Cario E., Gerken G., and Podolsky D. K. Toll-Like Receptor 2 Controls Mucosal Inflammation by Regulating Epithelial Barrier Function. Gastroenterology.2007, 132(4):1359-1374.
    Di Caro S., Taob H., Grillo A., Elia C., Gasbarrini G., Sepulveda A. R., Gasbarrini A. Effects of Lactobacillus GG on genes expression pattern in small bowel mucosa. Digestive and Liver Disease,2005,37:320-329.
    Carstensen L., R(?)ntved C. M., and Nielsen J. P. Determination of tumor necrosis factor-a responsiveness in piglets around weaning using an ex vivo whole blood stimulation assay. Veterinary Immunology and Immunopathology,2005,105: 59-66.
    Cash H. L., Whitham C. V., Behrendt C. L., and Hooper L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science,2006(313): 1126-1130.
    Castillo M, Martin-Orue S M., Nofrarias M, Manzanilla E G, Gasa J. Changes in caecal microbiota and mucosal morphology of weaned pigs. Veterinary Microbiology,2007,124:239-247.
    Chabot S., Wagner J. S., Farrant S., and Neutra M. R. TLRs Regulate the Gatekeeping Functions of the Intestinal Follicle-Associated Epithelium. The Journal of Immunology,2006,176:4275-4283.
    Chang G F, ShiY H, Le G W, Xu Z W, Sun J, Li J N. Effects of Lactobacillus plant arum on genes expression pattern in mice jejunal Peyer's patches. Cellular Immunology,2009,258:1-8.
    Chen M. L., Ge Z., Fox J. G., and Schauer D. B. Disruption of Tight Junctions and Induction of Proinflammatory Cytokine Responses in Colonic Epithelial Cells by Campylobacter jejuni. Infection and immunity,2006,74(12):6581-6589.
    Chon H., Choi B., Lee E., Lee S., and Jeong G. Immunomodulatory effects of specific bacterial components of Lactobacillus plantarum KEFCC 11389 P on the murine macrophage cell line RAW 264.7. Journal of Applied Microbiology,2009,107: 1588-1597.
    Christopherson K. and Hromas R. Chemokine regulation of normal and pathologic immune responses. Stem Cells,2001,19(5):388-396.
    Clavel T and Haller D. Molecular Interactions Between Bacteria, the Epithelium, and the Mucosal Immune System in the Intestinal Tract:Implications for Chronic Inflammatio. Current Issues in Intestinal Microbiology,2007a,8:25-43.
    Clavel T. and Haller D. Bacteria- and Host-derived Mechanisms to Control Intestinal Epithelial Cell Homeostasis:mplications for Chronic Inflammation. Inflammatory Bowel Disease,2007b,13:1153-1164.
    Coconnier M. H., Klaenhammer T. R., Kerneis S., Bernet M. F., and Servin A. L. Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture. Applied and Environmental Microbiology,1992,58:2034-2039.
    Cole A. M., Hong T., Boo L. M., Nguyen T., Zhao C., Bristol G., Zack J. A., Waring A. J., Yang O. O., and Lehrer R. I. Retrocyclin:a primate peptide that protects cells from infection by T-and M-tropic strains of HIV-1. Proceedings of the National Academy of Science,2002,99(4):1813-1818.
    Colgan S. P., Hershberg R. M., Furuta G. T., and Blumberg R. S. Ligation of intestinal epithelial CD1d induces bioactive IL-10:critical role of the cytoplasmic tail in autocrine signaling. PNA,1999,96(24):13938-13943.
    Conti P. and DiGioacchino M. MCP-1 and RANTES are mediators of acute and chronic inflammation. Allergy and Asthma Proceedings,2001,22:133-137.
    Coombes J. L. and Maloy K. J. Control of intestinal homeostasis by regulatory T cells and dendritic cells. Seminars in Immunology,2007,19:116-126.
    Cross A.R. and Segal A.W. The NADPH oxidase of professional phagocytes-prototype of the NOX electron transport chain systems. Biochimica et Biophysica Acta,2004,1657:1-22.
    Cross M. L., Ganner A., Teilab D., Fray L. M. Patterns of cytokine induction by gram-positive and gram-negative probiotic bacteria. FEMS Immunology and Medical Microbiology,2004,42:173-180.
    De Cupere, F., Deprez P., Demeulenaere D. and Muylle E. Evaluation of the Effect of 3 Probiotics on Experimental Escherichia coli Enterotoxaemia in Weaned Piglets. Journal of Veterinary Medicine, Series B,1992,39:277-284.
    Cundell D. R., Gerard N. P., Gerard C., Idanpaan-Heikkila I., and Tuomanen E. I. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature,1995,377:435-438.
    D'Addabboa A., Palmierib O., Magliettaa R., Latianob A., Mukherjeec S., Anneseb V., and Ancona N. Discovering genetic variants in Crohn's disease by exploring genomic regions enriched of weak association signals. Digestive and Liver Disease, 2011,43:623-631.
    Deplancke B. and Gaskins H. R. Microbial modulation of innate defense:goblet cells and the intestinal mucus layer. American Journal of Clinical Nutrition,2001,73(6): 1131S-1141S.
    Dicks L. M. T. and Doeschate K. Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 Alleviated Symptoms of Salmonella Infection, as Determined in Wistar Rats Challenged with Salmonella enterica Serovar Typhimurium. Current Microbiology,2010,61:184-189.
    Dogi C. A., Galdeano C. M., Perdigon G. Gut immune stimulation by non pathogenic Gram(+) and Gram(-) bacteria. Comparison with a probiotic strain. Cytokine,2008, 41:223-231.
    Dogi C.A., Weill F., Perdigon G. Immune response of non-pathogenic Gram(+) and Gram(-) bacteria in inductive sites of the intestinal mucosa Study of the pathway of signaling involved. Immunobiology,2010,215:60-69.
    Dotan I., Werner L., Vigodman S., Weiss S., Brazowski E., Maharshak N., Chen O., Tulchinsky H., Halpern Z., and Guzner-Gur H. CXCL12 is a constitutive and inflammatory chemokine in the intestinal immune system. Inflammatory Bowel Disease,2010,16(4):583-592.
    Drakes M., Blanchard T., and Czinn S. Bacterial Probiotic Modulation of Dendritic Cells. Infection and immunity,2004,72(6):3299-3309.
    Dubuquoy L., Jansson E. A., Deeb S., Rakotobe S., Karoui M., Colombel J. F., Auwerx J., Pettersson S., Desreumaux P. Impaired expression of peroxisome proliferator-activated receptor gamma in ulcerative colitis. Gastroenterology,2003, 124:1265-1276.
    Dubuquoy L., Rousseaux C, Thuru X., Peyrin-Biroulet L., Romano O., Chavatte P., Chamaillard M., and Desreumaux P. PPARy as a new therapeutic target in inflammatory bowel diseases. Gut,2006,55:1341-1349.
    Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L.,Sargent M., Gill S. R., Nelson K. E, and Relman D. A. Diversity of the human intestinal microbial flora. Science,2005,308:1635-1638.
    Eckmann L. and Kagnoff M. F. Cytokines in host defense against Salmonella. Microbes and Infecttion,2001,3:1191-1200.
    El Gedaily A., Schoedon G., Schneemann M., and Schaffner A. Constitutive and regulated expression of platelet basic protein in human monocytes. J Leukoc Biol, 2004,75:495-503.
    Eun C. S., Han D. S., Lee S. H., Jeon Y. C., Sohn J. H., Kim Y. S., and Lee J. Probiotics may reduce inflammation by enhancing peroxisome proliferator activated receptor gamma activation in HT-29 cells. Korean Journal Gastroenterol. 2007,49(3):139-146.
    Ewaschuk J., Endersby R., Thiel D., Diaz H., Backer J., Ma M., Churchill T., and Madsen K. Probiotic Bacteria Prevent Hepatic Damage and Maintain Colonic Barrier Function in a Mouse Model of Sepsis. Hepatology,2007,46:841-850.
    Ewaschuk J. B., Diaz H., Meddings L., Diederichs B., Dmytrash A., Backer J., van Langen M. L., and Madsen K. L. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function American Journal of Physiology Gastrointestinal Liver Physiology,2008,295:G1025-G1034.
    Fogh J., Wright W. C., and Loveless J. D. Absence of Hela cell contamination in 169 cell lines derived from human tumors. Journal of the National Cancer Institute, 1977,58:209-214.
    Foligne, B., Nutten, S., Grangette, C., Dennin, V., Goudercourt, D., Poiret, S., Dewulf, J., Brassart, D., Mercenier, A., Pot, B.,. Correlation between in vitro and in vivo immunomodulatory properties of lactic acid bacteria. World Journal of Gastroenterology,2007,13(2):236-243.
    Forestier C., Champs De C., Vatoux C., et al. Probiotic activities of Lactobacillus casei rhamnosus:in vitro adherence to intestinal cells and antimicrobial properties. Research in Microbiology,2001,152:167-173.
    Foulquie Moreno M. R., Sarantinopoulos P., Tsakalidou E., and De Vuyst L. The role and application of enterococci in food and health. International Journal of Food Microbiology,2006,106:1-24.
    Franz C. M. A. P., Holzapfel W. H., and Stiles M. E. Enterococci at the crossroads of food safety? International Journal of Food Microbiology,1999,47:1-24.
    Franz C. M. A. P., Stiles M. E., Schleifer K. H., and Holzapfel W. H. Enterococci in foods-a conundrum for food safety. International Journal of Food Microbiology, 2003,88:105-122.
    Franz C. M. A. P., Huch M., Abriouel H., Holzapfel W., and Galvez A. Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology,2011,151:125-140.
    Fritz J. H., Bourhis L. L., Magalhaes J. G., and Philpott D. J. Innate immune recognition at the epithelial barrier drives adaptive immunity:APCs take the back seat. TRENDS in Immunology,2007,29(1):41-49.
    Fuentes S., Egert M., Jime M., et al. Administration of Lactobacillus casei and Lactobacillus plantarum affects the diversity of murine intestinal lactobacilli, but not the overall bacterial community structure. Research in Microbiology,2008,159: 237-243.
    Fuller R. Probiotics in man and animals. Journal of Applied Bacteriology,1989,66: 365-378.
    Funda D. P. Tuckova L., Farre M. A.. Iwase T., Moro I. and Tlaskalova-Hogenova H. CD 14 is expressed and released as soluble CD 14 by human intestinal epithelial cells in vitro:lipopolysaccharide activation of epithelial cells revisited. Infection and Immunity,2001,69:3772-3781.
    Gabriele L. and Ozato K. The role of the interferon regulatory factor (IRF) family in dendritic cell development and function. Cytokine& Growth Factor Reviews,2007, 18:503-510.
    Galdeano C. M. and Perdigon G. The Probiotic Bacterium Lactobacillus casei Induces Activation of the Gut Mucosal Immune System through Innate Immunity. Clinical and vaccine immunology,2006,13(2):219-226.
    Galdeano C. M., de LeBlanc A. de M.. Vinderola G., Bonet M. E. B., and Perdigon G. Proposed Model:Mechanisms of Immunomodulation Induced by Probiotic Bacteria. Clinical and Vaccine Immunology,2007,14(5):485-492.
