纳滤膜法染料水溶液的脱盐浓缩及其过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用NTR7450(Nitto Denko, Japan)和NF270(DOW Chemical Corporation, USA)两种纳滤膜分离工业合成的水溶性荧光染料溶液,选择出透过通量大、除盐效果好和染料截留率高的纳滤膜,对该工业染料原液脱盐和浓缩的间歇渗滤过程进行研究。在温度25℃和压力1.0MPa下,膜对染料截留率达到100%,经过六次加水浓缩的间歇渗滤操作后,料液中NaCl浓度从0.214mol/L降到0.0025mol/L,料液被浓缩了2.6倍。说明纳滤膜的间歇渗滤操作过程能够实现染料溶液的脱盐和浓缩。
    本文的另一部分工作是对于该荧光染料体系,提出了能够达到脱盐和浓缩目的的三种分离纯化工艺过程,即间歇恒容渗滤过程、预浓缩-连续恒容渗滤-后浓缩组合过程和连续变容渗滤过程,并对这三个过程进行了模拟计算和比较,用于预测过程中各参数的变化,确定过程时间最短和水的消耗量最小时的工艺参数,为工业应用提供理论指导。(1)对于间歇恒容渗滤过程,通过研究不同的浓缩倍数(1.25、2和3)和膜对盐的截留率R对过程参数的影响,发现达到相同的除盐要求和染料纯度时,浓缩倍数较小和R较大时,都会使总的水消耗量较大,过程时间较长。(2)对于预浓缩-连续恒容渗滤-后浓缩组合过程,通过研究不同的预浓缩倍数(1.25、2和3)和R对过程参数的影响,发现达到相同除盐要求和染料纯度时,预浓缩2倍的组合过程所需总过程时间最短,而水的消耗量与预浓缩倍数、R和除盐要求有关。(3)对于连续变容渗滤过程,研究了不同的最终染料浓度、除盐要求和R对过程参数的影响。结果表明,如果最终除盐要求相同而染料浓度越高,需要较长的过程时间和较小的水消耗量;如果相同染料浓度相同而除盐要求越高,需要的较长过程时间和较大的水消耗量。
    利用以上三个过程进行染料纯化时,达到相同的脱盐和浓缩目标值,
    间歇恒容渗滤过程和连续变容渗滤过程所需的过程时间和水消耗量相同,说明在达到目标值的过程中,它们的平均透过通量是相同的。预浓缩2倍的组合过程需要较短的过程时间和较小的水消耗量,其水消耗量取决于连续恒容渗滤阶段。
Permeation experiments of aqueous industrial fluorescent dye solution were carried out by using the two kinds of NF membranes, which were NF270 (DOW Chemical Corporation, USA) and NTR7450 (Nitto Denko, Japan) membranes, in order to chose the nanofiltration membrane having high permeation flux, low rejection of NaCl component and high rejection of dye. Thus, the NF270 membrane in the operation mode of batch diafiltration was used for the concentration and desalination of aqueous dye solution. Under temperature 25℃ and applied pressure of 1.0MPa, observed rejection of dye component reached 100%. After six-stage batch diafiltration operation, concentration of dye increased 2.6 times, and concentration of NaCl decreased from 0.214mol/L to 0.0025mol/L. The experimental results showed that nanofiltration membrane NF270 in batch diafiltration operation mode was applicable in desalination and concentration of aqueous dye solution.
