以木瓜蛋白酶为模型蛋白的亲和色谱新介质的制备及其吸附机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亲和色谱是一种利用生物大分子和固定相表面存在某种特异性亲和力,选择性地分离目标分离物的现代分离纯化技术。随着这些年高效亲和色谱技术的发展与成熟,使其在有机化学、生物化学、分子生物学、生物工程、基因工程等领域的应用受到越来越广泛的关注。然而由于亲和配基价格昂贵、色谱操作压大、处理量小等缺点,使之很难在低成本,高效率的前提下发挥更大的作用,因此寻找具有亲和配基相似活性的小分子和发展新型廉价的载体材料成为亟待解决的问题。目前,通过组合筛选技术筛选亲和配基和改良现有的色谱载体的方法占有主导地位,但是组合筛选技术很大程度上增加了筛选配基的工作量和成本,改良现有载体更是无法从根本上解决操作繁琐,处理量小等缺陷。通过选择价格低廉的染料或金属离子为亲和配基制备新型色谱介质,以及用生物技术淘洗亲和配基的方法可以很好地解决上述两个难题,而且可以在保证不降低目标分离物生物活性的前提下,快速、高效地进行分离纯化操作。在此方面的研究中,选择染料亲和色谱和仿生配基亲和色谱,发展新型载体等课题引起了广大研究学者的关注。
     本文以木瓜蛋白酶为模型蛋白,分别通过化学法和生物法制备了两种能够低成本,高效率地分离纯化模型蛋白的亲和色谱新介质,即通过化学法制备了利用膜色谱的低压降,染料配基的低成本的染料亲和膜色谱介质;通过生物法制备了利用噬菌体展示技术的高效率,噬菌体交联法的低损耗的交联噬菌体七肽亲和吸附介质(CAPOP)。分别考察了这两种亲和色谱介质对模型蛋白的吸附性能,利用亲和吸附模型阐述了两种亲和色谱介质对模型蛋白的吸附机理,并最终评价了对模型蛋白分离纯化的有效性。
     本文首先以机械强度好的尼龙膜为载体,利用化学法选择1M HCl酸水解法、甲醛活化法、壳聚糖改性法,键合染料后制备出染料Reactive Red120亲和膜色谱介质。通过扫描电镜、紫外光谱、红外光谱和元素分析对染料亲和膜进行定性定量分析,确定染料亲和膜壳聚糖含量为118.5+7.5mg/g,染料含量为163.4+10.3μmol/g,孔径大小均匀(0.5-3.0μm),比表面积大,利于蛋白质分子自由通过,是一种较为理想的分离纯化介质。
     以木瓜蛋白酶为模型蛋白,采用静态吸附法和动态脱附法研究染料亲和膜色谱介质的蛋白质吸附性能。静态吸附法考察了配基供给量、缓冲液pH值、缓冲液钠离子强度、吸附温度和吸附时间等对木瓜蛋白酶吸附量的影响。在吸附条件为:染料配基浓度10.0mg/mL、缓冲液pH8.5、钠离子强度为0M、吸附温度为37℃、吸附3h时最大静态吸附量达到37.0mg/g。动态脱附法考察了洗脱液、洗脱液pH、洗脱液钠离子强度和洗脱速度等对木瓜蛋白酶脱附量的影响。在动态脱附条件为NaCl洗脱液pH6.0,钠离子强度为1.0M,洗脱速度为1mL/min地洗脱下,达到最大的动态脱附效果,纯化后的酶活力达到1035.53U/mg,纯化倍数约为20倍。
     采用吸附等温模型、吸附动力学模型、吸附热力学模型和计算机模拟实验阐述染料亲和膜对模型蛋白木瓜蛋白酶的吸附机理。以Langmuir吸附模型和Freundlich吸附模型考察染料亲和膜的蛋白质吸附行为。研究发现Freundlich吸附模型可以较好地解释染料亲和膜的吸附行为,证实亲和膜对木瓜蛋白酶的吸附是不均匀立体结构的多分子层吸附模型。吸附动力学模型分别用准一级动力学吸附模型、准二级动力学吸附模型、粒子内扩散吸附模型以及Elovich动力学吸附模型考察染料亲和膜的吸附行为。研究发现准二级动力学吸附模型可以较好解释该吸附行为,证实染料亲和膜表面染料配基的活性位点越多,吸附能力就越强,一旦染料配基的活性位点覆盖率变大,可供共价结合的位点减少,吸附能力下降。吸附热力学研究结果为:焓变值ΔH0、熵变值ΔS0、吉布斯自由能ΔG0分别为18.52kJ/mol,0.077kJ/(mol K)和-4.43kJ/mol(298K)o焓变值ΔH0为18.52kJ/mol表明该吸附过程为吸热反应,温度的增加有利于吸附行为的发生,吸附作用力包括化学作用和物理作用。熵变值ΔS0为0.077kJ/(mol K)表明吸附过程是一个染料配基表面先脱附水分子,再吸附蛋白分子的循环过程,即“溶剂置换作用”,同时证实整个体系的吸附过程是混乱度增加的吸热过程。吉布斯自由能AG为-4.43kJ/mol(298K)不仅证明了吸附行为是自发的,还证实物理作用与化学作用同样存在于该吸附行为中,并发挥主要作用。采用Maestro9.0软件对染料配基和木瓜蛋白酶进行分子对接计算机模拟实验,结果证实吸附行为不仅包含物理吸附(疏水作用),还包括化学偶联作用(氢键)。
     染料Reactive Red120亲和膜初步应用于木瓜蛋白酶的分离纯化。通过上样,分离,洗涤,洗脱四个步骤,收集酶活最高的一组组分,冷冻干燥后经比酶活计算和FPLC表征,得到纯化倍数为粗酶溶液22.60倍的木瓜蛋白酶粉,证实所制备的染料Reactive Red120亲和膜能有效的用于木瓜蛋白酶的富集和分离,能满足皮革、饲料等领域对中等纯度的木瓜蛋白酶需求。
     论文同时以木瓜蛋白酶为模型,通过噬菌体展示技术筛选的七肽(Ile-Gln-Ser-Pro-His-Phe-Phe)为配基,以戊二醛为交联剂,以交联噬菌体为载体,利用生物法制备出交联噬菌体七肽亲和吸附介质(CAPOP)。通过透射电镜、动态光散射仪、酶联免疫吸附检测对CAPOP进行定性分析,确定七肽配基的ELISAO0492值为1.9,证实对木瓜蛋白酶具有亲和作用,交联噬菌体团聚物的粒径为5-6μm,是单个噬菌体粒径的10倍左右,证实交联成功。该介质具备特异性吸附高,价格低廉,制备简易的优点。
     采用静态吸附法、响应面优化法和动态脱附法研究CAPOP的蛋白吸附性能。静态吸附法主要考察了缓冲液pH值、缓冲液钠离子强度、吸附温度和吸附时间等对木瓜蛋白酶吸附量的影响。在吸附条件为缓冲液pH7.0,钠离子强度为0M,吸附温度为25℃,吸附2h时最大静态吸附量达到50mg/g。采用响应面法分析了吸附过程中多种因素共作用对木瓜蛋白酶吸附量的关系。研究发现不同因素的共作用对吸附量有显著影响,得到回归方程并建立优化条件:噬菌体展示配基含量为1011PFU/mL,pH值为6.9,温度为32℃,木瓜蛋白酶粗酶溶液浓度为7.51mg/mL,木瓜蛋白酶的吸附量最高,为55.4229mg/g。动态脱附法考察了洗脱液,洗脱液pH、洗脱液钠离子强度和洗脱速度对木瓜蛋白酶吸附量的影响。在动态脱附条件为pH9.0,钠离子强度为1.0M,洗脱速度为1.0mL/min的NaSCN溶液的洗脱下,达到最大的动态脱附效果,纯化倍数达200倍左右,纯化后的酶活力达到4647.73U/mg,基本与商品酶酶活持平。