    Gamble J. R., Harlan J. M., Klebanoff S. J., and Vadas M. A. Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proceedings of the National Academy of Sciences of the United States of America,1985,82(24):8667-8671.
    Gao Y., He L., Katsumi H., Sakane T., Fujita T., Yamamoto A. Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats. International Journal of Pharmaceutics,2008,359: 70-78.
    Gaudier E., Michel C., Segain J.-P., Cherbut C., and Hoebler C. The VSL# 3 Probiotic Mixture Modifies Microflora but Does Not Heal Chronic Dextran-Sodium Sulfate-Induced Colitis or Reinforce the Mucus Barrier in Mice. The Journal of Nutrition,2005,135:2753-2761.
    Geier M. S., Butler R. N., Giffard P. M., and Howarth G. S. Lactobacillus fermentum BR11, a potential new probiotic, alleviates symptoms of colitis induced by dextran sulfate sodium (DSS) in rats. International Journal of Food Microbiology,2007, 114:267-274.
    Gelius E., Persson C., Karlsson J., Steiner H. A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochemical and Biophysical Research Communications,2003,306:988-994.
    Gewirtz A. T., Navas T. A., Lyons S., Godowski P. J., and Madara J. L. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. Journal of Immunology,2001,167:1882-1885.
    Di Giacinto C., Marinaro M., Sanchez M.,et al.Probiotics Ameliorate Recurrent Thl-Mediated Murine Colitis by Inducing IL-10 and IL-10-Dependent TGF-β-Bearing Regulatory Cells. The Journal of Immunology,2005,174: 3237-3246.
    Giang H. H. Impact of Bacteria and Yeast with Probiotic Properties on Performance, Digestibility, Health Status and Gut Environment of Growing Pigs [Doctoral Thesis]. Swedish, Swedish University of Agricultural Sciences Uppsala,2010.
    Gibson D. L., Ma C., Rosenberger C. M., Bergstrom K. S., Valdez Y, Huang J. T. Khan M. A., and Vallance B. A. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis. Cellular Microbiology,2008,10:388-403.
    Gill H. S. and Rutherfurd K. J. Probiotic supplementation to enhance natural immunity in the elderly:effects of a newly characterized immunostimulatory strain Lactobacillus rhamnosus HN001 (DR20TM) on leucocyte phagocytosis. Nutrition Research,2001,21:183-189.
    Golowczyc M. A., Mobili P., Garrote G. L., Abraham A. G., and De Antoni G. L Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. International Journal of Food Microbiology,2007,118: 264-273.
    Gonzalez-Mariscal L., Tapia R., and Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochimica et Biophysica Acta,2008,1778: 729-756.
    Gonzalez Cortesa C., Diez-Tasconb C., Guerra-Lasoc J. M., Gonzalez-Cocanod M. C., Rivero-Lezcano O. M. Non-chemotactic influence of CXCL7 on human phagocytes: Modulation of antimicrobial activity against L. Pneumophila. Immunobiology,2012. In press.
    Gopal P. K., Prasad J., Smart J., and Gill H. S. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacteriwn lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. International Journal of Food Microbiology,2001,67:207-216.
    Granato D., Bergonzelli G. E., Pridmore R. D., Marvin L., Rouvet M., and Corthesy-Theulaz I. E. Cell Surface-Associated Elongation Factor Tu Mediates the Attachment of Lactobacillus johnsonii NCC533 (La1) to Human Intestinal Cells and Mucins. Infection and Imuunity,2004,72(4):2160-2169.
    Gueimonde M., Jalonen L., He F., Hiramatsu M., Salminen S. Adhesion and competitive inhibition and displacement of human enteropathogens by selected lactobacilli. Food Research International,2006,39:467-471.
    Guerra N. P., Bernardez P. F., Mendez J., Cachaldora P., Castro L. P. Production of four potentially probiotic lactic acid bacteria and their evaluation as feed additives for weaned piglets. Animal Feed Science and Technology,2007,134:89-107.
    Haakensen M., Dobson C. M., Deneer H., Ziola B. Real-time PCR detection of bacteria belonging to the Firmicutes Phylum. International Journal of Food Microbiology,2008,125:236-241.
    Haddad J. J. E., Safieh-Garabedian B., Saade N. E., Kanaan S. A., Land S. C. Chemioxyexcitation (ApO2/ROS)-dependent release of IL-1β, IL-6 and TNFa: Evidence of cytokines as oxygen-sensitive mediatiors in the alveolar epithelium. Cytokine,2001,13(3):138-147.
    Haller D., Colbus H., Ganzle M.G., Scherenbacher P., Bode C., and Hammes W. P. Metabolic and Functional Properties of Lactic Acid Bacteria in the Gastro-intestinal Ecosystem:A comparative in vitro Study between Bacteria of Intestinal and Fermented Food Origin. Systematic and Applied Microbiology,2001,24:218-226.
    Han Y.-J., Kwon Y.-G., Chung H.-T., Lee S.-K., Simmons R. L., Billiar T. R., and Kim Y.-M. Antioxidant Enzymes Suppress Nitric Oxide Production through the Inhibition of NF-kB Activation:Role of H2O2 and Nitric Oxide in Inducible Nitric Oxide Synthase Expression in Macrophages. Biology and Chemistry,2001,5(5): 504-513.
    Harder J., Meyer-Hoffert U., Teran L. M., Schwichtenberg L., Bartels J., Maune S. Schroder J. M. Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-1beta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. American Journal of Respiratory Cell Molecular Biology,2000,22:714-721.
    Hart A. L., Lammers K., Brigidi P., Vitali B., Rizzello F., Gionchetti P., Campieri M., Kamm M. A., Knight S. C. and Stag g A. J. Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut,2004,53:1602-1609.
    Hasan U., Chaffois C., Gaillard C., Saulnier V., Merck E., Tancredi S., Guiet C., Briere F., Vlach J., Lebecque S., Trinchieri G., and Bates E. E. M. Human TLR10 Is a Functional Receptor, Expressed by B Cells and Plasmacytoid Dendritic Cells, Which Activates Gene Transcription through MyD88. The Journal of Immunology, 2005,174:2942-2950.
    Hashimoto K. and Shimizu M. Epithelial properties of human intestinal Caco-2 cells cultured in a serum-free medium. Cytotechnology,1993,13:175-184.
    Haverson K., Rehakova Z., Sinkora J., Sver L., and Bailey M. Immune development in jejunal mucosa after colonization with selected commensal gut bacteria:A study in germ-free pigs. Veterinary Immunology and Immunopathology,2007,119: 243-253.
    He B., Xu W. F., Santini P. A., Polydorides A. D., Chiu A., Estrella J., Shan M., Chadburn A., Villanacci V., Plebani A., Knowles D. M., Rescigno M., and Cerutti A. Intestinal Bacteria Trigger T Cell-Independent Immunoglobulin A2 Class Switching by Inducing Epithelial-Cell Secretion of the Cytokine APRIL. Immunity,2007,26: 812-826.
    Hecht G. and Savkovic S.D. Effector role of epithelia in inflammation:interaction with bacteria. Alimentary Pharmacology and Therapeutics,1997,3:64-69.
    Hedemann M. S., Hojsgaard S., and Jensen B. B. Lectin histochemical characterisation of the porcine small intestine around weaning. Research in Veterinary Science,2007a,82:257-262.
    Hedemann M. S., Dybkjaer L., and Jensen B. B. Pre-weaning eating activity and morphological parameters in the small and large intestine of piglets. Livestock Science,2007b,108:128-131.
    Heo S. K., Yi H. S., Yun H. J., Ko C. H., Choi J. W., Park S. D. Ethylacetate extract from Dracom's Resina inhibits LPS-induced inflammatory responses in vascular smooth muscle cells and macrophages via suppression of ROS production. Food and Chemical Toxicology,2010,48:1129-1136.
    Hessle C, Hanson L. A. and Wold A. E. Lactobacilli from human gastrointestinal mucosa are strong stimulators of IL-12 production. Clinical Experement Immunology,1999,116:276-282.
    Hessle C. C., Andersson B., Wold A. E. Gram-positive and Gram-negative bacteria elicit different patterns of pro-inflammatory cytokines in human monocytes. Cytokine,2005,30(6):311-318.
    Hirata N., Yanagawaa Y., Ebihara T. et al. Selective synergy in anti-inflammatory cytokine production upon cooperated signaling via TLR4 and TLR2 in murine conventional dendritic cells. Molecular Immunology,2008,45:2734-2742.
    Hoffmann W. Trefoil factors. Cellular and molecular life sciences,2005,62: 2932-2938.
    Hofstetter A. O., Saha S., Siljehav V., Jakobsson P.-J., and Herlenius E. The induced prostaglandin E2 pathway is a key regulator of the respiratory response to infection and hypoxia in neonates. PNAS,2007,104(23):9894-9899.
    Honda K and Takeda K. Regulatory mechanisms of immune responses to intestinal bacteria. Mucosal Immunology,2009,2:187-196.
    Honda Z., Ishii S., and Shimizu T., Platelet-activating factor receptor, The Journal of Biochemtry,2002,131:773-779.
    Hong W.-S., Chen H.-C., Chen Y.-P., Chen M.-J. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. International Dairy Journal 2009,19:244-251.
    Hooper L. V., Wong M. H., Thelin A. L. Hansson, Falk P. G. and Gordon J. I. Molecular analysis of commensal host-microbial relationships in the Intestine. Science,2001,291:881-884.
    Hornef M. W., Frisan T., Vandewalle A., Normark S., and Richter-Dahlfors A. Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. The Journal of Experimental Medicine,2002,195:559-570.
    Hornef M. W., Normark B. H., Vandewalle A., and Normark S. Intracellular recognition of lipopolysaccharide by Toll-like receptor 4 in intestinal epithelial cells. The Journal of Experimental Medicine,2003,198:1225-1235.
    Howe R., Dillon S., Rogers L., McCarter M., Kelly C., Gonzalez R., Madinger N., Wilson C. C. Evidence for dendritic cell-dependent CD4 +Thelper-ltyperesponsestocommensalbacteria in normal human intestinal lamina propria. Clinical Immunology,2009,131:317-332.
    Hsu H. Y. and Wen M. H. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. Journal of Biological Chemistry,2002,277(25):22131-22139.
    Hu X.-D., Yang Y, Zhong X.-G., Zhang X.-H., Zhang Y.-N., Zheng Z.-P., Zhou Y, Tang W., Yang Y.-F., Hu L.-H., Zuo J.-P.. Anti-inflammatory effects of Z23 on LPS-induced inflammatory responses in RAW264.7 macrophages. The Journal of Ethnopharmacology,2008,120:447-451.
    Hua M.-C., Lin T.-Y., Lai M.-W., Kong M.-S., Chang H.-J., and Chen C.-C. Probiotic Bio-Three induces Thl and anti-inflammatory effects in PBMC and dendritic cells. World Journal of Gastroenterology,2010,16(28):3529-3540.