     In present dissertation, for the purpose of desalination and concentration of this aqueous dye solution, batch constant volume diafiltration process, combined process of preconcentration phase- continuous constant volume diafiltration phase- post concentration phase and continuous variable volume diafiltration process were studied. These separation and purification processes were simulated and derived to predict the changes of process parameters. The work will provide useful theoretical guide for the engineering application and embody its value. (1) The simulation of batch constant volume diafiltration process was used to determine the effects of the volume concentration factor (1.25, 2, 3) or volumes of adding water (0.2V0 , 0.5V0 , 2/3V0)and rejection of NaCl component on desalting and purifying of dye solution. The simulative results suggested that to obtain the same concentration of NaCl and purity of dye in the retentate, the less volume concentration factor and the higher rejection of salt, the more volume of required adding water. With the increasing of repeated concentration-dilution operation times, the efficiency of removal of salt was descreased. (2) The simulation of combined process of three phases was used to
    
    determine the effects of the volume concentration factor in preconcentration phase (1.25, 2, 3) and rejection of NaCl component on the process parameters, and the process time was optimized. For the minimum process time, the optimum value of dye concentration at diafiltration was 11.8%. Thus, to obtain the same concentration of NaCl and dye component in the retentate, the optimum appears to be a combined process where the feed was first preconcentrated about 2 times by nanofiltration, followed by continuous constant volume diafiltration and postconcentration. The required volume of adding water depended on volume concentration factor in preconcentration phase, salt rejection and desired salt concentration in the retentate. (3) The simulation of continuous variable volume diafiltration process was to discuss the effect of final concentration of dye and salt in the retentate and salt rejection on the process performance. The simulative results showed that if the same salt concentration are obtained in the retentate, the higher the dye concentration, the longer the process time and the less volume of required adding water; and if the same dye concentration are obtained in the retentate, the lower the salt concentration, the longer the process time and the more required volume of adding water.
    When the same dye and salt concentration (Cdye/Cdye,0 = 3, Csalt,0/Csalt = 81) are achieved, these three process were compared. The total process time and required volume of adding water in the batch constant volume diafiltration process were identical with the continuous variable volume diafiltration process, which show that their average permeation fluxes are also same. However, compared with these two processes, the combined process of three phases required the minimum process time when the feed was preconcentrated about 2 times. In the combined process, the required volu
引文
[1] 任建新. 膜分离技术及其应用. 北京:化学工业出版社,2003. 1
    [2] 严希康. 生化分离工程. 北京:化学工业出版社,2001.76~79
    [3] 卞晓锴,陆晓峰,施柳青. 蛋白质超滤过程及超滤膜的表面该性研究现状[J]. 膜科学与技术,2001,21(4): 46~51
    [4] 王湛. 膜分离技术基础. 北京:化学工业出版社,2000. 155~160, 208~210
    [5] 时钧、袁权、高从堦. 膜技术手册. 北京:化学工业出版社,2001.264~273
    [6] Muller A, Daufin G, Chaufer B. Ultrafiltration modes of operation for the separation of ?-lactalbumin from acid casein whey. J Membr Sci,1999,153: 9~21