     采用吸附等温线模型,吸附动力学模型,吸附热力学模型和计算机模拟技术探讨交联噬菌体对木瓜蛋白酶的吸附机理。分别以Langmuir吸附模型和Freundlich吸附模型考察CAPOP的吸附行为。研究发现Freundlich吸附模型可以较好地解释CAPOP的吸附行为,证实CAPOP对木瓜蛋白酶的吸附是不均匀立体结构的多分子层吸附模型,这与交联噬菌体的立体结构相吻合。吸附动力学模型分别以准一级动力学吸附模型、准二级动力学吸附模型和Elovich动力学吸附模型考察CAPOP的吸附行为。研究发现准二级动力学吸附模型可以解释该吸附行为,证实CAPOP表面展示的七肽配基的活性位点越多,吸附能力就越强,一旦七肽配基的活性位点覆盖率变大,可供共价结合的位点减少,吸附能力下降。吸附热力学研究表明:温度在25℃以下,焓变值ΔH0为7.97kJ/mol说明吸附反应为吸热反应,温度地升高有利于吸附行为地发生,作用力包括化学作用和物理作用。ΔS0为0.044kJ/(mol K)表明吸附过程是一个七肽配基表面先脱附水分子,再吸附蛋白分子的循环过程,即“溶剂置换作用”,同时证实整个体系的吸附过程是混乱度增加的吸热过程。吉布斯自由能ΔG0为-5.14kJ/mol(298K)不仅证明了吸附行为是自发的,还证实物理作用与化学作用同样存在于该吸附行为中,并发挥主要作用。在25℃以上,焓变值ΔH0为-12.02kJ/mol,熵变值ΔS0为-0.023kJ/(mol K),熵减焓减,说明吸附体系存在“转变温度”,这可能是由于吸附过程产生了新的化学键。但吉布斯自由能ΔG0为-5.17kJ/mol (298K),仍证明吸附行为是自发的,说明吸附过程存在物理作用与化学作用,并随温度的升高产生了新的化学键。采用Maestro9.0软件对七肽配基和木瓜蛋白酶进行分子对接计算机模拟实验,结果证实吸附行为不仅包含物理吸附(疏水作用),还包括化学偶联作用(氢键作用)。
     CAPOP初步应用于木瓜蛋白酶的分离纯化。通过亲和吸附四个步骤,收集酶活最高的组分,冷冻干燥后经比酶活的计算和SDS-PAGE表征,得到纯化倍数为粗酶溶液的240.94倍,是染料亲和膜的近10倍。证实所制备的CAPOP不仅能有效的分离纯化木瓜蛋白酶,并表现为更高的分离效率,具备满足医疗、生物生化工程、抗体工程等领域对高纯度木瓜蛋白酶需求的潜力。
     以木瓜蛋白酶为模型蛋白,研究七肽配基对木瓜蛋白酶的抑制行为和抑制机理。通过考察不同浓度的七肽分子对木瓜蛋白酶催化活性的抑制效果,采用Lineweaver-Burk双倒数作图,最终确定当催化体系中七肽分子的浓度达到20mM时,相对抑制率达到了66.41%,得出导致木瓜蛋白酶酶活丧失50%时的七肽分子浓度(IC50)为14.2mM;当七肽分子浓度为20mM时,催化体系的延滞时间为421s,延长了155%。同时证明七肽分子对木瓜蛋白酶酶活的抑制作用是属于可逆性抑制。
     综上所述,本论文分别通过化学法和生物法制备两种新型的亲和色谱介质,设计思路具有典型性和拓展性,可推广到任一目标分离物(主要是蛋白质)的特异性配基筛选和规模性纯化,这为新型生物多肽配基的开发、亲和色谱分离过程研究、分离工艺流程选择和设计提供了相关基础数据和理论指导,从而拓宽了亲和色谱技术的应用范围。
Affinity chromatography is a technology of separation and purification, by taking advantage of specific affinity between biological macromolecules and the solid phase surface. With the development of high-performance affinity chromatography, it has been applied in organic chemistry, biochemistry, molecular biology, bioengineering, genetic engineering and other fields. However, due to its expensive affinity ligands, high operating pressure, small handling capacity and other shortcomings, it is difficult to play a much more significant role under the premise of low-cost and high efficiency. To overcome this limit, the developments of the small molecules similar to affinity ligands and new low-cost carrier materials have been widely investigated. More and more scholars are pay attention on screening ligands through a combination method and improving the existing materials, but the former method greatly increases the workload and the cost, and the latter method is unable to overcome the dilemma of complicated operation and small handling capacity. There are good solutions to these problems by adopting dye and metal ion as affinity ligand, or screening for the ligands by biopanning, which could separate the targets proteins rapidly and efficiently and keep the targets high activity. In this regards, the dye and biomimetic affinity chromatography are be concerned by lots of scholars.
