IL-17促进结直肠癌血管生成作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究IL-17在结直肠癌中的表达以及其和肿瘤微血管密度的关系,初步探讨IL-17促进肿瘤血管生成的作用机理。
     方法:
     1.收集55例结直肠癌患者的病理切片,采用免疫组织化学的方法,观察IL-17在结直肠癌组织中的表达情况。
     2.收集55例结直肠癌患者的病理切片,分析IL-17的分布与结直肠癌微血管密度(MVD)的相关性。首先采用免疫组织化学的方法,观察血管内皮标志CD31在结直肠癌组织中的分布,并进行微血管密度计数。然后运用独立样本T检验,统计分析IL-17与结直肠癌组织MVD的相关性。
     3.分析结直肠癌中IL-17与VEGF-A的关系。首先,收集55例结直肠癌患者的病理切片,采用免疫组织化学的方法,在结直肠癌组织中观察VEGF-A的表达情况。然后用卡方检验分析IL-17与VEGF-A的相关性。同时,流式分析结肠癌细胞株IL-17受体(IL-17R)的表达,选择高表达IL-17R的细胞株。以50ng/mL的IL-17A刺激细胞后,用荧光定量PCR检测刺激前后的VEGF-A基因的表达差异。
     4.分析结直肠癌细胞株在IL-17刺激前后后趋化因子CXCL6/CCL2的表达情况。以50ng/mL的IL-17刺激IL-17R高表达的细胞株,荧光定量PCR检测刺激前后趋化因子CXCL6/CCL2的基因表达差异。
     结果:
     1.在结直肠癌组织中,我们发现,IL-17的阳性染色主要分布于肿瘤间质和癌巢周围,且伴有炎性细胞的浸润。IL-17的阳性表达为28例,阴性表达为27例。在大肠管状腺瘤和正常的大肠粘膜组织中,IL-17为阴性表达。
     2.以血管内皮标记物CD31染肿瘤血管内皮,参考Weidner等人方法,统计肿瘤MVD,然后研究其与IL-17表达的相关性。发现IL-17高表达时,MVD值为90.00±32.66;IL-17低表达时,MVD值为66.89±32.83。运用独立样本T检验统计得出结论:肿瘤MVD与IL-17的表达呈正相关(P=0.012)。
     3.免疫组化对结直肠癌组织中的VEGF-A进行染色,运用卡方检验分析IL-17的表达与VEGF的相关性,结论为IL-17在结直肠癌组织中的表达与VEGF的表达相关(P<0.05)。流式筛选IL-17R高表达的结直肠癌细胞株,选择细胞株LS174T和LOVO(其IL-17受体的表达分别为98.05%和97.63%),以IL-17刺激这两株细胞3h后,其VEGF基因的表达为未刺激的3.8倍和4.87倍。说明IL-17可以上调结直肠癌细胞的VEGF。所以得出结论,IL-17通过上调结直肠癌细胞的VEGF表达进而促进肿瘤血管生成。
     4.以IL-17刺激高表达IL-17R的结直肠癌细胞株LOVO, LS174T和HCT116 3h后发现CXCL6的基因表达上升为0h的5.27倍,2.61倍和1.3倍,CCL2的基因表达上升为0h的1.17倍,3.4倍和10.37倍。因此,我们得出结论为IL-17通过上调趋化因子CXCL6和CCL2促进肿瘤血管的生成。
     结论:
     IL-17在结直肠癌组织中的表达与肿瘤的恶化程度相关。进一步究其原因为IL-17通过上调结直肠癌细胞的VEGF和趋化因子CXCL6和CCL2促进肿瘤血管的生成,进而促进了肿瘤的发生发展和侵袭转移。
Purpose
     The aim of this study is to determine the IL-17 expression in colorectal cancer (CRC) and to examine the correlation between IL-17 expression and MVD. Thus we initially demonstrate the mechanism of IL-17 promoting tumor angiogenesis in CRC.
     Methods
     1. We collected 55 cases of pathological sections obtained from human CRC tissue and determined the IL-17 expression by immunohistochemisty.
     2. We collected 55 cases of pathological sections obtained from human CRC tissue and examined the correlate between IL-17 expression and MVD in CRC tissue. First, we determined the distribution of CD31, which was the endothelial marker and measured the microvessel density (MVD) in tumor. Then we analyzed the correlation between the level of IL-17 expression and MVD by Student’s T test.