    [7] Xu Y, Sleigh R, Hourigan J, et al. Separation of bovine immunoglobulin G and glycomacropeptide from dairy whey . Process Biochemistry,2000,36: 393~399
    [8] Fernandez S O,Rodriguez J A,Padilla A P. Removal concentration and desalination of bovine seroalbumin (BSA) with membrane technology. Desalination,1999,126: 95~100
    [9] Ghosh R, Saliya S S, Cui Z F. Lysozyme separation by hollow-fibre ultrafiltration. Biochem Eng J,2000,6: 19~24
    [10] Nabetani H,Abbott T P,Kleiman R. Optimal separation of jojoba protein using membrane process. Ind Eng Chem Res,1995,34(5): 1779~1788
    [11] Meagher M M,Barlett R T, Rai V R,et al. Extraction of r1L-2 inclusion bodies from Escherichia coli using cross-flow filtration. Biotechnol Bioeng,1994,43: 969~977
    [12] Bailey S M, Meagher M M. Separation of soluble protein from inclusion bodies in Escherichia coli lysate using crossflow microfiltration. J Membr Sci,2000,166:137~146
    [13] Barba D,Beolchini F,Cifoni D,et al. Whey protein concentrates production in a pilot scale two-stage diafiltration process. Sep Sci & Technol,2000,36(4): 587~603
    [14] Jaffrin M Y,Charrier J P. Optimization of ultrafiltration and diafiltration processes for albumin production. J Membr Sci,1994,97: 71~81
    [15] Huang S X, Wu X Y. Application of membrane filtration to glutamic acid recovery. J Chem Tech Biotechnol,1995,64: 109~114
    [16] Adikane H V,Singh R K,Nene S N. Recovery of penicillin G from fermentation broth by microfiltration. J Membr Sci,1999,162: 119~123
    [17] 刘茉娥. 膜分离技术应用手册. 北京:化学工业出版社,2001.244~249
    [18] 李十中,王淀佐,胡永平. 抗生素提取过程中溶剂萃取技术新方法—超滤/萃取法. 中国抗生素杂志,2000,25(1): 12~15
    [19] Bowen W R, Mohammad A W. A theoretical basis for specifying nanofiltration membranes- Dye/salt/water streams. Desalination,1998,117(1-3): 257~264
    
    
    [20] Vandanjon L, Jaouen P, Rossignol N. Concentration and desalting by membrane processes of a natural pigment produced by the marine diatom Haslea ostrearia Simonsen.J Biotechnol,1999,70: 393 ~402
    [21] Wang X L,Ying A L,Wang W N. Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solutios. J Membr Sci,2002,196: 59~67
    [22] Hossner K L, Yemm R S. Improved recovery of insulin-like growth factors (IGFS) from bovine colostrums using alkaline diafiltration. Biotechnol Appl Biochem, 2000, 32: 161~166
    [23] Berot S, Bernard C, Basso Y, Legay C, Popineau Y. Fractionation of gliadin hydrolysates in water-ethanol by ultrafiltration with modified or unmodified membranes. Biotechnol Bioeng, 1999,62(6): 649~658
    [24] Berot S, Popineau Y, Compoint J P, Blassel C, Chaufer B. Ultrafiltration to fractionate wheat polypeptides.Journal of Chromatography B,2001,753: 29~35
    [25] Cakl J, ?ír J. Demineralization of protein hydrolysates from enzymatic hydrolysis of leather shavings using membrane diafiltration. Sep Sci & Technol,1998,33(9):1271~1281
    [26] Audinos R,Branger J L. Ultrafiltration concentration of enzyme hydrolysates. J Membr Sci,1992,68: 195~204
    [27] 俞三传,金可勇,高从堦. 纳滤恒容除盐过程分析. 水处理技术,2000,26(4):187~193
    [28] Barba D,Beolchini F,Veglio F. Minimizing water use in diafiltration of whey protein concentrates. Sep Sci & Tech,2000,35(7): 951~965
    [29] Ng P, Lundblad J, Mitra G. Optimization of solute separation by diafiltration. Sep Sci, 1976,11(5): 499~502
    [30] Cooper A R, Booth R G. Ultrafiltration of synthetic polymers. Part1. optimization of solvent flux during diafiltration. Sep Sci & Technol,1978,13(8): 735~744