     Using papain as model protein, two affinity chromatography medium were prepared by chemical and biological methods:dye affinity membrane and cross-linking affinity phage oligopeptide pellet. Adsorption capacity and adsorption mechanism had been studied and the effectiveness of the separation and purification of model protein had been evaluated.
     Firstly, using nylon membranes with good mechanical strength as the carrier, covalent coupling of chitosan (CS) to activated nylon membrane was performed after the reaction of the microporous nylon membrane with formaldehyde. The dye Reactive Red120as a ligand was then covalently immobilized on the CS-coated membranes. The dye affinity membranes were characterizied by SEM, UV spectroscopy, FT-IR and elemental analysis. The results showed the chitosan content of dye affinity membranes was determined of118.5±7.5mg/g and Reactive dye Reactive Red120was successfully bond to the modified nylon membrane with the load capacity of163.4±10.3μmol/g. SEM showed the pore sizes of affinity membrane were distributed in the range of about0.5-3.0μm, which facilitated mass transfer. So the dye affinity membrane could be used as an ideal separation and purification media.
     The protein adsorption behavior and capacity of the new dye affinity membrane absorbent were studied by static and dynamic method, using papain as a model protein. By testing the different concentrations of ligand, pH, Na ionic strength, temperature and adsorption time, a nice result was achieved:at the circumstances of pH8.5,0M Na ionic strength,37℃, maximum static adsorption of papain was reached to37mg/g after3h. Dynamic testing included elution rate, pH, Na ionic strength and other factors. It showed in the condition of pH6.0,1M ionic strength, elution rate of1mL/min, the papain with the highest activity (1035.53U/mg) would be eluted with20-fold purification.
     Adsorption mechanisms of the dye affinity membrane were described by adoption of adsorption isotherm model, adsorption kinetics model, adsorption thennodynamic model and computer simulation study. Adsorption isotherm analysis was identified by Langmuir model and Freundlich model. The linear fit of Freundlich model indicating that the adsorption type is a3-dimensional structure of multi-molecular layer adsorption model. The adsorption kinetics models studies were combined by Pseudo-first-order kinetic model, Pseudo-second-order kinetic model, Intra-particle diffusion model and the Elovich kinetic model. It was found that the Pseudo-second-order kinetic model can better explain the adsorption behavior, indicating that the adsorption capacity was always proportionate to the amounts of active sites on dye affinity membrane surface, once the active sites covered, the adsorption capacity decreased. The values of the standard enthalpy changes, the entropy changes and Gibbs free energy were18.52kJ/mol,0.077kJ/(mol. K),-4.43kJ/mol (298K), respectively. ΔH0value of18.52kJ/mol indicates that the adsorption process is an endothermic reaction, the adsorption capacity increased when temperature elevated and the adsorption force including chemical and physical effects. ΔS0value of0.077kJ/(mol. K) showed the desorption of water molecules occured before adsorption of papain, which named "solvent replacement role", and also confirmed the adsorption process of the system increased disorder. ΔG0value of-4.43kJ/mol (298K) proved that the adsorption behavior was spontaneous, and confirmed that the physical and chemical effects also exist in the adsorption behavior. Computer simulations using the Maestro9.0software also confirmed both the existing of physical (hydrophobic interactions) and chemical effects (hydrogen bonding).
     Papain as a model was purified by dye Reactive Red120affinity membrane. Papain was purified22.6-fold in a single step using Red120-CS-membrane, as determined by protein content and enzyme activity assays, meeting papain demands of leather, feed and other areas.
     Using7-mer peptides (Ile-Gln-Ser-Pro-His-Phe-Phe) from phage display library as ligand, glutaraldehyde as crosslinking agent and cross-linked phage as matrix, cross-linking affinity phage-oligopeptide pellet (CAPOP) was prepared. Qualitative analysis of enzyme-linked immunosorbent assay confirmed the7-mer peptides ligand have an affinity for papain with OD492value of1.9. Particle size of CAPOP was determined5-6μm by DLS and TEM, indicating the cross-linking successfully. The CAPOP absorbent have the advantages of specific adsorption, low cost and simple preparation.
     The adsorption capacity of CAPOP was studied by static adsorption, response surface methodology and dynamic desorption. The static adsorption mainly concerned on the buffer pH, Na ionic strength, the adsorption temperature and adsorption time. The maximum static adsorption capacity reached50mg/g with the optimization of conditions of pH7.0, Na ionic strength0M,25℃and2h. The RSM analysed the relationship between a variety of factors and adsorption capacity as well as establish a model. The maximum papain adsorption capacity reached55.4229mg/g under the conditions of the phage display amount of ligand1011PFU/mL, pH6.9,32℃and papain crude enzyme solution concentration7.51mg/mL. The dynamic desorption concerned about type, pH, Na ionic strength of eluent and the elution speed. A purification of200-fold with its enzyme activity4647.73U/mg was achieved under the dynamic desorption conditions of NaSCN, pH9.0, Na ionic strength1.0M, the elution speed1.0mL/min.