    Huang J., Canadien V., Lam G. Y., Steinberg B. E., Dinauer M. C., Magalhaes M. A., Glogauer M., S. Grinstein, and Brumell J. H. Activation of antibacterial autophagy by NADPH oxidases. Proceedings of the National Academy of Sciences of the United States of American,2009,106:6226-6231.
    Hugo A. A., Kakisu E., De Antoni G. L., and Perez P. F. Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro. Letters in Applied Microbiology,2008,46(6):613-619.
    Hurley B. P. and McCormick B. A. Intestinal Epithelial Defense Systems Protect Against Bacterial Threats. Current Gastroenterology Reports,2004,6:355-361.
    Imielinski M., Baldassano R. N., Griffiths A., et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nature Genetics.2009,41: 1335-1340.
    Inoue R., Nagino T., Hoshino G., and Ushida K. Nucleic acids of Enterococcus faecalis strain EC-12 are potent Toll-like receptor 7 and 9 ligands inducing interleukin-12 production from murine splenocytes and murine macrophage cell line J774.1. FEMS Immunology & Medical Microbiology,2011,61:94-102.
    Iwasaki A. Mucosal dendritic cells. Annual Reviews Immunology,2007,25:381-418.
    Jakava-Viljanen M. and Palva A. Isolation of surface (S) layer protein carrying Lactobacillus species from porcine intestine and faeces and characterization of their adhesion properties to different host tissues. Veterinaiy Microbiology,2007,124: 264-273.
    Jijon H., Backer J., Diaz H.,Yeung H., Thiel D., McKaigney C., De Simone C., Madsen K. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology,2004,126(5):S1358-1373.
    Jin L. Z., Marquardt R. R., and Zhao X. A Strain of Enterococcus faecium (18C23) Inhibits Adhesion of Enterotoxigenic Escherichia coli K88 to Porcine Small Intestine Mucus. Appled and environmental microbiology,2000,66(10): 4200-4204.
    Jin Qi S., Wang S., Wang M., Li X., Kim Y., Nunez G., Gupta D., and Dziarski R. PGlyRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell,2009,5:137-150.
    Johnson I. R., Ball R. O., Baracos V. E., and Field C. J. Glutamine supplementation influences immune development in the newly weaned piglet. Developmental and Comparative Immunology,2006,30:1191-1202.
    Johnson-Henry K. C., Donato K. A., Shen-Tu G., Gordanpour M., and Sherman P. M. Lactobacillus rhamnosus Strain GG Prevents Enterohemorrhagic Escherichia coli O157:H7-Induced Changes in Epithelial Barrier Function. Infection and Immunity, 2008,76(4):1340-1348.
    Jung H. C., Eckmann L., Yang S. K., Panja, A., Fierer J., Morzycka-Wroblewska E. and Kagnoff M. F. A distinct array of proinflammatory ytokines is expressed in human colon epithelial cells in response to bacterial invasion. The Journal of Clinical Investigation,1995,95:55-65.
    Jung H.-W., Seo U.-K., Kim J.-H., Leem K.-H., Park Y.-K. Flower extract of Panax notoginseng attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-κB signaling pathway in murine macrophages. The Journal of Ethnopharmacology,2009,122:313-319.
    Juntunen M., Kirjavainen P. V., Ouwehand A. C., Salminen S. J., and Isolauri E. Adherence of Probiotic Bacteria to Human Intestinal Mucus in Healthy Infants and during Rotavirus Infection. Clinical and Diagnostic Laboratory Immunology,2001, 8(2):293-296.
    Kamstrup S., Verthelyi D., and Klinman D. M. Response of porcine peripheral blood mononuclear cells to CpG-containing oligodeoxynucleotides. Veterinary Microbiology,2001,78:353-362.
    Kang W. and Reid K. B. M. DMBT1, a regulator of mucosal homeostasis through the linking of mucosal defense and regeneration? FEBS Letters,2003,540:21-25.
    Kaufmann S.H.E., Emoto M., Szalay G., Barsig J., and Flesch I. E. A. Interleukin 4 and listeriosis. Immunology Reviews,1997,158:95-105.
    Kekkonen A R., Kajasto E., Miettinen M. et al. Probiotic leuconostoc mesenteroides ssp. Cremoris and Streptococcus thermophilus induce IL-12 and IFN-y production. World Journal of Gastroenterol,2008,14 (8):1192-1203.
    Kelly D., Smyth J. A., and McCracken K. J. Digestive development of the early weaned pig; effect of level of food intake on digestive enzyme activity during the immediate post-weaning period. British Journal of Nutrition,1991,65:181-188.
    Kelly D., Campbel J. I., King T. P., Grant G, Jansson E. A., Courts A.G, Pettersson S., and Conway S. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nature Immunology,2004,5:104-112.
    Khajoee V., Saito M, Takada H., Nomura A., Kusuhara K., Yoshida S.-I., Yoshikai Y., and Hara T. Novel roles of osteopontin and CXC chemokine ligand 7 in the defence against mycobacterial infection. Clinical and Experimental Immunology, 2006,143:260-268.
    Kim Y, Oh S., Park S., Kim S. H. Interactive transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 and intestinal epithelial HT-29 cells after bacterial attachment. International Journal of Food Microbiology, 2009,131:224-232.
    Kim Y. R., Kim K. M., Yoo N. J., and Lee S. H. Mutational analysis of CASP1,2,3, 4,5,6,7,8,9,10, and 14 genes in gastrointestinal stromal tumors. Human Pathology,2009,40:868-871.
    Kimoto-Nira H., Suzuki C., Kobayashi M., Sasaki K., Mizumachi K. Inhibition of leukotriene B4 production in murine macrophages by lactic acid bacteria. International Journal of Food Microbiology,2009,129:321-324.
    Kindon H., Pothoulakis C., Thim L., Lynch-Devaney K., and Podolsky D. K. Trefoil peptide protection of intestinal epithelial barrier function:Cooperative interaction with mucin glycoprotein. Gastroenterology,1995,109(2):516-523.
    Kisich K. O., Howell M. D., Boguniewicz M., Heizer H. R., Watson N. U., and Leung D. Y. M. The constitutive capacity of human keratinocytes to kill Staphylococcus aureus is dependent on β-defensin 3. Journal of Investigative Dermatology,2007, 127:2368-2380.
    Kitazawa H., Ishii Y, Uemura J., Kawai Y., Saito T., Kaneko T., Noda K. and Itoh T. Augmentation of macrophage functions by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. Bulgaricus. Food Microbiology,2000,17: 109-118.
    Kitazawa H., Ino T., Kawai Y., Itoh T. and Saito T. Rapid activation of Mac-1(CD11b/CD18) molecules on macrophages by a new chemotactic factor 'Gasserokine'produced by Lactobacillus gasseri JCM1131T. Animal Science Journal,2002,73:395-401.
    Kobayashi K., Hernandez L. D., Galan J. E., Janeway Jr C. A., Medzhitov R., and Flavell R. A. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 2002,110:191-202.
    Kobayashi K. S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nunez G., Flavell R. A. Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal Tract. Science,2005,307:731-734.
    Krasinski S. D., Estrada G., Yeh K. Y, Yeh M., Traber P. G., Rings E. H., Buller H. A., Verhave M., Montgomery R. K., and Grand R. J. Transcriptional regulation of intestinal hydrolase biosynthesis during postnatal development in rats. American Journal of Physiology,1994,267(1):G584-G594.
    Kuijpers T. W., Hakkcrt B. C, Hart M. H. L., and Roos D. Neutrophil migration across monolayers of cytokine-prestimulated en- dothelial cells:A role for platelet-aetivating faetor and IL-8. The Journal of Cellular Biology,1992,117: 565-572.
    Kulbe H., Hagemann T., Szlosarek P. W., Balkwill F. R., and Wilson J. L. The inflammatory cytokine tumor necrosis factor-α regulates chemokine receptor expression on ovarian cancer cells. Cancer Research.2005,65:10355-10362.
    Kumar A., Zhang J., and Yu F. S. X. Toll-like receptor 2-mediated expression of β-defensin-2 in human corneal epithelial cells. Microbes and infection,2006, 8:380-389.
    Kumar H., Kawai T., and Akira S. Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications,2009,388:621-625.
    Kumar S. Mechanisms mediating caspase activation in cell death. Cell Death Differentiation,1999,6:1060-1066.
    Lalmanach A.-C. and Lantier F.. Host cytokine response and resistance to Salmonella infection. Microbes and Infection,1999,1:719-726.
    Lammers K. M., Brigidi P., Vitali B., Gionchetti P., Rizzello F., Caramelli E., Matteuzzi D., Campieri M. Immunomodulatory ejects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunology and Medical Microbiology,2003,38:165-172.
    Latz E., Schoenemeyer A., Visintin A., Fitzgerald K. A., Monks B. G., Knetter C. F., Lien E., Nilsen N. J, Espevik T. and Golenbock D. T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunology,2004,5:190-198.
    Laukova A., Strompfova V. and Ouwehand A. Adhesion Properties of Enterococci to Intestinal Mucus of Different Hosts. Veterinary Research Communications,2004, 28:647-655.
    Lee J., Mo J. H., Katakura K., Alkalay I., Rucker A. N., Liu Y. T., Lee H. K., Shen C., Cojocaru G., Shenouda S., Kagnoff M., Eckmann L., Ben-Neriah Y., and Raz E. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nature Cell Biology,2006,8:1327-1336.
    Lee H.-S., Han S.-Y., Bae E.-Ah, et al. Lactic acid bacteria inhibit proinflammatory cytokine expression and bacterial glycosaminoglycan degradation activity in dextran sulfate sodium-induced colitic mice. International Immunopharmacology, 2008,8:574-580.
    Lee J.-H., Lee B., Lee H.-S., et al. Lactobacillus suntoryeus inhibits pro-inflammatory cytokine expression and TLR-4-linked NF-κB activation in experimental colitis. International Journal of Colorectal Disease,2009,24:231-237.
    Lehrer R. I. Primate defensins. Nature Review Microbiology.2004,2:727-738.
    Lin P.-P., Hsieh Y.-M., Tsai C.-C.Antagonistic activity of Lactobacillus acidophilus RY2 isolated from healthy infancy feces on the growth and adhesion characteristics of enteroaggregative Escherichia coli. Anaerobe,2009, xxx:1-5.
    Lin P. W., Myers L. E. S., Ray L., Song S.-C., Nasr T. R., Berardinelli A. J., Kundu K., Murthy N., Hansen J. M., and Neish A. S. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radical Biology & Medicine,2009,47:1205-1211.
    Lin W. H., Wu C. R., Fang T. J., Lee M. S., Chen H. C., Huang S. Y., Hseu Y. C. Adherent Properties and Macrophage Activation Ability of 3 Strains of Lactic Acid Bacteria. The Journal of Food Science,2011,76 (1):M1-M7.
    Lojanica M., Manojlovic M., Jeremic D., and Petronijevic S. The Effects of Probiotic Enterococcus faecium DSM 7134 in the Weaned Pigs Nutrition. Biotechnology in Animal Husbandly,2010,26 (1-2):57-64.