     3. Analyzed the correlation between the level of IL-17 expression and VEGF-A expression. First, we determined the expression of VEGF-A in CRC pathological sections. Then we analyzed the correlation between the level of IL-17 expression and VEGF-A expression by Pearson’sχ2 test. Second, the IL-17R overexpressed cell lines were selected from CRC cell lines by flowcytometry tests. Eventually, we determined the expression of VEGF gene between the normal cell lines and IL-17 stimulated cell lines using real-time PCR.
     4. Analyzed the expression of chemokines CXCL6/CCL2 between the normal cell lines and IL-17 stimulated cell lines. We cultured the IL-17R overexpressed cell lines and determine the expression of these two chemokines between the normal cell lines and IL-17 stimulated cell lines by using real-time PCR.
     Results
     1. We found in CRC tissue that IL-17 positive staining was located in peritumor (in tumor stroma) and intratumor, followed with infiltrating inflammatory cells. The positive level of IL-17 expression is 28 cases. The IL-17 didn’t expressed in colon adenoma and normal mucosal tissue.
     2. Tumor vascular endothelium was stained with CD31 and measured MVD according to Weidner method. We analyzed the correlation between IL-17 expression and MVD. When IL-17 was high expression in tissue, the MVD was 90.00±32.66;when IL-17 was low in tissue, MVD was 66.89±32.83. Thus, statistical analysis by Student’s T test, we got the conclusion was that MVD was correlated with IL-17 expression (P=0.012).
     3. We used immunohistochemisty stain of VEGF-A and statistical analyzed. So the conclusion was IL-17 expression correlated with VEGF, statistical analyzed by Pearson’sχ2 test (P<0.05). We seleted IL-17R highexpressed CRC cell lines examined by flowcytometry test. The IL-17R expression of LS174T and LOVO were 98.05% and 97.63%. Then we used these two cell lines stimulated with IL-17(50ng/mL). After stimulation 3 hours, the gene expressions of VEGF were 3.8 and 4.87 times than the same non-stimulated ones, respectively. Therefore, IL-17 could enhanced proangiogenic activity in CRC tissue and cell lines mediated by upregulating VEGF.
     4. We cultured LOVO, LS174T and HCT116 and stimulated with IL-17(50ng/mL). Three hours later, we found that the gene expressions of CXCL6 were 5.27, 2.61 and 1.3 times than the same non-stimulated ones and the gene expressions of CCL2 were 1.17, 3.4 and 10.37 times. So IL-17 unregulated CXCL6 and CCL2 and further enhanced proangiogenic activity in CRC cell lines.
     Conclusion
     IL-17 expression in CRC was correlated with tumor malignancy. So we did a further study and get the conclusion, which was IL-17 promoted proangiogenic activity in CRC by upregaulating the expression of VEGF and chemokines (CXCL6 and CCL2).
引文
[1] Margie Patlak, Christine Micheel, Robert German. Implementing Colorectal Cancer Screening Workshop Summary. The National Academies Press, 2008. 6-7
    [2] Dongying Wu, Philip Hugenholtz1, Konstantinos Mavromatis1. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature, 2009(12): 1056-1060
    [3] Alberto Mantovani, Paola Allavena, Antonio Sica, et al. Cancer-related inflammation. Nature, 2008, 454: 436-444
    [4] Aggarwal BB, Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends Pharmacol Sci, 2009, 30(2): 85-94
    [5] de Martel C, Franceschi S. Infections and cancer: established associations and new hypotheses. Crit Rev Oncol Hematol, 2009, 70(3): 183-94
    [6] Hiroyuki Takahashi, Hisanobu Ogata, Reiko Nishigaki. Tobacco Smoke Promotes Lung Tumorigenesis by Triggering IKKβ- and JNK1-Dependent Inflammation. Cancer Cell, 2010, 17(1): 89-97
    [7] Eek Joong Park, Jun Hee Lee, Guann-Yi Yu, et al. Dietary and Genetic Obesity Promote Liver Inflammation and Tumorigenesis by Enhancing IL-6 and TNF Expression. Cell, 2010, 140(2): 197-208
    [8] J Khasawneha, MD Schulza, A Walchb, et al. Inflammation and mitochondrial fatty acidβ-oxidation link obesity to early tumor promotion. PNAS, 2009, 106(9): 3354-3369
    [9] Francis Rodier, Jean-Philippe Coppé, Christopher K. Patil, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology, 2009, 11, 973-979
    [10] Michael Dougan, Glenn Dranoff. Immune Therapy for Cancer. Annual Review of Immunology, 2009, 27: 83-117
    [11] Laurence Zitvogel, Lionel Apetoh, Fran?ois Ghiringhelli, et al. Immunological aspects of cancer chemotherapy, Nature Reviews Immunology. 2008, 8: 59-73
    [12] Massimo Ammirante, Jun-Li Luo, Sergei Grivennikov, et al. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature, 2010, 464: 302-305
    [13] Michael Karin, Toby Lawrence, Victor Nizet. Innate Immunity Gone Awry: Linking Microbial Infections to Chronic Inflammation and Cancer. Cell, 2006, 124(4): 823-835