     Adsorption mechanisms of CAPOP were studied by adoption of adsorption isotherm model, adsorption kinetics model, adsorption thermodynamic model and computer simulation study. Adsorption isotherm analysis was identified by Langmuir model and Freundlich model. The study showed that the Freundlich model could better explain the adsorption behavior, indicating the adsorption type was a3-dimensional structure of multi-molecular layer adsorption model, which was consistent with the structure of cross-linked phage. The adsorption kinetics models studies were analysed by Pseudo-first-order kinetic model, Pseudo-second-order kinetic model and the Elovich kinetic model. Results showed that the Pseudo-second-order kinetic model could better explain the adsorption behavior, indicating that the adsorption capacity was always proportionate to the amounts of active sites on CAPOP. The values of the standard enthalpy changes, the entropy changes and Gibbs free energy were7.97kJ/mol,0.044kJ/(mol. K),-5.14kJ/mol (298K), respectively. ΔS0value of0.044kJ/(mol. K) showed that the desorption of water molecules occurs before adsorption of papain, which named "solvent replacement role", and also confirmed the adsorption process of the system increased disorder. ΔG0value of-5.14kJ/mol (298K) proved the adsorption behavior was spontaneous, and confirmed that the physical and chemical effects also exist in the adsorption behavior and play a major role. Above25℃, ΔH0value of-12.02kJ/mol, ΔS0value of-0.023kJ/(mol K), indicated that there was a "transition temperature" in adsorption system, which may be due to the new chemical bonds in adsorption process. But ΔG0value of-5.17kJ/mol (298K) still proved the adsorption behavior was spontaneous. Computer simulations using the Maestro9.0software also confirmed both the existing of physical (hydrophobic interactions) and chemical effects (hydrogen bonding).
     Papain was purified by CAPOP. Papain was purified240.94-fold in a single step using CAPOP, as determined by protein content and enzyme activity assays. It was confirmed CAPOP was an effective separation and purification absorbents with higher separation efficiency, which have the potential to meet the demands of medical, biological and biochemical engineering, antibody engineering and other fields.
     Inhibition mechanism and inhibition behavior of7-mer peptide affinity ligands for papain was studied. Finally it was confirmed the delay time was increasing with the concentration of7-mer peptide increasing, and the7-mer peptide molecule concentration (IC50) was14.2mM by Lineweaver-Burk double reciprocal model. When the catalytic system didn't contain7-mer peptide molecules, the enzyme reaction delay time was165s, whiled the lag time was421s when the concentration of7-mer peptide molecular came to20mM. The results also showed that with the increasing of the7-mer peptide molecules concentration, the catalysis efficiency decreased, indicating that the activity was inhibited by the7-mer peptide molecules, rather than by reducing the amount of enzyme.7-mer peptide molecules on the activity of papain inhibition were identified as irreversible inhibition process.
     In summary, we prepared two kinds of affinity chromatography absorbents by chemical and biological methods. It could be expanded any other field of protein separation process including ligand screening, matrix preparation and the design of separation process. Through the study of this thesis, we wish to prodive fundamental data and theory guidence for the application of affinity chromatograph.
引文
[1]Starkenstein E. Ferment action and the influence upon it of neutral salts. Biochem Z,1910 (24):210-212.
    [2]Engelhardt W A, Kisselev L L, Nezlin R S. The principle of "fixed partner" as experimental tool in molecular biology research. Monatsh chem,1970 (101): 1510-1517.
    [3]Holmtergh O. Biochemical basis of enhanced drug bioavailability by piperine. biochem Z,1933 (258):134-135.
    [4]Camptell D H, Luescher E, Lerman L S. Immunologic adsorbants. I. Isolation of antibody by means of a cellulose-protein antigen. proc Nat Acad Sci (USA),1951 (37):575-578.
    [5]Lerman L S. A biochemically specific method for enzyme isolation. proc Nat Acad Sci (USA),1953 (39):232-233.
    [6]Porath J, Flodin P. Gel filtration:a method for desalting and group separation. Nature,1959 (183):1557-1559.
    [7]Merrifield R B. Solid-phase peptide synthesis. J Amer Chem Soc.1963 (85): 2149-2150.
    [8]Hjerten S. Biophysics including photosynthesis. biochem biophys Acta,1964 (79): 393-398.
    [9]Ax en R, Porath J, Ernback S. Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature,1967 (214): 1302-1304.
    [10]Cuatrecases P, Wilchek M, Anfinsen C B. Selective enzyme purification by affinity chromatography. Proc Nat Acad Sci (USA),1968 (61):636-643.
    [11]Cuatrecases P. Protein purification by affinity chromatography. J Biol Chem, 1970 (245):3059-3065.
    [12]Yon R J. Chromatography of lipophilic proteins on adsorbents containing mixed hydrophobic and ionic groups. Biochem J,1972 (126):765-767'.
    [13]Wulff G, Sarhan A. Use of polymers with enzyme-analogous structures for the resolution of race mates. Angew Chem Int Ed Engl,1972 (11):341-344.
    [14]Brocklehurst K, Carlsson J, Kierstan M P J, Crook E M. Preparation of fully active papain from dried papaya latex. Biochem. J,1973 (133):573-583.
    [15]Easterday R L, Easterday J M, Immobilized biochemical and affinity chromatography. R B Dunlap (eds)New York:Plenum,1974 (23):123-124.
    [16]Porath J, Dahlgren-Caldwell K. Plate model of the frontal chromatographic process. J chromatogr,1977 (133):180-183.
    [17]Porath J. Explorations into the field of charge-transfer adsorption. J chromatogr, 1978(159):13-24.
    [18]Ohlson S, Hansson L, Larsson P O, Mosbach K. High performance liquid affinity chromatography (HPLAC) and its application to the separation of enzymes and antigens. FEBS lett 1978 (93):5-9.