    [31] Asbi B A, Cheryan M. Optimizing process time for ultrafiltration and diafiltration. Desalination,1992, 86: 49~62
    [32] Foley G. Minimisation of process time in ultrafiltration and continuous diafiltration: the effect of incomplete macrosolute rejection. J Membr Sci,1999, 163: 349~355
    [33] Barba D,Beolchini F,Veglio F. Water saving in a two stage diafiltration for the production of whey protein concentrates. Desalination,1998,119: 187~188
    [34] Raman L P, Cheryan M, Rajagopalan N, et al. Consider nanofiltration for membrane separation. Chemical engineering progress, 1994,90(3): 68~74
    [35] 姚红娟,王晓琳,丁宁. 膜分离在蛋白质分离纯化中的应用. 食品科学,2003,24(1):167~171
    [36] Xu Y,Lebrun R E. Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ionic strength and solute type. J Membr Sci,1999,158: 93~104
    
    
    [37] Schaep J,Van der Bruggen B,Uytterhoeven S, et al. Removal of hardness from groundwater by nanofiltration. Desalination,1998,119: 295~302
    [38] Dey T,Ramachandhran V, Misra B. Selectivity of anionic species in binary mixed electrolyte systems for nanofiltration membranes. Desalination,2000, 127: 165~175
    [39] Hagmeyer G,Gimbel R. Modeling the rejection of nanofiltration membranes using zeta potential measurements. Separation and Purification Technology,1999,15(1): 19~30
    [40] Raff O,Wilken R D. Removal of dissolved uranium by nanofiltration. Desalination,1999,122(2-3): 147~150
    [41] Van der Bruggen B,Schaep J,Maes W,et al. Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination,1998,117: 139~147
    [42] Ga?lle D,Corinne C. Interests and limitations of nanofiltration for the removal of volatile organic compounds in drinking water production. Desalination,1999,124: 115~123
    [43] Levenstein R,Hasson D, Semiat R. Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes. J Membr Sci,1996,116: 77~92
    [44] Cassano A,Molinari R,Romano M,et al. Treatment of aqueous effluents of the leather industry by membrane processes: A review. J Membr Sci,2001,181(1): 111~126
    [45] Berg P,Hagmeyer G,Gimbel R. Removal of pesticides and other micropollutants by nanofiltration.Desalination,1997,113(2-3):205~208
    [46] 王晓琳,张澄洪,欧阳平凯. 应用纳滤膜分离糖和盐的实验研究. 膜科学与技术,2001,21(1): 44~48
    [47] Ehsani N, Parkkinen S, Nystr?m M. Fractionation of nature and model egg-white protein solutions with modified and unmodified polysulfone UF membranes. J Membr Sci,1997,123: 105~119
    [48] 周金盛,陈观文. 纳滤膜技术的研究进展.膜科学与技术,1999,19(4):1~11
    [49] 汪伟宁. 无机电解质溶液体系中的纳滤膜分离特性研究:[硕士学位论文]. 南京:南京工业大学,2002
    [50] 蔡惠如,高从堦. 膜分离技术在染料行业中的应用. 膜科学与技术,22(2): 37~39
    [51] 高从堦,张建飞,鲁学仁等. 纳滤纯化和浓缩染料试验. 水处理技术,1996,22(3): 147~150
    [52] 贾志谦,刘忠洲. 膜分离技术在染料工业中的应用进展. 环境污染治理技术与设备, 2001,2(4): 34~38
    [53] Abraham Reife, Harold S. Freeman. Environmental chemistry of dyes and pigments. John Wiley & Sons, Inc., New York, 1996
    [54] Venkidachalam G,Verma S K. Modified cellulosic nanofiltration membrane with improved characteristics for desalination and concentration of reactive dyes. Indian Journal of Chemical Technology, 1996, 3: 131~135
    
    
    [55] Jiraratananon R,Sungpet A,Luangsowan P. Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt. Desalination,2000,130(2): 177~183
    [56] Xu X T,Spencer H G. Dye-salt separations by nanofiltration using weak acid polyelectrolyte membranes. Desalination,1997,114 (2) : 129~137
    [57] Xu X T,Gaddis L,Spencer H G. Dynamic formation of a self-rejecting membrane by nanofiltration of a high-formular-weight dye. Desalination,2000,129: 237~245