    [14] Rafael A Irizarry, Christine Ladd-Acosta, Bo Wen, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 2009, 41: 178-186
    [15]肖南平.欧阳钦. IL-23/IL17轴与炎性肠病.国际消化病杂志, 2008, 28(3): 3
    [16] Jerome J. DeCosse, George J. Tsioulias, Judish S. Jacobson. Colorectal cancer: detection, treatment, and rehabilitation. CA, 1994, 44(1): 27-42
    [17] Hamilton SR. Colorectal carcinoma in patients with Crohn's disease. Gastroenterology, 1985, 89(2): 398-407
    [18] Fossiez F, Banchereau J, Murry R, et al. Interleukin-17. Intern Rev Immunol, 1998, 16: 541–51
    [19] Yao Z, Painter SL, Fanslow WC, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol, 1995, 155: 5483-5486
    [20] Z Yao, WC Fanslow, MF Seldin, et al. Herpesvirus saimiri encodes a new cytokine, Colorectal carcinoma in patients with Crohn's disease, 1995, 3: 811-821
    [21] Hymowitz SG, Filvaroff EH, Yin JP, et al. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding. EMBO, 2001, 20: 5332-5341
    [22] Moseley TA, Haudenschild DR, Rose L, et al. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev, 2003, 14: 155–174
    [23] SL Gaffen. Biology of recently discovered cytokines: IL-17—a unique inflammatory cytokine with roles in bone biology and arthritis. Arthritis Res Ther, 2004, 6: 240-247
    [24] SL Gaffen. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009, 9(8):556
    [25] Wright, J.F. et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem, 2007, 282: 13447-13455
    [26] D Toy, D Kugler, M Wolfson. et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol, 2006, 177: 36-39
    [27] Yan Zheng, Patricia A Valdez1, Dimitry M Danilenko, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med, 2008, 14:282-289
    [28] Ishigame H, Kakuta S, Nagai T, et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity, 2009, 30: 108-119
    [29]谭晓菁,刘晓波,高小艳,等.肝细胞癌患者肿瘤浸润淋巴细胞中IL-17+CD8+T淋巴细胞的表达及意义,免疫学杂志. 2010, 11(26): 967-972
    [30] Michel ML, D Mendes-da-Cruz, AC Keller, et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. PNAS. 2008, 105: 19845-19850
    [31] Ciric B, M El-behi, R Cabrera, et al. IL-23 drives pathogenic IL-17-producing CD8+T cells. Immunol, 2009, 182: 5296-5305.
    [32] O’Brien, R L, CL Roark, et al. IL-17-producing-T cells. Eur. J. Immunol. 2009, 39: 662-666
    [33] RF Wang. The role of MHC class II-restricted tumor antigens and CD4+T cells in antitumor immunity. Trends Immunol, 2001, 22: 269-276.
    [34] Kunle Odunsi, Feng Qian, Junko Matsuzaki, et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. PNAS, 2007, 104: 12837-12842
    [35] Wang HY, Wang RF. Regulatory T cells and cancer. Curr Opin Immunol, 2007, 19:217-223
    [36] Weaver CT, Harrington LE, Mangan PR, et al. Th17: An effector CD4+ T cell lineage with regulatory T cell ties. Immunity, 2006, 24: 677-688
    [37] Langowski JL, et al. IL-23 promotes tumour incidence and growth. Nature, 2006, 442: 461-465
    [38] Kryczek I, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol, 2007, 178: 6730-6733
    [39] Pages F, Vives V, Sautès-Fridman C,et al. Control of tumor development by intratumoral cytokines. Immunol Lett, 1999, 68(1): 135-139
    [40] Kryczek I,Wei S, Zou L, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol, 2007, 178(11): 6730-6733
    [41] Fujita K, Ewing CM, Sokoll LJ, et al. Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate, 2008, 68(8): 872-882
    [42] Shime H, Yabu M, Akazawa T, et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J Immunol, 2008, 180(11): 7175-7183
    [43] S Fujino, A Andoh, S Bamba. Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 2003, 52: 65-70
    [44] Zhang B, G Rong, H Wie, et al. The prevalence of Th17 cells in patients with gastric cancer. Biochem.Biophys. Res. Commun, 2008, 374: 533-537
    [45] Numasaki, M, M Watanabe, T Suzuki, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis.J. Immunol, 2005, 175: 6177-6189
    [46] Tartour E, F Fossiez, I Joyeux, et al. Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res, 1999, 59: 3698-3704
    [47] Numasaki M, J Fukushi, M Ono, S K Narula, et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood, 2003, 101: 2620-2627
    [48] Honorati MC, S Neri, Cattini L, et al. Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage, 2006, 14: 345-352
    [49] Jeon SH, B C Chae, H A Kim, et al. Mechanisms underlying TGF-β1-induced expression of VEGF and Flk-1 in mouse macrophages and their implications for angiogenesis. J. Leukocyte Biol, 2007, 81: 557-566
    [50] Huang X, C Lee. Regulation of stromal proliferation, growth arrest, differentiation and apoptosis in benign prostatic hyperplasia by TGF-β. Front Biosci, 2003, 8: 740–749.