    [19]Armstrong D W, DeMand W. Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical and structural isomers. J Chromatogr Sci,1984(22):411-415.
    [20]Affinity Chromatography manuscript:Affinity Chromatography Principles and Methods Amersham Bioscience 18-1022-29.
    [21]Maire M. Gel chromatography and analytical ultracentrifugation to determine the extent of detergent binding and aggregation, and stokes radius of membrane proteins using sarcoplasmic reticulum Ca2+-ATPase as an example. Nature Protocols,2008 (3):1782-1795.
    [22]Hu Y L, Shao P, Chen F, Yan X, Cheng B, Lv Z, Lan Z Q. Study on silica gel chromatography purification technology of Co Q10 from the liver of farmed sturgeon. Food Sci Technol,2010 (02):1-4.
    [23]Zeng X H, Huang H Q, Chen D S, Jin H W, Huang H Y. Proteomic study of serum using gel chromatography and MALDI-TOF MS reveals diagnostic biomarkers in male patients with liver-cancer. Int J Mass Spectr,2007 (261): 108-114.
    [24]Emily E, Kenneth M, Rosenberg J, Israelachvili J. Recent progress in understanding hydrophobic interactions. Proc Nat Aca Sci,2006 (43): 15739-15746.
    [25]Ren J, Pi H Q, Lin X, Xu L, Xie J, Jia L Y. Effect of structural properties of both proteins and stationary phases to adsorption behavior of proteins in hydrophobic tnteraction chromatography. Bioinformatics Biomed Eng,2010:1-5.
    [26]Arakawa T, Tsumoto K, Nagase K, Ejima D. The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expres Purif,2007 (54):110-116.
    [27]David S. Ion-exchange chromatography molecular biomethods handbook,2008: 711-718.
    [28]Meyer A, Hoffler S, Fischer K. An ion-exchange chromatography electrospray ionization mass spectrometry method development for the environmental analysis of aliphatic polyhydroxy carboxylic acids. J Chromatogr A,2007 (1170): 62-72.
    [29]Arakawaa T, Tsumotob K, Nagasec K, Ejima D. The effects of arginine on protein binding and elution in hydrophobic interaction and ion-exchange chromatography. Protein Expres Purif,2007 (54):110-116.
    [30]Kindt R, Storme M, Deforce D, Bocxlaer J V. Evaluation of hydrophilic interaction chromatography versus reversed-phase chromatography in a plant metabolomics perspective. J Sep Sci,2008 (31):1609-1614.
    [31]Ikegami T, Hara T, Kimura H, Kobayashi H, Hosoya K, Cabrera K, Tanak N. Two-dimensional reversed-phase liquid chromatography using two monolithic silica C18 columns and different mobile phase modifiers in the two dimensions. J Chromatogr A,2006 (1106):112-117.
    [32]Stoll D R, Cohen J D, Carr P W. Fast comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography. J Chromatogr A,2006 (1122):123-137.
    [33]Nie H L, Zhu L M. Adsorption of papain with Cibacron Blue F3GA carrying chitosan-coated nylon affinity membranes. Int J Biol Macromol,2007 (40): 261-267.
    [34]Chen T X, Nie H L, Li S B, White C B, Su S N, Zhu L M. Comparison: Adsorption of papain using immobilized dye ligands on affinity membranes. Colloid Surface B,2009 (72):25-31.
    [35]Zadakaa D, Mishaela Y G, Polubesova T, Serbana C, Nir S. Modified silicates and porous glass as adsorbents for removal of organic pollutants from water and comparison with activated carbons. Appl Clay Sci,2007 (36):174-181.
    [36]Hahn R, Bauerhansl P, Shimahara K, Wizniewski C, Tscheliessnig A, Jungbauer A. Comparison of protein A affinity sorbents:II. mass transfer properties. J Chromatogr A,2005 (1093):98-110.
    [37]Markovi A, Stoltenberg D, Enke D, Schliinder E U, Seidel M A. Gas permeation through porous glass membranes:Part I. mesoporous glasses-effect of pore diameter and surface properties. JMembr Sci,2009 (336):17-31.
    [38]Feng S, Ye M, Zhou H J, Jiang X G, Jiang X N, Zou H F, Gong B L. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics,2007 (6): 1656-1665.
    [39]Meany D L, Xie H W, Thompson L V, Arriaga E A, Griffin T J. Identification of carbonylated proteins from enriched rat skeletal muscle mitochondria using affinity chromatography-stable isotope labeling and tandem mass spectrometry. Proteomic,2007 (7):1150-1163.
    [40]Quintavalle M, Sambucini S, Summa V, Orsatti L, Talamo F, Francesco R D, Neddermann P, Hepatitis C. Virus NS5A is a direct substrate of casein kinase I-a, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors. J Biol Chem,2007 (282):5536-5544.
    [41]Ma Z W, Ramakrishna S. Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J Membr Sci, 2008 (319):23-28.
    [42]Andreia S, Renato B E F, Candida T T; Joao Q A, Paulo A. Rhodamine B as ligand for affinity chromatography:chromatographic studies on derivatized beaded cellulose. J Chromatogr Sci,2010 (48):240-244.
    [43]Feuerstein I, Morandell S, Stecher G, Huck C W, Stasyk T, Huang H L, Teis D, Huber L A., Bonn G K. Phosphoproteomic analysis using immobilized metal ion affinity chromatography on the basis of cellulose powder. Proteomics,2005 (5): 46-54.
    [44]Islam R, Kite J, Baker A S, Ching A J, Islam M R. Affinity purification of hen egg lysozyme using sephadex G75. Afr JBiotechnol,2006 (5):1902-1908.
    [45]Qi J, Chen J G, Wang J Y, Fang J, Wu J J, Zhou J Y. Expression of goose interleukin 2 in escherichia coli and isolation of its soluble monomer. Chin J Biotechnol,2008 (24):183-187.