    [58] Perry M,Linder C. Intermediate reverse osmosis ultrafiltration (RO/UF) membranes for concentration and desalting of low molecular weight organic. Desalination,1989,71: 233~245
    [59] Yu S C, Gao C J, Su H X et al. Nanofiltration used for desalination and concentration in dye production. Desalination, 2001, 140 (1): 97~100
    [60] 蔡惠如,高从堦. 纳滤膜对染料截留行为的研究. 膜科学与技术,2002,22(3):1~5
    [61] Katarzyna Majewaka-Nowak, Malgorzata Kabsch-Korbutowicz , Tomasz Winnicki. Salt effect on the dye separation by hydrophilic membranes. Desalination, 1996, 108: 221~229
    [62] 周花,蒋林煜,蓝伟光,夏海平. 纳滤在制备高浓度活性红3BS中的应用. 膜科学与技术,2001,21(5): 42~47
    [63] 郭明远,杨牛珍. 纳滤膜分离活性染料溶液的研究. 水处理技术,1996,22(2): 97~98
    [64] 郭明远,杨牛珍. “疏松型”反渗透膜分离活性染料溶液的初步研究. 西北纺织工学院学报,1995,9(4): 344~346
    [65] 刘玉荣,陈东升,洪勇琦,等. 用纳滤技术对染料溶液脱水除盐的研究. 化工装备技术,2000,21(6): 9~12
    [66] 柴红,周志军, 陈欢林. 纳滤膜脱盐浓缩染料的研究. 高校化学工程学报,2000,14(5): 461~464
    [67] 杨刚,邢卫红,徐南平. 应用膜技术精制水溶性染料. 膜科学与技术,2002,22(2)): 24~28
    [68] 刘梅红,李薇雅. 膜技术在增白剂生产中的应用。印染助剂,2001,18(4): 9~11
    [69] 斯国平. 膜分离技术在酸性染料生产中的应用. 印染助剂,2000,17: 16~18
    [70] 郭明远. 分散染料溶液的聚砜超滤膜分离. 全国反渗透,超过滤,微孔过滤,渗透蒸发和膜蒸馏论文报告会论文预印集. 天津:1990,189~191
    [71] 刘梅红,姜坪. 膜法染料废水处理试验研究. 膜科学与技术,2001,21(3): 50~52
    [72] 张莉,是伟元. 印染企业清洁生产的管理和发展. 纺织导报,2002,(1):32~34
    [73] 吴祖望. 21世纪的染料学科和染料工业. 2002全国染料行业信息发布会论文报告集. 宁波:2002. 34~38
    [74] Porter J J,Brandon C. Zero discharge as exemplified by textile dyeing and fishing. Chemtech, 1976, (6): 402~407
    
    
    [75] El-Nasher A M. The desalting and recycling of waste waters from textile dyeing operations using reverse osmosis. Desalination, 1977, 20: 267~277
    [76] Tinghui Liu, Matsuurat, Sourirajon S. Effect of membrane material sand average pore sizes on reverse osmosis separation of dyes. Ind Eng Chem Prod Ros Dev,1983,22: 77~85
    [77] Wenzel H,Knudsen H H,Kristensen G H,et al. Reclamation and reuse of process water from reactive dyeing of cotton. Desalination,1996,106: 195~203
    [78] Watters lames C,Biagtan Emmanuel. Ultrafiltration of a textile plant effluent. Sep Sci Technol,1991,26(10,11): 1295~1313
    [79] Nielson Carl-Erik. Recycling of wastewaters from textile dyeing using crossflow membrane filtration. Filtration & Separation,1994,31(6): 593~595
    [80] Xu Yazhen,Lebrun Remi. Treatment of textile dye plant effluent by nanofiltration membrane. Sep Sci Technol,1999,34(13): 2501~2519
    [81] Bruggen B V,Daems B, Wilms D,et al. Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry. Separation and Purification Technology,2001,22-23 : 519~528
    [82] Tang C, Chen V. Nanofiltration of textile wastewater for water reuse. Desalination,2002, 143 (1): 1l~20
    [83] Akbari A,Remigy J C,Aptel P. Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chemical Engineering and Processing,2002,41(7): 601~609
    [84] Akbari A,Desclaux S,Remigy J C,et al. Treatment of textile dye effluents using a new photografted nanofiltration membrane. Desalination,2002,149(1-3): 101~107
    [85] Koyuncu I. Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: Effects of feed concentration and cross flow velocity. Desalination,2002,143 (3) : 243~253
    [86] Bowen W R,Mohammad A W. A theoretical basis for specifying nanofiltration membranes - Dye/ salt/ water streams. Desalination,1998,117 (1-3): 257~264
    [87] Chen Guohua,Chai Xijun.,Yue Po-Lock,et al. Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. J Membr Sci,1997,127(1): 93~99
    [88] Sójka-Ledakowicz J,Koprowski T,Machnowski W,et al. Membrane filtration of textile dyehouse wastewater for technological water reuse. Desalination,1998,119: 1~10