    [51] Kehlen A, K Thiele, D Riemann, et al. Interleukin-17 stimulates the expression of IκBαmRNA and the secretion of IL-6 and IL-8 in glioblastoma cell lines. J Neuroimmunol, 1999, 101: 1-6
    [52] Waugh D J, C Wilson. The interleukin-8 pathway in cancer. Clin.Cancer Res. 2008, 14: 6735-6741
    [53] Aggarwal S, A L Gurney. IL-17: prototype member of an emerging cytokine family. J Leukocyte Biol, 2002, 71: 1-8
    [54] Karin, M. Nuclear factor-κB in cancer development and progression. Nature, 2006, 441: 431-436
    [55] Shalom-Barak T, J Quach, M. Lotz. Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB. J Biol Chem, 1998, 273: 27467–27473.
    [56] S Vaidyanathan Subramaniam, Roland S Cooper, Samuel E. Adunyah. Evidence for the involvement of JAK/STAT pathway in the signaling mechanism of interleukin-17. Biochem Biophys Res Commun, 1999, 262: 14-19
    [57] Subramaniam S V, L L Pearson, S E Adunyah. Interleukin-17 induces rapid tyrosine phosphorylation and activation of raf-1 kinase in human monocytic progenitor cell line U937. Biochem Biophys Res Commun, 1999, 259: 172-177
    [58] Hunter, C A. Act1-ivating IL-17 inflammation. Nat Immunol., 2007, 8: 232-234
    [59] Strieter, R. M, M D Burdick, B N Gomperts, et al. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev, 2005, 16: 593-609
    [60] Moore, B B, D A Arenberg, C L Addison, et al. CXC chemokines mechanism of action in regulating tumor angiogenesis. Angiogenesis, 1998, 2: 123-134
    [61] Arenberg D A, S L Kunke, P J Polverini, et al. Interferon-γ-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. J Exp Med, 1996, 184: 981-992
    [62] Lee J W, P Wang, M G Kattah, et al. Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol, 2008, 181: 6536-6545
    [63] Muranski, P, A Boni, P A Antony, et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood, 2008, 112: 362-373
    [64] Benchetrit F, A Ciree, V Vives, et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood, 2002, 99: 2114-2121
    [65] Jovanovic D V, J A Di Battista, J Martel-Pelletier, et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-βand TNF-α, by human macrophages. J Immunol, 1998, 160: 3513-3521
    [66] Antonysamy M A, W C Fanslow, F Fu, et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J Immunol, 1999, 162: 577-584
    [67] Hirahara N, Y Nio, S Sasaki, et al. Inoculation of human interleukin-17 genetransfected Meth-A fibrosarcoma cells induces T cell-dependent tumor-specific immunity in mice. Oncology, 2001, 61: 79-89
    [68] Kryczek, I, S Wei, W Szeliga, et al. Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood, 2009, 114: 357-359
    [69] John S Penn. Retinal and Choroidal Angiogennesis. USA: Vanderbilt University School of Medicine, Nashville, TN, 2008. 2-3
    [70] Folkman J, Hochberg M J. Exp. Med, 1973, 138: 745-753
    [71]陈晶,卢娜,郭青龙.肿瘤血管生成机制及抗血管生成药物的研究进展. Pharm Care & Res, 2007, 7(1): 49-52
    [72] Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer, 2002, 2: 795-803
    [73] Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol, 2005, 23: 1011-27
    [74] Shibuya M, Claesson-Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 2006, 312: 549-60
    [75]Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003, 3: 721-32
    [76]陈建锋. HIF-1α、VEGF在胰腺癌组织中的表达及临床意义.肝胆胰外科杂志. 2008, 5(20): 343-346
    [77] Kut C, Mac GF, Popel AS. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer, 2007, 97: 978-85
    [78] Fukumura D, Xavier R, Sugiura T, et al. Tumor induction of VEGF promoter activity in stromal cells. Cell, 1998, 94: 715-25
    [79] Liang WC, Wu X, Peale FV, et al. Cross-species vascular endothelial growth factor (VEGF)-blocking antibodies com-pletely inhibit the growth of human tumor xenografts and measure the contribution of stromal VEGF. J Biol Chem, 2006, 281: 951-61