    [46]Tateno H, Nakamura T S, Hirabayashi J. Frontal affinity chromatography: sugar-protein interactions. Nature Protocols,2007 (2):2529-2537.
    [47]Souza M C M, Bresolin I T L, Bueno S M A. Purification of human IgG by negative chromatography on ω-aminohexyl-agarose. J Chromatogr B,2010 (878):557-566.
    [48]于世林主编.亲和色谱方法及应用.化学工业出版社,2008,14-15.
    [49]Porath J, Carlsson J, Olsson I, Belfage G. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature (London),1975 (258):598-599.
    [50]Labrou N E. Design and selection of ligands for affinity chromatography. J Chromatogr B,2003 (790):67-78.
    [51]Bacolod M D, Rassi Z E. High-performance metal chelate interaction chromatography of proteins with silica-bound ethylene diamine-N,N'-diacetic acid. J Chromatogr,1990 (512):237-248.
    [52]刘平,张双全,闫晓梅等.固定化镍离子亲和层析胶的制备及其性能鉴定.生物化学与生物物理进展,2001(2):267-269.
    [53]李蓉,邸泽梅,陈国亮.金属螫合亲和色谱中固定金属与蛋白质的作用.分析化学,2002(30):552-555.
    [54]Laure G B, Ruth F. Comparison of antibody binding to immobilized group specific affinity ligands in high performance monolith affinity chromatography. J Pharmaceut Biomed Anal,2000 (24):95-104.
    [55]Mcconnell R I, Maccormick A, Lamont J V et al. An effective purity technology of veterinary residua immunoaffinity chromatography. J Food Agric Immun,2004 (6):147-148.
    [56]Sanchez F G, Herrera D et al. Development and characterisation of an immunoaffinity chromatographic column for the on-line determination of the pesticide triclopyr. Talanta,2007 (71):1411-1416.
    [57]Denizli A, Piskin E. Dye-ligand affinity systems. J Biochem Biophys Methods, 2001 (49):391-416.
    [58]Clonis Y D, Stead C V, Lowe C R. Novel cationic triazine dyes for protein purification. Biotech Bioeng,1987 (30):621-627.
    [59]Clonis Y D, Lowe C R. Monosized adsorbents for high-performance affinity chromatography Application to the purification of calf intestinal alkaline phosphatase and human urine urokinase. J Chromatogr,1991 (540):103-104.
    [60]Wang J Y, Peng X J. Synthesis of new "biomimetic" dye-ligands and their application in the purification of alkaline phosphatase. Sep Purif Technol,2006 (50):141-146.
    [61]Melissis S C et al. New family of glutathionyl-biomimetic ligands for afinity chromatography of glutathione-recogising enzymes. J Chromatogr A,2001 (917): 29-42.
    [62]Labrou N E, Clonis Y D. The interaction of Candida boidinii formate dehydrogenase with a new family of chimeric biomimetic dye-ligands. Arch Biochem Biophys,1995 (316):169-178.
    [63]Lowe C R. Combinatorial approaches to affinity chromatography. Current Opinion in Chemical Biology,2001 (5):248-256.
    [64]Geysen H M, Rodds S J, Mason T. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol immunol,1986 (23): 709-715.
    [65]Fassina G, Ruvo M, Palombo G, Verdoliva A, Marino M. Novel ligands for the affinity-chromatographic purification of antibodies. J Biochem Biophys Methods, 2001 (49):481-490.
    [66]Lowe C R, Pearson J C. Affinity chromatography on immobilized dyes. Methods Enzymol,1984 (104):97-113.
    [67]Sidhu S S. Phage display in pharmaceutical biotechnology. Curt Opin Biotechnol, 2000 (11):610-616.
    [68]赵睿,刘国诠.亲和色谱中配基的筛选与应用.色谱2007(25):135-141.
    [69]Hawinkels L, Sabine M W et al. Efficient degradation-aided selection of protease inhibitors by phage display. Biochem Bioph Res Co,2007 (364):549-555.
    [70]Ehrlich G K, Bailon P. Identification of peptides that bind to the constant region of a humanized IgG1 monoclonal antibody using phage display. JMol Recognit, 1998(11):121-125.
    [71]Noppe W, Plieva F M et al. Immobilised peptide displaying phages as affinity ligands Purification of lactoferrin from defatted milk. J Chromatogr A,2006 (1101):79-85.
    [72]赵乐群,赵佳慧,程庆砾,黄仪秀,朱圣庚.ICAM特异结合肽的淘选与性质研究.北京大学学报(自然科学版),2002(38):1-3.
    [73]Gopinath S C B. Methods developed for SELEX. Anal Bioanal Chem,2007 (387):171-182.
    [74]Romig T S, Bell C, Drolet D W. Aptamer affinity chromatography:combinatorial chemistry applied to protein purification. J Chromatogr B,1999 (731):275-284.
    [75]Gan H Y, Shang Z H, Wang J D. New affinity nylon membrane used for adsorption of y-globulin. J Chroma togr A,2000 (867):161-168.
    [76]Serpa G. Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody. J Chromatogr B, 2005 (816):259-268.
    [77]Chen Q. A novel strategy for proteome-wide ligand screening using cross-linked phage matrices. JBiol Chem,2010 (285):9367-9372.
    [78]Connor A C, McGown L B. Aptamer stationary phase for protein capture in affinity capillary chromatography. J Chromatogr A,2006 (1111):111-115.
    [79]Romig T S, Bell C, Drolet D W. Aptamer affinity chromatography:combinatorial chemistry applied to protein purification. J Chromatogr B,1999 (731):275-284.
    [80]Kaur-Atwal G, Weston D J, Green P S, Crosland S, Bonner P L R, Creaser C S. On-line capillary column immobilised metal affinity chromatography/ electrospray ionisation mass spectrometry for the selective analysis of histidine-containing peptides. J Chromatogr B,2007 (857):240-245.