    Lotz M., Gutle D., Walther S., Menard S., Bogdan C., and Hornef M. W. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. The Journal of Experimental Medicine,2006,203:973-984.
    Lotz M., Menard S., Hornef M. Innate immune recognition on the intestinal mucosa. International Journal of Medical Microbiology,2007,297:379-392.
    Lu X., Wang M., Qi J., Wang H., Li X., Gupta D., and Dziarski R. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. The Journal of Biological Chemistry,2006.281(9):5895-5907.
    Luyer M. D., Buurman W. A., Hadfoune M., Speelmans G., Knol J., Jacobs J. A., Dejong C. H. C., Vriesema A. J. M., and Greve J. W. M. Strain-Specific Effects of Probiotics on Gut Barrier Integrity following Hemorrhagic Shock. Infection and immunity,2005,73(6):3686-3692.
    Ma D., Forsythe P., and Bienenstock J. Live Lactobacillus reuteri Is Essential for the Inhibitory Effect on Tumor Necrosis Factor Alpha-Induced Interleukin-8 Expression. Infection and immunity,2004,72(9):5308-5314.
    Maassen C. B. M., van Holten-Neelen C., Balk F., den Bak-Glashouwer M.-J. H., Leer R. J., Laman J. D., Boersma W. J. A., and Claassen E. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine,2000,18(8):2613-2623.
    Maaser C., Eckmann L., Paesold G., Kim H. S., Kagnoff M. F. Ubiquitous production of macrophage migration inhibitory factor by human gastric and intestinal epithelium. Gastroenterology,2002a,122:667-680.
    Maaser C. and Kagnoff M. F. Role of the intestinal epithelium in orchestrating innate and adaptive mucosal immunity. Gastroenterology,2002b,40:525-529.
    Machado J. G, Hyland K. A., Dvorak C. M., et al. Gene expression profiling of jejunal Peyer's patches in juvenile and adult pigs. Mammalian Genome,2005, 16(8):599-612.
    Mack D. R., Michail S., Wei S., McDougall L., and Hollingsworth M. A. Probiotics inhibit enteropathogenic E.coli adherence in vitro by inducing intestinal mucin gene expression. American Journal of Physiology Gastrointestinal Liver Physiology, 1999,276:G941-G950.
    Mack D. R., Ahrne S., Hyde L., Wei S. and Hollingsworth M. A. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut,2003,52:827-833.
    Macpherson A.J. and Harris N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Review Immunology,2004a,4(6):478-485.
    Macpherson A. J. and Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science,2004b,303:1662-1665.
    Macpherson A. J. and McCoy K. APRIL in the Intestine:A Good Destination for Immunoglobulin A2. Immunity,2007,26:755-757.
    Madsen J., Torn(?)e I., Nielsen O., Lausen M., Krebs I., Mollenhauer J., Kollender G., Poustka A., Skj(?)dt K., and Holmskov U. CRP-duc-tin, the mouse homologue of gp-340/deleted in malignant brain tumors 1 (DMBT1), binds gram-positive and gram-negative bacteria and interacts with lung surfactant protein D. European Journal of Immunology,2003,33:2327-2336.
    Mafamane H., Szabo I., Schmidt M. F. G., Filter M., Walk N., Tedin K., and Scharek-Tedin L. Studies on the effect of an Enterococcus faecium probiotic on T cell populations in peripheral blood and intestinal epithelium and on the susceptibility to Salmonella during a challenge infection with Salmonella Typhimurium in piglets. Archives of Animal Nutrition,2011, 65(6):415-430.
    Magalhaes J. G., Tattoli I., and Girardin S. E. The intestinal epithelial barrier:How to distinguish between the microbial flora and pathogens. Seminars in Immunology, 2007,19:106-115.
    Maia O. B., Duarte R., Silva A. M., Cara D. C., and Nicoli J. R. Evaluation of the components of a commercial probiotic in gnotobiotic mice experimentally challenged with Salmonella enterica subsp. enterica ser. Typhimurium. Veterinary Microbiology,2001,79:183-189.
    Mair C., Plitzner C., Pfaffl M. W., Schedle K., Meyer H. H. D., and Windisch W. Inulin and probiotics in newly weaned piglets:effects on intestinal morphology, mRNA expression levels of inflammatory marker genes and haematology. Archives of Animal Nutrition,2010,64(4):304-321.
    Makras L., Triantafyllou V., Fayol-Messaoudi D., Adriany T., Zoumpopoulou G., Tsakalidou E., Servin A., and De Vuyst L. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Research in Microbiology,2006,157:241-247.
    Maldonado Galdeano C. and Perdigon G. Role of viability of probiotic strains in their persistence in the gut and in mucosal immune stimulation. Journal of Applied Microbiology,2004,97:673-681.
    Mangell P., Llennernas P., Wang M., Olsson C., Ahrne S., Molin G, Thorlacius H., and Jeppsson B. Adhesive capability of Lactobacillus plantarum 299v is important for preventing bacterial translocation in endotoxemic rats. APMIS,2006,114: 611-618.
    Mansell A., Smith R., Doyle S. L., Gray P., Fenner J. E., Crack P. J., Nicholson S. E., Hilton D. J., O'Neill L. A., and Hertzog P. J. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nature Immunology,2006,7:148-155.
    Maragkoudakis P. A., Chingwaru W., Gradisnik L., Tsakalidou E., and Cencic A. Lactic acid bacteria effeciently protect human and animal intestinal epithelial and immune cells from enteric virus infection. International Journal of Food Microbiology,2010,141:S91-S97.
    Marcinakova M., Klingberg T. D., Laukova A., Budde B. B. The effect of pH, bile and calcium on the adhesion ability of probiotic enterococci of animal origin to the porcine jejunal epithelial cell line IPEC-J2. Anaerobe,2010,16:120-124.
    Mariani V., Palermo S., Fiorentini S., Lanubile A., and Giuffra E. Gene expression study of two widely used pig intestinal epithelial cell lines:IPEC-J2 and IPI-2I. Veterinary Immunology and Immunopathology,2009,131(4):278-284.
    Martin C. R. and Walker W. A. Probiotics:Role in Pathophysiology and Prevention in Necrotizing Enterocolitis. Seminars in perinatology,2008,32:127-137.
    Martinon F. and Tschopp J. Inflammatory caspases:linking an intracellular innate immune system to autoinflammatory diseases. Cell,2004,117:561-574.
    Marzotto M., Maffeis C., Paternoster T., Ferrario R., Rizzotti L., Pellegrino M., Dellaglio F., and Torriani S. Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants. Research in Microbiology,2006,157:857-866.
    Matijaxic B. B., Narat M., Peternel M. Z., and Rogelj I. Ability of Lactobacillus gasseri K7 to inhibit Escherichia coli adhesion in vitro on Caco-2 cells and ex vivo on pigs'jejunal tissue. International Journal of Food Microbiology,2006,107: 92-96.
    Mattar A. F., Teitelbaum D. H., Drongowski R. A., Yongyi F., Harmon C. M., Coran A.G. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatr Surg Int,2002,18:586-590.
    Matute J. D., Arias A. A., Dinauer M. C., and Patino P. J. p40phox:the last NADPH oxidase subunit. Blood Cells, Molecules, and Diseases,2005,35:291-302.
    McCracken B. A., Gaskins H. R., Ruwe-Kaiser P. J., Klasing K. C., and Jewell D. E. Diet-dependent and diet-independent metabolic responses underlie growth stasis of pigs at weaning. The Journal of Nutrition,1995,125:2838-2845.
    Medvedev A. E., Lentschat A., Wahl L. M., Golenbock D. T., and Vogel S. N. Dysregulation of LPS-induced Toll-like receptor 4-MyD88 complex formation and IL-1 receptor-associated kinase 1 activation in endotoxin-tolerant cells. The Journal of Immunology,2002,169:5209-5216.
    Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature,2007,449:819-826.
    Mei J. & Xu R.J. Transient changes of transforming growth factor-beta expression in the small intestine of the pig in association with weaning. British Journal of Nutrition,2005,93:37-45.
    Melgarejo E., Medina M. A., Sanchez-Jimenez F., and Urdiales J. L. Monocyte chemoattractant protein-1:A key mediator in inflammatory processes. The International Journal of Biochemistry & Cell Biology,2009,41:998-1001.
    Melmed G., Thomas L. S., Lee N., Tesfay S. Y., Lukasek K., Michelsen K. S., Zhou Y., Hu B., Arditi M., and Abreu M. T. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands:implications for host-microbial interactions in the gut. The Journal of Immunology,2003,170: 1406-1415.
    Menard S., Candalh C., Bambou J. C., Terpend K., Cerf-Bensussan N., Heyman M. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut,2004,53:821-828.
    Mendis E., Kim M.-M., Rajapakse N., Kim S.-K. Suppression of cytokine production in lipopolysaccharide-stimulated mouse macrophages by novel cationic glucosamine derivative involves down-regulation of NF-kB and MAPKexpressions. Bioorganic & Medicinal Chemistry,2008,16:8390-8396.
    Mennigen R., Nolte K., Rijcken E., Utech M., Loeffler B., Senninger N., and Bruewer M. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. American Journal of Physiology Gastrointestinal Liver Physiology,2009,296: G1140-G1149.
    Michela S., Cristina P., Laura F., Sandra G. Toll-like receptor cross-talk in human monocytes regulates CC-chemokine production, antigen uptake and immune cell recruitment. Immunobiology,2011,216:1135-1142.
    Miettinen M., Vuopio-Varkla J., and Varkila K. Production of Human Tumor Necrosis Factor Alpha, Interleukin-6, and Interleukin-10 Is Induced by Lactic Acid Bacteria. Infection and Immunity,1996,64(12):5403-5405.
    Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Seminars in Immunology,2007,19:3-10.
    Mizoguchi A., Mizoguchi E., Takedatsu H., Blumberg R. S., and Bhan A. K. Chronic Intestinal Inflammatory Condition Generates IL-10-Producing Regulatory B Cell Subset Characterized by CD1d Upregulation. Immunity,2002,16:219-230.
    Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin GL, Warfield KL, et al. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. PNAS,2005,102(8):2880-2885.
    Mohamadzadeh M. and Klaenhammer T. R. Specific Lactobacillus species differentially activate Toll-like receptors and downstream signals in dendritic cells. Expert Review Vaccines,2008,7(8):1155-1164.
    Mollenhauer J., Herbertz S., Holmskov U., Tolnay M., Krebs I., Merlo A., Schroder H. D., Maier D., Breitling F., Wiemann S., Grone H.-J., and Poustka A. DMBT1 Encodes a Protein Involved in the Immune Defense and in Epithelial Differentiation and Is Highly Unstable in Cancer. Cancer Research,2000,60: 1704-1710.
    Mondel M, Schroeder B O, Zimmermann K, Huber, H. Nuding S., Beisner J., Fellermann K., Stange E. F. and Wehkamp J. Probiotic E. coli treatment mediates antimicrobial human (3-defensin synthesis and fecal excretion in humansFecal hBD-2 secretion after probiotic E. coli therapy in man. Mucosal Immunology,2009, 2(2):166-172.