    [80] Jubb AM, Oates AJ, Holden S, et al. Predicting benefit from anti-angiogenic agents in malignancy. Nat Rev Cancer, 2006, 6: 626-35
    [81] Kessler T, Fehrmann F, Bieker R, et al. Vascular endothelial growth factor and its receptor as drug targets in hematological malignancies. Curr Drug Targets, 2007,8: 257-68
    [82] Dong X, Han ZC, Yang R. Angiogenesis and antiangiogenic therapy in hematologic malignancies. Crit Rev Oncol Hematol, 2007, 62: 105-18
    [83] Dallas NA, Fan F, Gray MJ, et al. Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev, 2007, 26: 433-41
    [84] Lee TH, Seng S, Sekine M, et al. Vascular endothelial growth factor mediates intracrine survival in human breast carcinoma cells through internally expressed VEGFR1/FLT1. PLoS Med, 2007, 4(6): 186
    [85] Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature, 2002, 417: 954-8
    [86] Sainson RC, Harris AL. Anti-Dll4 therapy: can we block tumour growth by increasing angiogenesis? Trends Mol Med, 2007, 13: 389-95
    [87] Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature, 2006, 444: 1032-7
    [88] Lobov IB, Renard RA, Papadopoulos N, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS, 2007, 104: 3219-24
    [89] Ridgway J, Zhang G, Wu Y, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 2006, 444:,1083-7
    [90] Gale NW, Dominguez MG, Noguera I, et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. PNAS, 2004, 101: 15949-54
    [91] Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996, 380: 435-9
    [92] Ferrara N, Carver-Moore K, Chen H,et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 1996, 380: 439-42
    [93] Watanabe K, Hasegawa Y, Yamashita H, et al. Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest, 2004, 114: 898-907
    [94] Nyberg P, Xie L, Kalluri R. Endogenous inhibitors of angiogenesis. Cancer Res, 2005, 65: 3967-79
    [95] Bertolini F, Shaked Y, Mancuso P, et al. The multifaceted circulating endothelial cell in cancer: from promiscuity to surrogate marker and target identification. Nat Rev Cancer 2006, 6: 835-45
    [96] Okazaki T, Ebihara S, Asada M, et al. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int Immunol 2006, 18: 1-9
    [97] De Palma M, Venneri MA, Galli R, et al. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 2005, 8: 211-26
    [98] Venneri MA, De Palma M, Ponzoni M, et al. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood, 2007, 109: 5276-85
    [99] Conejo-Garcia JR, Buckanovich RJ, Benencia F, et al. Vascular leukocytes contribute to tumor vascularization. Blood, 2005, 105: 679-81
    [100] Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell, 2006, 124: 175-89
    [101] Nozawa H, Chiu C, Hanahan D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. PNAS, 2006, 103: 12493-8
    [102] Lin EY, Pollard JW. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res, 2007, 67: 5064-6
    [103] Lee S, Chen TT, Barber CL, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell, 2007, 130: 691-703
    [104] Konner J, Dupont J. Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (VEGF Trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer, 2004, 4 (Suppl 2): S81-S85
    [105]胡仁建,蔡家利,范开.HPV16 E6基因在大肠杆菌中的表达.重庆工学院学报(自然科学版),2009,23(1):59-61.
    [106]林治华,万瑾,谢伟.补体系统与肿瘤免疫.重庆理工大学学报(自然科学版),2010,24(5):33-36.
    [107]董缙,姚硕蔚,徐云根.肿瘤血管生成抑制剂.化学进展, 2010, 10(22): 1999-2002
    [108] Noel Weidner. Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Research and Treatment, 1995, 36(2): 169-180
    [109]郑正荣,杨春康,戴起宝.趋化因子受体对肿瘤生物学行为的影响.世界华人消化杂志, 2006, 14(5): 513-518
    [110]林琳,计敏,赵志泉等.糖尿病结肠动力障碍与几种胃肠激素变化的意义.江苏医药, 2003, 29: 641-644
    [111]杜立峰,展淑琴,郭新奎. P物质、血管活性肠肽与异常胃肠通过的关系.西安交通大学学报(医学版), 2003, 24: 363-365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700