    [81]Bayramoglu G, Celik G, Yakup M A. Immunoglobulin G adsorption behavior of 1-histidine ligand attached and Lewis metal ions chelated affinity membranes. Colloids Surf A.2006 (287):75-85.
    [82]Hong W W L, Yen Y H, Wu S C. Enhanced antibody affinity to Japanese encephalitis virus E protein by phage display. Biochem Bioph Res Co,2007 (356): 124-128.
    [83]Weiergraber O H. Ligand binding mode of GABAA receptor-associated protein. JMol Biol,2008 (381):1320-1331.
    [84]Altintas E B, Denizli A. Efficient removal of albumin from human serum by monosize dye-affinity beads. J Chromatogr B,2006 (832):216-223.
    [85]Kassab A, Yavuz H, M. Denizli A. Human serum albumin chromatography by Cibacron Blue F3Gaderived microporous polyamide hollow-fiber affinity membranes. J Chromatogr B,2000 (746):123-132.
    [86]Shibusawa Y, Fujiwara T, Shindo H, Ito Y. Purification of alcohol dehydrogenase from bovine liver crude extract by dye-ligand affinity counter-current chromatograph. J Chromatogr B,2004 (799):239-244.
    [87]Guy P, Savoy M C, Stadler R H. Application of IAC in food safety monitorin. J Chromatogr B,1999 (736):209-210.
    [88]Gurbay A, Aydin S, Girgin G et al. Assessment of aflatoxin M 1 levels in milk in Ankara, Turkey. Food Control,2006 (17):1-4.
    [89]Andre C, Berthelot A, Thomassin M et al. Enantioselective aptameric molecular recognition material:Design of a novel chiral stationary phase for enantioseparation of a series of chiral herbicides by capillary electrochromatography. Electrophoresis,2006 (27):3254-3262.
    [90]Nevens J R, MaUia A K, Wendt M W, Smith P.K. Affinity chroma-tographic purification of immunoglobulin M antibodies utilizing immobilized mannan binding protein. J Chromator,1992 (597):247-256.
    [91]裘锋平,詹金彪,王克夷.利用噬菌体展示技术筛选胰岛素模拟肽.中国生物化学与分子生物学报,2006(22):647-651.
    [92]Khaparde S S, Singhal R S. Chemically modified papin for applications in detergent formulations. Bioresour Technol,2001 (78):1-4.
    [93]Drenth J, Jansonius J N, Koekoek R, Wolthers B G. The structure of papain. Adv Protein Chem.1971 (25):79-115.
    [94]张艳梅,曾虹燕,蔡西玲,熊龙斌,张存滢,侯茜.汞离子对木瓜蛋白酶结构的影响及抑制机理的研究.中国生物工程杂志,2012(32):87-91.
    [95]Gomes M T R, Teixeira R D, Lopes M T P, Nagem R A P, Salas C E. X-ray crystal structure of CMS1MS2:a high proteolytic activity cysteine proteinase from Carica candamarcensis. Amino Acids,2012 (10):1007-1012.
    [96]Liu W, Xie M Y, Zhong Y J, Liu C M, Guan B, Wang Q. Fluorescence spectra analysis of papain structure treated by dynamic high pressure microfluidization in low pressure ranges. Guang Pu Xue Yu Guang Pu Fen Xi,2010 (2):387-390.
    [97]Hussain S, Khan A, Gul S, Resmini M, Verma C S, Thomas E W, Brocklehurst K. Identification of interactions involved in the generation of nucleophilic reactivity and of catalytic competence in the catalytic site Cys/His ion pair of papain. Biochem,2011(49):10732-10742.
    [98]Llerena-Suster C R, Jose C, Collins S E, Briand L E, Morcelle S R. Investigation of the structure and proteolytic activity of papain in aqueous miscible organic media. Process Biochem,2012 (1):47-56.
    [99]Shindo T, Van Der Hoorn R. Papain-like cysteine proteases:key players at molecular battlefields employed by both plants and their invaders. Mol Plant Pathol,2008(1):119-125.
    [100]Dubey V K, Pande M, Singh B K, Jagannadham M V. Papain-like proteases: Applications of their inhibitors. Afr J Biotechnol,2007 (9):23-31.
    [101]Starley I F, Mohammed P, Schneider G, Bickler S W. The treatment of paediatric burns using topical papaya. Burns,1999 (25):636-639.
    [102]吴毅,肖瑞卿,林武存.9160例患D抗原检测及配血分析.第三军医大学学报,1998(6):213-215.
    [103]杨慧,朱晓霞,孙伟生.抗C、抗E引起血型不合1例.临床检验杂志,2000(5):308-310.
    [104]Lopes M C, Mascarini R C, da Silva B M, Florio F M, Basting R T. Effect of a papain-based gel for chemomechanical caries removal on dentin shear bond strength. J Dent Child 2007 (74):93-97.
    [105]吴显荣.木瓜蛋白酶的开发与应用.中国农业大学学报,2005(6):11-15。
    [106]吴建中,赵谋明.木瓜蛋白酶水解大豆分离蛋白研究Ⅲ.大豆科学,2002(8):187-190.
    [107]巫庆华.木瓜蛋白酶凝固大豆蛋白机理.乳业科学与技术,2002(1):6-9.
    [108]Chen Q H, He G Q, Jiao Y C, Ni H. Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chem 2006 (98):624-625.
    [109]谭晶,陈季旺,夏文水,舒静.超滤分离具有壳聚糖酶活力的木瓜蛋白酶.食品与机械,2007(6):20-23.
    [110]王丽彬,张驶,王旻.高纯度木瓜蛋白酶的分离纯化和性质研究.中国生化药物杂志,2006(27):159-162.
    [111]曹对喜,杜征,韩玉婷,余丽萍,刘坤逊,陈玉莹,段杉.双水相萃取法提取木瓜蛋白酶的研究.农产品加工.学刊,2010(10):66-69.