    Montagne L., Piel C., and Lalles J. P. Effect of diet on mucin kinetics and composition: nutrition and health implications. Nutrition Review,2004,62:105-114.
    Montalto M., Donofrio F., Gallo A., Cazzato A., and Gasbarrini G. Intestinal microbiota and its functions. Digestive and Liver Disease,2009,3(Suppl.):30-34.
    Moody D. B., Ulrichs T., Mhulecker W., Young D. C., Gurcha S., Grant E., Rosat J. P., Brenner M. B., Costello C. E., Besra G. S., and Porcelli S. A. CD1c-mediated T cell recognition of isoprenoid glycoli-pids in Mycobacterium tuberculosis infection. Nature,2000,404:884-888.
    Moore K. W., de Waal Malefyt R., Coffman R. L. and O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology,2001,19:683-765.
    Moorthy G., Murali M. R., and Devaraj S. N. Lactobacilli facilitate maintenance of intestinal membrane integrity during Shigella dysenteriae 1 infection in rats. Nutrition,2009,25:350-358.
    De Moreno de LeBlanc A., Chaves S., Carmuega E., Weill R., Antoine J., Perdigon G. Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages. Immunobiology,2008,213:97-108.
    Mushtaq N., Ezzati M., Hall L., Dickson I., Kirwan M., Png K. M.Y., Mudway I. S., and Grigg J. Adhesion of Streptococcus pneumoniae to human airway epithelial cells exposed to urban particulate matter. The Journal Allergy Clinical Immunology, 2011,127:1236-1242.
    Muza-Moons M. M., Schneeberger E. E., and Hecht G. A. Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cellular Microbiology,2004, 6(8):783-793.
    Nagai Y., Akashi S., Nagafuku M., Ogata M., Iwakura Y., Akira S., Kitamura T. Kosugi A., Kimoto M., and Miyake K. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nature Immunology,2002,3:667-672.
    Naidu A. S., Bidlack W. R., and Clemens R. A. Probiotic Spectra of Lactic Acid Bacteria (LAB). Critical Reviews in Food Science and Nutrition,1999, 38(1):13-126.
    Naik S., Kelly E. J., Meijer L., Pettersson S., and Sanderson I. R. Absence of Toll-Like Receptor 4 Explains Endotoxin Hyporesponsiveness in Human Intestinal Epithelium. The Journal of Pediatric Gastroenterology and Nutrition,2001, 32:449-453.
    Nauseef W. M. How human neutrophils kill and degrade microbes:an integrated view. Immunological Reviews,2007,219:88-102.
    Neish A. S. The gut microflora and intestinal epithelial cells:a continuing dialogue. Microbes and Infection,2002,4:309-317.
    Nemeth E., Fajdiga S., Malago J., Koninkx J., Tooten P., and van Dijk J. Inhibition of Salmonella-induced IL-8 synthesis and expression of Hsp70 in enterocyte-like Caco-2 cells after exposure to non-starter lactobacilli. International Journal of Food Microbiology,2006.112:266-274.
    Nicholson D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differentiation,1999,6:1028-1042.
    Niers L. E. M., Timmerman H. M., Rijkers G. T., van Bleek G. M., van Uden N. O. P., Knol E. F., Kapsenberg M. L., Kimpen J. L. L., and Hoekstra M. O. Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clinical & Experimental Allergy,2005,35(11):1481-1489.
    Nissen L., Chingwaru W., Sgorbati B., Biavati B., and Cencic A. Gut health promoting activity of new putative probiotic/protective Lactobacillus spp. strains:A functional study in the small intestinal cell model. International Journal of Food Microbiology,2009,135:288-294.
    Novak N. and Bieber T. Dendritic cells as regulators of immunity and tolerance. The Journal of Allergy Clinical Immunology,2008,121:S370-374.
    O'Hara A. M. and Shanahan F. The gut flora as a forgotten organ. European Molecular Biology Organization reports,2006,7(7):688-693.
    O'Hara A. M., O'Regan P., Fanning A., O'Mahony C., MacSharry J., Lyons A., Bienenstock J., O'Mahony L. and Shanahan F. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius. Immunology,2006,118:202-215.
    O'Hayre M., Salanga C. L., Handel T. M., and Allen S. J. Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochemical Journal,2008,409:635-649.
    Ohta A. and Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature,2001, 414:916-920.
    O'Neil D. A., Cole S. P., Martin-Porter E., Housley M. P., Liu L., Ganz T., and Kagnoff M. F. Regulation of human β-defensins by gastric epithelial cells in response to infection with Helicobacter pylori or stimulation with interleukin-1. Infection and Immunity,2000,68:5412-5415.
    Ortega-Cava C. F., Ishihara S., Rumi M. A., Kawashima K., Ishimura N., Kazumori H., Udagawa J., Kadowaki Y., and Kinoshita Y. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. The Journal of Immunology,2003,170: 3977-3985.
    Otte J.-M. and Podolsky D. K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. American Journal of Physiology Gastrointestinal and Liver Physiology,2004,286:G613-G626.
    Otte, J.M., Cario, E., and Podolsky, D.K. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. Gastroenterology, 2004,126,1054-1070.
    Ozinsky A., Underhill D. M., Fontenot J. D., Hajjar A. M., Smith K. D., Wilson C. B., Schroeder L., and Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proceeding of the National Academy of Sciences of the United States of American, 2000,97(25):13766-13771.
    Paillot R., Laval F., Audonnet J.C., Andreoni C., Juillard V. Functional and phenotypic characterization of distinct porcine dendritic cells derived from peripheral blood monocytes. Immunology,2001,102,396-404.
    Paolillo R., Carratelli C. R., Sorrentino S., Mazzola N., Rizz A., Immunomodulatory effects of Lactobacillus plantarum on human colon cancer cells. International Immunopharmacology,2009,9:1265-1271.
    Parassol N., Freitas M., Thoreux K., Dalmasso G., Bourdet-Sicard R., and Rampal P. Lactobacillus casei DN-114001 inhibits the increase in paracellular permeability of enteropathogenic Escherichia coli-infected T84 cells. Research in Microbiology, 2005,156:256-262.
    Paturi G, Phillips M., Jones M., Kailasapathy K. Immune enhancing effects of Lactobacillus acidophilus LAFTI L10 and Lactobacillus paracasei LAFTI L26 in mice. International Journal of Food Microbiology,2007,115:115-118.
    Powrie F., Correa-Oliveira R., Mauze S., and Coffman R. L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+T cells are important for the balance between protective and pathogenic cell-mediated immunity. The Journal of Experimental Medicine,1994,179:589-600.
    Reiff C. and Kelly D. Inflammatory bowel disease, gut bacteria and probiotic therapy. International Journal of Medical Microbiology,2010,300:25-33.
    Pie S., Lalles J. P., Blazy F., Laffitte J., Seve B., and Oswald I. P. Weaning is associated with an upregulation of expression of inflammatory cytokines in the intestine of piglets. Journal of Nutrition,2004,134:641-647.
    Pipenbaher N., Moeller P. L., Dolinsek J., Jakobsen M., Weingartl H., Cencic A. Nitric oxide (NO) production in mammalian non-tumorigenic epithelial cells of the small intestine and macrophages induced by individual strains of lactobacilli and bifidobacteria. International Dairy Journal,2009,19:166-171.
    Plant L. J. and Conway P. L. Adjuvant properties and colonization potential of adhering and non-adhering Lactobacillus spp. following oral administration to mice. FEMS Immunology and Medical Microbiology,2002,34:105-111.
    Platt A. M. and Mowat A. M. Mucosal macrophages and the regulation of immune responses in the intestine. Immunology Letters,2008,119:22-31.
    Pluske J. R., Piva A., Knudsen B., Lindberg J. E. Morphological and functional changes in the small intestine of the newly-weaned pig. Gut Environment of Pigs, 2001,pp:1-27.
    Porcelli S. A. and Modlin R. L. The CD1 system:antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annual Review of Immunology,1999,17: 297-329.
    van Putten J. P. M, Bouwman L. I., and de Zoete M. R. Unraveling bacterial interactions with Toll-like receptors. Immunology Letters,2010,128:8-11.
    Quinn M. T. and Gauss K. A. Structure and regulation of the neutrophil respiratory burst oxidase:comparison with nonphagocyte oxidases. Journal of leukocyte biology,2004,76:760-781.
    Rachmilewitz D., Katakura K., Karmeli F., Hayashi T., Reinus C., Rudensky B., Akira S., Takeda K., Lee J., Takabayashi K., and Raz E. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology,2004,126(2):520-528.
    Ramiah K., van Reenen C. A., and Dicks L. M.T. Surface-bound proteins of Lactobacillus plantarum 423 that contribute to adhesion of Caco-2 cells and their role in competitive exclusion and displacement of Clostridium sporogenes and Enterococcus faecalis. Research in Microbiology,2008,159:470-475.
    Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., and Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell,2004,118:229-241.
    Raymond C. R. and Wilkie B. N. Toll-like receptor, MHC Ⅱ, B7 and cytokine expression by porcine monocytes and monocyte-derived dendritic cells in response to microbial pathogen-associated molecular patterns. Veterinary Immunology and Immunopathology,2005,107:235-247.
    Reddy N. R., Wilkie B. N., and Mallard B. A. Construction of an internal control to quantitate multiple porcine cytokine mRNAs by RT-PCR. Biotechniques,1996,21: 868-870,872,875.
    Rescigno M., Urbano M., Valzasina B., Francolini M., Rotta G., Bonasio R., Granucci F., Kraehenbuhl J.-P., and Ricciardi-Castagnoli P. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology,2001,2(4):361-367.
    Rescigno M. Lopatin U., and Chieppa M. Interactions among dendritic cells, macrophages, and epithelial cells in the gut:implications for immune tolerance. Current Opinion in Immunology,2008,20:669-675.
    Resta-Lenert S. and Barrett K. E. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut, 2003,52:988-997.
    Resta-Lenert S. and Barrett K. E. Probiotics and Commensals Reverse TNF-α-and IFN-y-Induced Dysfunction in Human Intestinal Epithelial Cells. Gastroenterology, 2006,130(3):731-746.
    Rinkinen M., Jalava K., Westermarck E., Salminen S., and Ouwehand A. C. Interaction between probiotic lactic acid bacteria and canine enteric pathogens:a risk factor for intestinal Enterococcus faecium colonization? Veterinary Microbiology,2003,92:111-119.
    Roselli M., Finamore A., Britti M. S., Konstantinov S. R., Smidt H., de.Vos W. M., and Mengheri E. The Novel Porcine Lactobacillus sobrius Strain Protects Intestinal Cells from Enterotoxigenic Escherichia coli K88 Infection and Prevents Membrane Barrier Damage. Journal of Nutrition,2007,137:2709-2716.
    Ryan K. A., Smith J. M. F., Sanders M. K., Ernst P. B. Reactive oxygen and nitrogen species differentially regulate Toll-like receptor 4-mediated activation of NF-kappa B and interleukin-8 expression. Infection and Immunity,2004,72(4):2123-2130.
    Ryu Y. H., Baik J. E., Yang J. S.,et al. Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. International Immunopharmacology,2009,9:127-133.