    [89] Majewska-Nowak K,Kabsch-Korbutowicz M,Winnicki T. Capillary membranes for separation of dye particles. Desalination,1996,105: 91~103
    [90] Rotman D. Successer emerge in search for cleaner processes. Chem. Week,1993,9: 66~69
    [91] Bes-Piá A,Mendoza-Rota J A,Alcaina-Miranda M I,et al. Reuse of wastewater of the textile industry after its treatment with a combination of physico-chemical treatment and membrane technologies. Desalination,2002,149: 169~174
    
    
    [92] Marcucci M, Nosenzo G,Capannelli G,et al. Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination,2001,138: 75~82
    [93] Marcucci M,Ciardelli G,Matteucci A,et al. Experimental campaigns on textile wastewater for reuse by means of different membrane processes. Desalination,2002,149: 137~143
    [94] Rozzi A,Antonelli M,Arcari M. Membrane treatment of secondary textile effluents for direct reuse. Wat Sci Tech,1999,40 (4~5) : 409~416
    [95] Dhale A D,Mahajani V V. Studies in treatment of disperse dye waste: membrane-wet oxidation process. Waste Management,2000,20 (1): 85~92
    [96] Alan E H. Nanofiltration plant purifies industrial wastewaters. Chem Process,1993,11: 99~100
    [97] Henz A,Pfenninger H. 日本公开特许62186986
    [98] Somac C,Rumeau M,Sergent C. Use of mineral membranes in the treatment of textile effluents. Porc 1st Intl Conf Inorganic Membranes. France: Montpellier,1989. 523~526
    [99] Voigt I,Stahn M,W?hner S. Integrated cleaning of coloured waste water by ceramic NF membranes. Separation and Purification Technology,2001,25: 509~512
    [100] Porter J J,Porter R S. Filtration studies of selected anion dyes using asymmetric titanium dioxide membranes on porous stainless-steel tubes. J Membr Sci,1995,101: 67~81
    [101] Hao Jihua,Zhao Qingshuang. The development of membrane technology for waste waters treatment in the textile industry in China. Desalination,1994,98: 353~360
    [102] 裴振琦,韩式荆. 用聚砜超滤膜从染色废水中回收染料. 环境科学,1985,4(2): 1~4
    [103] 吴开芬. 膜分离技术在环境工程中应用研讨会论文集. 井岗山:1997. 28~32
    [104] 习艳丽,葛红光. 超过滤技术及其应用. 汉中师范学院学报,2001,19(2): 71~74
    [105] 鲍廷镛,方孟伟. 反渗透法处理锦纶染色废水. 水处理技术,1981,7(4) :19~21
    [106] 刘梅红,姜坪. 膜法染料废水处理试验研究. 膜科学与技术,2001,21(3): 50~52
    [107] 刘梅红. 纳滤膜技术处理印染废水试验研究. 水处理技术,2002,28(1): 42~44
    [108] 蔡惠如,高从堦. 纳滤技术治理染料废水的尝试. 环境工程,2002,20(1): 24~26
    [109] 王振余,郭树才. 炭膜处理染料水溶液的研究. 膜科学与技术,1997,17(5): 7~10
    [110] 许莉,李文革. 陶瓷膜在染料及漂洗废水处理中的应用. 化工机械,2000,27(3): 132~134
    [111] 赵宜江,嵇鸣,张艳,等. 氢氧化镁吸附-陶瓷膜微滤对印染废水脱色的研究. 膜科学与技术,2000,20(1): 41~45
    [112] 张艳,赵宜江,李容清,等. 陶瓷膜微滤处理印染废水的膜再生研究. 水处理技术,2000,26(6): 336~339
    [113] 冯冰凌,叶菊招,郎雪梅,等. 聚氨基葡糖超滤膜的研制及其在印染水处理中的应用.工业水处理,1998,18(4): 16~18
    
    
    [114] 喻胜飞,叶菊招,郎雪梅,等. 壳聚糖活性炭共混超滤膜的研制. 水处理技术,1999,25(5): 255~258
    [115] 李文翠,郭树才. 炭膜处理印染废水的研究. 炭素,2000,(1): 35~37
    [116] No?l I M,Lebrun R,Bouchard C R. Electro-nanofiltration of a textile direct dye solution. Desalination,2000,129: 125~136
    [117] 夏之宁,郭宝元,桑雪梅. 超声波对染料膜渗透的影响. 化学研究与应用,1999,11(3): 272~275
    [118] Rautenbach R,Groschl A. Separation potential of nanofiltration membranes. Desalination,1990,77: 73~84
    [119] Christian G. Membranes processes- nanofiltration eliminates salts in dyes production. Inf Chem,1996,382: 115~116
    [120] Schirg P,Widmer F. Characterization of nanofiltration membranes for the separation of aqueous dye-salt solutions. Desalination,1992,89: 89~107
    [121] 俞三传,金可勇,高从堦. 变脱盐率连续间歇纳滤恒容除盐. 水处理技术,2000,26(6): 311~314

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700