    Sabbatucci M., Purificato C., Fantuzzi L., and Gessani S. Toll-like receptor cross-talk in human monocytes regulates CC-chemokine production, antigen uptake and immune cell recruitment. Immunobiology,2011,216:1135-1142.
    Salva S., Villena J., and Alvarez S. Immunomodulatory activity of Lactobacillus rhamnosus strains isolated from goat milk:Impact on intestinal and respiratory infections. International Journal of Food Microbiology,2010,141:82-89.
    Salzman N. H., Underwood M. A, and Bevins C. L. Paneth cells, defensins, and the commensal microbiota:a hypothesis on intimate interplay at the intestinal mucosa. Seminars Immunology,2007,19(2):70-83.
    Saraiva M. and O'Garra A.The regulation of IL-10 production by immune cells. Nature Reviews Immunology,2010,10:170-181.
    Sartor R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology, 2008,134 (2):577-594.
    Sasakawa C. A new paradigm of bacteria-gut interplay brought through the study of Shigella. Proceedings of the Japan Academy, Series B,2010,86:229-243.
    -Scharek L., Guth J., Reiter K., Weyrauch K. D., Taras D., Schwerk P., Schierack P., Schmidt M. F. G., Wieler L. H., and Tedin K. Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets. Veterinary Immunology and Immunopathology,2005,105:151-161.
    Scharek L., Guth J., Filter M., & Schmidt M. F. G. Impact of the probiotic bacteria Enterococcus faecium NCIMB 10415 (SF68) and Bacillus cereus var. toyoi NCIMB 40112 on the development of serum IgG and faecal IgA of sows and their piglets.Archives of Animal Nutrition,2007,61(4):223-234.
    Scharek-Tedin L., Filter M., Taras D., Wrede P., and Schmidt M. F. G. Influence of an Enterococcus faecium probiotic on the development of Peyer's patches B cells in piglets. Archives of Animal Nutrition,2009,63(5):343-355.
    Schenk M. and Mueller C. The mucosal immune system at the gastrointestinal barrier. Best Practice & Research Clinical Gastroenterology,2008,22(3):391-409.
    Schierack P., Walk N., Reiter K., Weyrauch K. D. and Wieler L. H. Composition of intestinal Enterobacteriaceae populations of healthy domestic pigs. Microbiology, 2007,153:3830-3837.
    Schloss P. D. and Handelsman J. Status of the microbial census. Microbiology Molecular Biology Reviews,2004,68:686-691.
    Schmidt L. D., Kohrt1 L. J., Brown D. R. Comparison of growth phase on Salmonella enterica serovar Typhimurium invasion in an epithelial cell line (IPEC J2) and mucosal explants from porcine small intestine. Comparative Immunology, Microbiology & Infectious Diseases,2008,31:63-69.
    Scholven J., Taras D., Sharbati S., Schon J., Gabler C., Huber O., zum Buschenfelde D. M., Blin N., and Einspanier R. Intestinal Expression of TFF and Related Genes During Postnatal Development in a Piglet Probiotic Trial. Cellular Physiology and Biochemistry,2009,23:143-156.
    Schrezenmeir J. and de Vrese M. Probiotics, prebiotics, and synbiotics-approaching a definition. American Journal of Clinical Nutrition,2001,73(suppl):361S-364S.
    Schultz M., Linde H.-J., Lehn N., Zimmermann K., Grossmann J., Falk W., and Scholmerich J. Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. Journal of Dairy Research,2003,70:165-173.
    Sears C. L. A Dynamic Partnership:Celebratingour Gut Flora. Anaerobe,2005,11(5): 247-251.
    Sekirov I., Russell S. L., Antunes L. C. M., and Finlay B. B. Gut Microbiota in Health and Disease. Physiological Reviews,2010,90:859-904.
    Selsted M. E. and Ouellette A. J. Mammalian defensins in the antimicrobial immune response. Nature Immunology,2005,6:551-557.
    Sergenta T., Pirontb N., Meuricea J., Toussaintb O., and Schneider Y.-J. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chemico-Biological Interactions,2010,188: 659-667.
    Van Seuningen I., Pigny P., Perrais M., Porchet N., & Aubert J. P. Transcriptional regulation of the 11p15 mucin genes. Towards new biological tools in human therapy, in inflammatory diseases and cancer? Frontiers in Bioscience,2001,6: D1216-D1234.
    Shibolet O. and Podolsky D. K. TLRs in the gut. IV. Negative regulation of Toll-like receptors and intestinal homeostasis:addition by subtraction. American Journal of Physiology Gastrointestnal and Liver Physiology,2007,292:G1469-G1473.
    Shida K. and Nanno M. Probiotics and immunology separating the wheat from the chaff. Trends in Immunology,2008,29(11):565-573.
    Shifflett D. E., Clayburgh D. R., Koutsouris A., Turner J. R. and Hecht G. A. Enteropathogenic E. coli disrupts tight junction barrier function and structure in vivo. Laboratory Investigation,2005,85:1308-1324.
    Shimazu T., Villena J., Tohno M., Fujie H., Hosoya S., Shimosato T., Aso H., Suda Y., Kawai Y., Saito T., Makino S., Ikegami S., Itoh H., and Kitazawa H. Immunobiotic Lactobacillus jensenii Elicits Anti-Inflammatory Activity in Porcine Intestinal Epithelial Cells by Modulating Negative Regulators of the Toll-Like Receptor Signaling Pathway. Infection and immunity,2012,80(1):276-288.
    Shimizu K., Ogura H., Goto M., Asahara T., Nomoto K., Morotomi M., Yoshiya K., Matsushima A., Sumi Y., Kuwagata Y., Tanaka H., Shimazu T., and Sugimoto H. Altered gut flora and environment in patientswith severe SIRS. The-Journal of Trauma-Injury Infection & Critical Care,2006,60 (1):126-133.
    Shimosatoa T., Tohnoa M., Kitazawaa H., Katoha S., Watanabeb K., Kawaia Y., Asob H., Yamaguchib T., Saito T. Toll-like receptor 9 is expressed on follicle-associated epithelia containing M cells in swine Peyer's patches. Immunology Letters,2005, 98:83-89.
    Siedlar M., Frankenberger M., Benkhart E., Espevik T., Quirling M., Brand K., Zembala M., Ziegler-Heitbrock L. Tolerance induced by the lipopeptide Pam3Cys is due to ablation of IL-1R-associated kinase-1. Journal of Immunology,2004,173: 2736-2745.
    Simon O. An interdisciplinary study on the mode of action of probiotics in pigs. Journal of Animal and Feed Sciences,2010,19:230-243.
    Skerka C., Irving S.G., Bialonski A., and Zipfel P.F. Cell type specific expression of members of the IL-8/NAP-1 gene family. Cytokine,1993,5:112-116.
    Skjolaas K. A., Burkey T. E., Dritz S. S., Minton J. E. Effects of Salmonella enterica serovar Typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2. Veterinary Immunology and Immunopathology,2007,115: 299-308.
    Spreeuwenberg M. A. M., Verdonk J. M. A. J., Gaskins H. R. And Verstegen M. W. A. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning. Journal of Nutrition,2001,131:1520-1527.
    Srikanth C. V. and McCormick B. A. Interactions of the Intestinal Epithelium with the Pathogen and the Indigenous Microbiota:A Three-Way Crosstalk. Interdisciplinary Perspectives on Infectious Diseases,2008(8):1-14.
    Stadnyk A. W. Cytokine production by epithelial cells. The FASEB Journal,1994,8: 1041-1047.
    Strompfova V., Laukova A., and Ouwehand A. C. Selection of enterococci for potential canine probiotic additives. Veterinary Microbiology,2004,100:107-114.
    Strompfova V., Marcinakova M., Simonova M., Gancarcikova S., Jonecova Z., Scirankova L., Koscova J., Buleca V., Cobanova K., and Laukova A., Enterococcus faecium EK13-an enterocin A-producing strain with probiotic character and its effect in piglets. Anaerobe,2006,12:242-248.
    Strompfova V. and Laukova A. Enterococci from Piglets-Probiotic Properties and Responsiveness to Natural Antibacterial Substances. Folia Microbiology.2009,54 (6):538-544.
    Su Y., Yao W., Perez-Gutierrez O. N., Smidt H., Zhu W.-Y.16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1. Anaerobe,2008; 14:78-86.
    Sun P, Wang J Q, Jiang Y M. Effects of Enterococcus faecium (SF68) on immune function in mice. Food Chemistry,2010,123(1):63-68.
    Sutterwala F. S. and Flavell R. A. NLRC4/IPAF:a CARD carrying member of the NLR family. Clinical Immunology,2009,130:2-6.
    Suzuki M., Hisamatsu T., and Podolsky D. K. Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infection and immunity,2003, 71:3503-3511.
    Suzuki C., Kimoto-Nira H., Kobayashi M., Nomura M., Sasaki K., Mizumachi K. Immunomodulatory and cytotoxic effects of various Lactococcus strains on the murine macrophage cell line J774.1. International Journal of Food Microbiology, 2008,123:159-165.
    Szabo I., Wieler L. H., Tedin K., Scharek-Tedin L., Taras D., Hensel A., Appel B., and Nockler K. Influence of a Probiotic Strain of Enterococcus faecium on Salmonella enterica Serovar Typhimurium DT104 Infection in a Porcine Animal Infection Model. Applied and environmental microbiology,2009,75(9):2621-2628.
    Takaishi H., Matsuki T., Nakazawa A., Takada T., Kado S., Asahara T., Kamada, N. Sakuraba A., Yajima T., Higuchi H., Inoue N., Ogata H., Iwao Y., Nomoto K., Tanaka R., and Hibi T. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology,2008,298:463-472.
    Takeda K. and Akira S. TLR signaling pathways. Seminars in Immunology,2004,16: 3-9.
    Takeuchi O., Kawai T., Sanjo H., Copeland N.G., Gilbert D.J., Jenkins N.A., Takeda K., and Akira S. TLR6:a novel member of an expanding Toll-like receptor family. Gene,1999,231:59-65.
    Takeuchi O., Kawai T., Muhlradt P.F., Morr M., Radolf J.D., Zychlinsky A., Takeda K., Akira S. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Intrtnational Immunology,2001,13:933-940.
    Tanaka T., Terada M., Ariyoshi K., and Morimoto K. Monocyte chemoattractant protein-1/CC chemokine ligand 2 enhances apoptotic cell removal by macrophages through Racl activation. Biochemical and Biophysical Research Communications, 2010,399:677-682.
    Tao J.-Y., Zheng G.-H., L. Zhao, Wu J.-G., Zhang X.-Y., Zhang S.-L., Huang Z.-J., Xiong F.-L., Li C.-M. Anti-inflammatory effects of ethyl acetate fraction from Melilotus suaveolens Ledeb on LPS-stimulated RAW 264.7 cells. The Journal of Ethnopharmacology,2009,123:97-105.
    Taras D., Vahjen W., Macha M., and Simon O. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. Journal of Animal Science,2006,84:608-617.
    Taras D., Vahjen W., and Simon O. Probiotics in pigs — modulation of their intestinal distribution and of their impact on health and performance. Livestock Science,2007, 108:229-231.
    Tarasova E., Yermolenko E., Donets V., Sundukova Z., Bochkareva A., Borschev I., Suvorova M., Ilyasov I., Simanenkov V. and Suvorov A. N. The influence of probiotic Enterococcus faecium strain L5 on the microbiota and cytokines expression in rats with dysbiosis induced by antibiotics. Beneficial Microbes,2010, 1(3):265-270.
    Taupin D. and Podolsky D. K. Trefoil Factors:Initiators of Mucosal Healing. Nature Reviews Molecular Cell Biology,2003,4:721-734.
    Thomas J. A., Allen J. L., Tsen M., Dubnicoff T., Danao J., Liao X. C., Cao Z., and Wasserman S. A. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. Journal of Immunology,1999,163:978-984.
    Tohno M., Shimosato T., Kitazawa H., Katoh S., Iliev I. D., Kimura T., Kawai Y., Watanabe K., Aso H., Yamaguchi T., and Saito T. Toll-like receptor 2 is expressed on the intestinal M cells in swine. Biochemical and Biophysical Research Communications,2005,330:547-554.
    Tohno M., Shimazu T., Aso H., Kawai Y., Saito T. and Kitazawa H. Molecular Cloning and Functional Characterization of Porcine MyD88 Essential for TLR Signaling. Cellular & Molecular Immunology.2007,4(5):369-376.
    Toller I. M., Hitzler I., Sayi A., and Mueller A. Prostaglandin E2 Prevents Helicobacter-Induced Gastric Preneoplasia and Facilitates Persistent Infection in a Mouse Model. Gastroenterology,2010,138(4):1455-1467.
    Tosi M. F. Innate immune responses to infection. Journal of Allergy and Clinical Immunology,2005,116:241-249.
    Towne J. E., Garka K. E., Renshaw B. R., Virca G. D., and Sims J. E. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kB and MAPKs. The Journal of Biological Chemistry, 2004,279:13677-13688.
    Tracey K. J., Beutler B., Lowry S. F., Merryweather J., Wolpe S., Milsark I. W., Hariri R. J., Fahey T. J., Zentella A., Albert J. D. and al. et. Shock and tissue injury induced by recombinant human cachectin. Science,1986,234(4775):470-474.
    Tracey K. J. and Cerami A. Tumor necrosis factor:A pleiotropic cytokine and therapeutic target. Annual Review of Medecine,1994,45:491-503.
    Tsai Y.-T., Cheng P.-C.,Fan C.-K.,et al. Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. International Journal of Food Microbiology,2008,128: 219-225.
    Tsuji M., Suzuki K., Kinoshita K., and Fagarasan S. Dynamic interactions between bacteria and immune cells leading to intestinal IgA synthesis. Seminars in Immunology,2008,20:59-66.
    Tsukita S., Furuse M. and Itoh M. Multifunctional strands in tight junctions. Nature Reviews Molecular Cell Biology,2001,2:285-293.
    Uehara A., Fujimoto Y., Fukase K., and Takada H. Various human epithelial cells express functional Toll-like receptors, NODI and NOD2 to produce anti-microbial peptides, but not proinflammatory cytokines. Molecular Immunology,2007,44: 3100-3111.
    Underdahl N. R. The effect of feeding Streptococcus faecium upon Escherichia coli induced diarrhea in gnotobiotic pigs. Progress in food and nutrition science,1983, 7(3-4):5-12.
    Ushijima T., Takahashi M., Tatewaki K., and Ozaki Y. A selective medium for isolation and presumptive identification of the bacteriodes fragilis group. Microbiology and Immunology,1983,27(12):985-993.
    Vahjen W., Taras D., and Simon O. Effect of the Probiotic Enterococcus faecium NCIMB10415 on Cell Numbers of Total Enterococcus spp., E. faecium and E. faecalis in the Intestine of Piglets. Current Issues in Intestinal Microbiology,2006, 8:1-8.
    Vaishnava S., Behrendt C. L., Ismail A. S., Eckmann L., and Hooper L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. PNAS,2008,105(52):20858-20863.
    Vassalli P. The pathophysiology of tumor necrosis factors. Annual Review of Immunology,1992,10:411-452.
    Veir J. K., Knorr R., Cavadini C., Sherrill S. J., Benyacoub J., Satyaraj E., Lappin M. R. Effect of supplementation with Enterococcus faecium (SF68) on immune functions in cats. Veterinary Therapeutics,2007,8(4):229-238.
    Veldhuizen E. J. A., Hendriks H. G. C. J. M., Hogenkamp A., van Dijk A., Gaastra W., Tooten P. C. J., and Haagsman H. P. Differential regulation of porcine b-defensins 1 and 2 upon Salmonella infection in the intestinal epithelial cell line IPI-2I. Veterinary Immunology and Immunopathology,2006,114:94-102.
    Veldhuizen E. J. A., Koomen I., Ulte T. e, van Dijk A., and Haagsman H. P. Salmonella serovar specific upregulation of porcine defensins 1 and 2 in a jejunal epithelial cell line. Veterinary Microbiology,2009,136:69-75.
    Verdonk J. M. A. J., Bruininx, E. M. A. M., van der Meulen J., Verstegen M. W. A. Post-weaning feed intake level modulates gut morphology but not gut permeability in weaned piglets. Livestock Science,2007,108:146-149.
    Vesterlund S., Paltta J., Karp M., and Ouwehand A. C. Adhesion of bacteria to resected human colonic tissue:Quantitative analysis of bacterial adhesion and viability. Research in Microbiology,2005,156:238-244.
    Vesterlund S., Karp M., Salminen S., and Ouwehand A. C. Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria. Microbiology,2006,152:1819-1826.
    Vinderola C. G., Medici M., and Perdigon G. Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein profiles in indige nous and exogenous bacteria. Journal of Applied Microbiology,2004,96(2):230-243.
    Vinderola G., Matar C., and Perdigon G. Role of Intestinal Epithelial Cells in Immune Effects Mediated by Gram-Positive Probiotic Bacteria:Involvement of Toll-Like Receptors. Clinical and diagnostic laboratory immunology,2005,12(9): 1075-1084.
    Vinderola G., Perdigon G, Duarte J., Farnworth E., Matar C. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine,2006,36:254-260.
    Vinderola G., Matar C., and Perdigon G. Milk fermented by Lactobacillus helveticus R389 and its non-bacterial fraction confer enhanced protection against Salmonella enteritidis serovar Typhimurium infection in mice. Immunobiology,2007,212: 107-118.
    Vinderola G., Matar C., Palacios J., and Perdigon G. Mucosal immunomodulation by the non-bacterial fraction of milk fermented by Lactobacillus helveticus R389. International Journal of Food Microbiology,2007,115:180-186.
    Vizoso Pinto M. G., Gomez M. R., Seifert S., Watzl B., Holzapfel W. H., and Franz C M. A..P. Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. International Journal of Food Microbiology,2009,133:86-93.
    Vondruskova H, Slamova R, Trckova M, Zraly Z and Pavlik I,.Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets:a review. Veterinarni Medicina,2010,55(5):199-224.
    Vora P., Youdim A., Thomas L. S., Fukata M., Tesfay S. Y., Lukasek K., Michelsen K. S., Wada A., Hirayama T., Arditi M., and Abreu M. T.β-Defensin-2 Expression Is Regulated by TLR Signaling in Intestinal Epithelial Cells. The Journal of Immunology,2004,173:5398-5405.
    Wald D., Qin J., Zhao Z., Qian Y, Naramura M., Tian L., Towne J., Sims J. E., Stark G. R., and Li X. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nature Immunology,2003,4:920-927.
    Wallach D., Varfolomeev E. E., Malinin N. L., Goltsev Y. V., Kovalenko A. V., and Boldin M. P., Tumor necrosis factor receptor and Fas signaling mechanisms. Annual Review of Immunology,1999.17,331-367.
    Walsh M. C., Gardiner G. E., Hart O. M., Lawlor P. G., Daly M., Lynch B., Radcliffe B. T. R. S., Giblin L., Hill C., Fitzgerald G. F., Stanton C., and Ross P. Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiology Ecology,2008,64:317-327.
    Wang M., Li X., Cocklin R., Wang M., Wang M., Fukase K., Inamura S., Kusumoto S., Gupta D., Dziarski R. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. The Journal of Biological Chemistry,2003, 278:49044-49052.
    Wang Y. Z., Xu Z. R., Lin W. X., Huang H. Q., Wang Z. Q. Developmental gene expression of antimicrobial peptide PR-39 and effect of zinc oxide on gene regulation of PR-39 in piglets. Asian-Australas. The Journal of Animal Science, 2004,17:1635-1640.
    Wang J.Q., Yin F.G., Zhu C., Yu H., Niven, S. J. de Lange C. F. M., Gong J. Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livestock Science,2012. In press, doi:10.1016/j.livsci.2011.12.024
    Ward P. D., Tippin T. K. and Thakker D. R.Enhancing paracellular permeability by modulating epithelial tight junctions. PSTT,2000,3(10):346-358.
    Watanabe T., Kitani A.; Murray P. J., and Strober W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nature Immunology,2004,5:800-808.
    Weidenmaier C. and Peschel A. Teichoic acids and related cell-wall glycopolymers in gram-positive physiology and host interactions. Nature Reviews Microbiology, 2008,6:276-287.
    Wells J. M. and Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology,2008,6: 349-362.
    Wells J. M., Loonen L. M. P., and Karczewski J. M. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine. International Journal of Medical Microbiology.2010,300:41-48.
    Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., and Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science,1990,249 (4975):1431-1433.
    Wullaert A. Role of NF-kB activation in intestinal immune homeostasis. International Journal of Medical Microbiology,2010,300:49-56.
    Yam K. K., Pouliot P., N'diaye M. M., Fournier S., Olivier M., Cousineau B. Innate inflammatory responses to the Gram-positive bacterium Lactococcus lactis. Vaccine, 2008,26:2689-2699.
    Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., Takeuchi O., Sugiyama M., Okabe M., Takeda K., Akira S. Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway. Science,2003,301: 640-643.
    Yan F. and Polk D. B. Probiotic Bacterium Prevents Cytokine-induced Apoptosis in Intestinal Epithelial Cells. The journal of Biological Chemistry,2002,277(52): 50959-50965.
    Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. Journal of Leukocyte Biology,2004,75(1):39-48.
    Zenhom M., Hyder A., Kraus-Stojanowic I., Auinger A., Roeder T., and Schrezenmeir J. PPARy-dependent peptidoglycan recognition protein 3 (PGlyRP3) expres-sion regulates pro-inflammatory cytokines by microbial and dietary fatty acids. Immunobiology,2011,216:715-724.
    Zenhom M., Hyder A., de Vrese M., Heller K. J., Roeder T., Schrezenmeir J. Peptidoglycan recognition protein 3 (PGlyRP3) has an anti-inflammatory role in intestinal epithelial cells. Immunobiology,2012. In press. doi:10.1016/j.imbio.2011.10.013
    Zeuthen L. H., Christensen H. R., and Fr(?)kiasr H., Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Factor Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria. Clinical and vaccine immunology, 2006,13(3):365-375.
    Zeyner and Boldt E. Effects of a probiotic Enterococcus faecium strain supplemented from birth to weaning on diarrhoea patterns and performance of piglets. Journal of Animal Physiology and Animal Nutrition,2006,90:25-31.
    Zhan S., Vazquez N., Wientjes F. B., Budarf M. L., Schrock E., Ried T., Green E. D., and Chanock S. J. Genomic structure, chromosomal localization, start of transcription, and tissue expression of the human p40-phox, a new component of the nicotinamide adenine dinucleotide phosphate-oxidase complex. Blood,1996, 88:2714-2721.
    Zhang G. and Ghosh S. Negative regulation of toll-like receptor-mediated signaling by Tollip. The Journal of Biological Chemistry,2002,277:7059-7065.
    Zhang L., Xu Y.-Q., Liu H.-Y., Lai T., Ma J.-L., Wang J.-F., Zhu Y.-H. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:Effects on diarrhoea incidence, faecal microflora and immune responses. Veterinary Microbiology,2010,141:142-148.
    Zhang J., Deng J., Li Y., Yang Q. The effect of Lactobacillus on the expression of porcine β-defensin-2 in the digestive tract of piglets. Livestock Science,2011,138: 259-265.
    Zhao L., Zhang S.-L., Tao J.-Y., Pang R., Jin F., Guo Y.-J., Dong J.-H., Ye P., Zhao H.-Y., Zheng G.-H. Preliminary exploration on anti-inflammatory mechanism of Corilagin (beta-1-O-galloyl-3,6-R-hexahydroxydiphenoyl-D-glucose) in vitro. International Immunopharmacology,2008,8:1059-1064.
    Zhou Z. Y., Chen S. L., Shen N., and Lu Y. Cytokines and Behcet's Disease. Autoimmunity Reviews,2012. In Press. http://dx.doi.org/10.1016/i.autrey.2011.12.005
    Zoumpopoulou G., Foligne B., Christodoulou K., Grangette C., Pot B., Tsakalidou E. Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. International Journal of Food Microbiology,2008,121:18-26.
    Zoumpopoulou G, Tsakalidou E., Dewulf, J. et al. Differential crosstalk between epithelial cells, dendritic cells and bacteria in a co-culture model. International Journal of Food Microbiology,2009,131:40-51.
    白爱平,欧阳钦,肖晓蓉.乳酸杆菌的分离、鉴定及对肠上皮细胞分泌IL-8调节作用的研究.中国微生态学杂志,2005,17(1):25-27.
    布坎南R.E.,吉本斯N.E.伯杰氏细菌鉴定手册(第8版).北京:科学出版社,1984:729-735.
    常桂芳,施用晖,乐国伟,徐子伟,孙进,原雪琦,胡晓丽.乳杆菌调节小鼠空肠派伊尔结基因表达的通路分析.中国免疫学杂志,2009,25(6):536-539.
    陈臣,郭本恒,陈卫,王荫榆,吴正钧.三株益生茵粘附性质及机制的初步研究.中国微生态学杂志,2007,19(6):492-495.
    陈臣,郭本恒,王荫榆,吴正钧,陈卫,张灏.植物乳杆菌ST-Ⅲ粘附肠上皮样细胞系Caco-2性质的研究.乳业科学与技术,2008(2):51-55.
    陈曦,欧阳钦,刘瑞,王春晖,强鸥,李献.细胞因子和脂多糖对人结肠癌细胞系HT-29 Toll样受体4表达和调控的影响.胃肠病学,2007,12(2):88-91.
    杜兴,孙映辉.细菌感染肠上皮细胞时的细胞因子表达水平与坏死性肠炎的关系.中国现代医学杂志,2002,12(23):23-25.
    郭彤,胥保华,马玉龙,魏华.嗜酸乳杆菌和两歧双歧杆菌体外粘附Caco-2细胞及其对病原菌粘附性能的影响.中国兽医学报,2008,28(5):527-531.
    洪庆涛,宋岳涛,唐一鹏,刘春梅.细胞培养液乳酸脱氢酶漏出率的比色测定及其应用.细胞生物学杂志,2004,26(1):89-92.
    黄颖,郑永晨,曹岩,卢晟晔.双歧杆菌BB12对肠炎沙门氏菌诱导Caco-2细胞 分泌IL-8的影响.中国免疫学杂志,2007,23:604-607.
    李梅,李卫芬,姚江涛.猪源肠球菌的分离及鉴定.上海畜牧兽医通讯,2007(3):48-50.
    李平兰,杨华,张篪.乳酸菌体外粘附人结肠腺癌细胞系HT-29细胞的研究.中国农业大学学报,2002,7(1):19-22.
    刘海萍,胡彩虹,徐勇.早期断奶对仔猪肠通透性和肠上皮紧密连接蛋白Occludin mRNA表达的影响.动物营养学报,2008,20(4):442-446.
    刘建生,田怡,张晓红,刘进,马铭,袁耀宗,林健.溃疡性结肠炎时一氧化氮和超氧化物歧化酶变化及益生菌对其影响机制.中国医师进修杂志,2007,30(6):20-22.
    刘伟,丁伟群,戎兰,钟良,蒋义斌.益生菌对结肠炎大鼠黏膜细胞因子表达的影响.中华消化杂志,2006,26(12):801-804.
    刘伟,戎兰,丁伟群,孙大裕.益生菌对结肠炎大鼠黏膜和系统水平细胞因子的影响.复旦学报(医学版),2008,35(2):278-281.
    刘玉兰,陈宁,尤鹏,刘安楠.益生菌治疗大鼠实验性结肠炎效果观察及对T细胞亚群的影响.中国实用内科杂志,2006,26(24):1944-1946.
    罗学娅,伦永志,高卫,胡海北,王强,刘莹,尹建石,姜苏娟.嗜酸性乳杆菌培养上清液对抗生素相关性腹泻小鼠肠道菌群的影响.世界华人消化杂志,2006,14(19):1870-1873.
    马文强,冯杰,王燕.猪源Cathelicidins抗菌肽家族的研究进展.饲料工业,2007,28(21):11-13.
    倪学勤,Joshua Gong,曾东,Hai Yu, Weido Si,周小秋.猪源乳酸杆菌对鼠伤寒沙门氏菌DT104在猪肠道上皮细胞IPEC-J2上粘附的影响.微生物学通报,2008,35(7):1072~1077.
    戎兰,刘伟,丁伟群,蒋义斌,钟良,孙大裕.实验性结肠炎大鼠树突状细胞表型和功能变化以及益生菌的作用.胃肠病学,2007,12(11):667-670.
    万阜昌.微生态药物研究与应用.北京:化学工业出版社,2009,256-248.
    王斌,杜丹,战余铭,魏泓.乳杆菌对肠上皮样细胞HT-29黏附的研究.中华微生物学和免疫学杂志,2004,24(11):858.
    王斌.粘附性能乳杆菌的筛选及其对肠上皮细胞粘附机制的初步研究[博士学位论文].重庆.第三军医大学.2005:9.
    王斌,袁静,魏泓.乳杆菌黏附肠上皮样细胞HT-29对微丝骨架的影响.肠外与肠内营养,2006a,13(4):193-196.
    王斌,但国蓉,袁静,魏泓.乳杆菌黏附抑制致病性大肠杆菌对肠上皮样细胞侵袭的初步研究.解放军医学杂志,2006b,31(6):550-552.
    王斌,魏泓,李秋荣,李幼生,李宁,黎介寿.乳杆菌对肠上皮样细胞HT-29的黏 附特性.解放军医学杂志,2007,32(9):936-939.
    王俊丽,李金亭,傅山岗,雷梦云.小鼠成长过程中肾、肝、小肠碱性磷酸酶活性变化及组织细胞定位.四川动物,2008,27(5):788-790.
    王明娜,张光辉,韩希妍,姚丽燕,周艳秋,姜毓君.嗜酸乳杆菌NCFM对Caco-2细胞基因表达谱的影响.微生物学报,2009,49(9):1247-1252.
    王燕,汪以真,姚国佳,单体中,徐春兰.牛乳铁蛋白对断奶仔猪抗菌肽PMAP-37 mRNA表达的影响.农业生物技术学报,2007,15(5):757-761.
    王振霖,张秋航,李源,李鹏,叶进,杨钦泰.细菌脂多糖对人鼻黏膜上皮细胞环氧合酶-2表达和前列腺素E2释放的影响.临床耳鼻咽喉头颈外科杂志,2008,22(11):483-486.
    王志锋,周雨霞,侯先志,乌尼.乳酸菌对人结肠癌细胞系HT-29的黏附.乳业科学与技术,2005(4):149-151.
    魏银萍,王斌,魏泓.益生菌株对HT-29细胞的粘附及对致病菌的粘附抑制性能研究.中国药业,2006,15(8):7-8.
    文静,孙建安,周绪霞,李卫芬.屎肠球菌对仔猪生长性能、免疫和抗氧化功能的影响.浙江农业学报,2011,23(1):1-6.
    邢咏梅,贾继辉,王红艳,陈春燕,周亚滨,阎世坤,于修平.两种生物状态肠道益生菌的粘附和粘附拮抗效应的对比研究.中国微生态学杂志,2004,16(2):69-72.
    徐鹏辉.肠黏膜上皮细胞与免疫细胞对话机制(相互作用)的研究[博士学位论文].北京.中国人民解放军军事医学科学院.2005:32-33.
    余柏林,雷焉玉.免疫学.华中师范大学出版社.武汉,2008:167-177.
    袁杰利,康白.肠球菌及有关微生态调节剂.中国微生态学杂志,1998,10(1):59-60.
    张嘉和吕德超.肠道屏障功能监测方法的现状及进展.中国急救复苏与灾害医学杂志,2007,2(10):630-633.
    张健锋,毛振彪APRIL及其受体在消化系统肿瘤中的作用研究进展.国际消化病杂志,2007,27(5):336-338.
    章丽燕,陈涵强,王玮,Li Nan, Josef Neu.乳酸杆菌对肿瘤坏死因子α诱导Caco-2细胞合成IL-8的影响.中华围产医学杂志,2006,9(3):185-188.
    张振斌,林映才,蒋宗勇,林勇,禹慧明.益生菌对断奶仔猪生长表现、微生物区系和小肠黏膜结构的影响.养猪,2004(1):1-3.
    张中伟,秦环龙.乳酸菌对感染肠上皮细胞通透性及紧密连接蛋白表达的影响.肠外与肠内营养,2007,14(4):193-197.
    赵玉蓉.仔猪抗菌肤基因的发育表达和谷氨酞胺对其表达及肠道保护作用的研究[博士学位论文].长沙.湖南农业大学.2007:Ⅱ-Ⅲ.
    周婷婷,孙进,乐国伟,到等.乳酸菌黏附小鼠派伊尔结及影响因子的研究.中国微生态学杂志,2008,20(2):108-111.
    朱晶.产肠毒素大肠杆菌、肠上皮细胞和乳酸菌相互关系的研究[博士学位论文].上海.上海交通大学.2011:Ⅱ-Ⅲ.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700