    [112]Nitsawang S, Hatti-Kaul R, Kanasawud P. Purification of papain from Carica papaya latex:Aqueous two-phase extraction versus two-step salt precipitation. Enzyme Microb Tech,2006 (5):59-60.
    [113]Klein E. Affinity membranes:a 10-year review. J Membr Sci,2000(179):1-27.
    [114]任军,贾凌云.亲和色谱仿生配基的筛选和设计.分析化学,2005(9):1345-1349.
    [115]Arakawa T, Ejima D, Tsumoto K, Ishibashi M, Tokunaga M. Improved performance of column chromatography by arginine:Dye-affinity chromatography. Protein Expres Purif,2007 (52):410-414.
    [116]Geysen, H M, Rodda, S J, Mason, T J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol,1986 (23): 709-715.
    [117]Yanic C, Bredenkamp M W, Jacobs E P, Swart P. Adsorbed surfactants for affinity chromatography:end-group modification of ethylene glycol polymers. Bioorg Med Chem Lett,2003 (13):1381-1384.
    [1]Guo W, Ruckenstein E. Separation and purification of horseradish peroxidase by membrane affinity chromatography. JMembr Sci,2003 (211):101-111.
    [2]Klein E. Affinity membranes:a 10-year review. J Membr Sci,2000(179):1-27.
    [3]Garipcan B, Bereli N, Patir S, Arica Y., Denizli A. Synthesis of poly [(hydroxyethyl methacrylate)-co-(methacrylamidoalanine)] membranes and their utilization as an affinity sorbent for lysozyme adsorption. Macromol Biosci,2001 (1):332-340.
    [4]Gan H Y, Shang Z H, Wang J D. New affinity nylon membrane used for adsorption of y-globulin. J Chromatogr A,2000 (867):161-168.
    [5]Gebauer K H, Thommes J, Kula M R. Breakthrough performance of high-capacity membrane adsorbers in protein chromatography. Chem Eng Sci,1997 (52): 405-406.
    [6]Zou H F, Luo Q Z, Zhou D M. Affinity membrane chromatography for the analysis and purification of proteins. J Biochem Biophys Methods,2001 (49): 199-240.
    [7]Zeng X F, Ruckenstein E. Membrane chromatography:preparation and applications to protein separation. Biotechnol Prog,1999 (15) 1003-1019.
    [8]Guo W, Ruckenstein E. A new matrix for membrane affinity chromatography and its application to the purification of concanavalin A. J Membr Sci,2001 (182): 227-234.
    [9]Vyas P V, Shah B G, Trivedi G S, Ray P, Adhikary S K, Rangarajan R. Characterization of heterogeneous anion-exchange membrane. J Membr Sci,2001 (187)39-46.
    [10]Cionis Y D, Lower C R. Affinity chromatography on immobilized triazine dyes: studies on the interaction with multinucleotide-dependent enzymes. Biochem Biophys Acta,1981(659):86-98.
    [11]Kugel K, Moseley A, Harding G B, Klein Elias. Microporous poly(caprolactam) hollow fibers for therapeutic affinity adsorption. J Membr Sci,1992(74): 115-129.
    [12]Beeskow T C, Kusharyoto W, Anspach F B et al. Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes. J Chromatogr A,1995(715):49-65.
    [13]Ruckenstein E, Zeng X F. Albumin separation with Cibacron Blue carrying macroporous chitosan and chitin affinity membranes. J Membr Sci,1998 (142): 13-26.
    [14]Yang L, Hsiao W W, Chen P. Chitosan-cellulose composite membrane for affinity purification of biopolymers and immunoadsorption. J Membr Sci,2002(197): 185-197.
    [15]周润琦,陈石根,李致勋.生物化学基础(第一版).化学工业出版社,1992:68-69.
    [16]Karakoc V, Yavuz H, Denizli A. Affinity adsorption of recombinant human interferon-a on a porous dye-affinity adsorbent. Colloid Surface A,2004(240): 93-99.
    [17]Alberghina G, Fisichella S, Renda E. Separation of G structures formed by a 27-mer guanosine-rich oligodeoxyribonucleotide by dye-ligand affinity chromatography. J Chromatogr A,1999 (840):51-58.
    [18]Shi W, Zhang F B, Zhang G L. Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes. J Chromatogr B,2005(819) 301-306.
    [1]Cass B, Pham P L, Kamen A, Durocher Y. Purification of recombinant proteins from mammalian cell culture using a generic double-affinitychromatography scheme. Protein Expres Purif,2011(40):77-85.
    [2]Robichon C, Luo J Y, Causey T B, Benner J S, Samuelson J C. Engineering Escherichia coli BL21(DE3) Derivative Strains To Minimize E. coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography. Appl Environ Microb,2012 (78):4634-4646.
    [3]Tsai C F, Wang Y T, Chen Y R, Lai C Y, Lin P Y, Pan K T, Chen J Y, Khoo K H, Chen Y J. Immobilized Metal Affinity Chromatography Revisited:pH/Acid Control toward High Selectivity in Phosphoproteomics. J Proteome Res,2008 (9):4058-4069.
    [4]Wimmer M A, Lochnit G, Bassil E, Muhling K H, Goldbach H E. Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography. Plant Cell Physiol,2009 (7):1292-1304.
    [5]Abe R, Kudou M, Tanaka Y, Arakawa T, Tsumoto K. Immobilized metal affinitychromatography in the presence of arginine. Biochem Bioph Res Co,2009 (3):306-310.
    [6]Arica M Y, Yilmaz M, Yalcin E, Bayramoglu G. Surface properties of Reactive Yellow 2 immobilised pHEMA and HEMA/chitosan membranes:characterisation of their selectivity to different proteins. J Membr Sci,2004 (240) 167-178.
    [7]Boyer P M, Hsu J T. Adsorption equilibrium of proteins on a dye-ligand adsorbent. Biotechnol Tech,1990 (4):61-66.
    [8]Hmamond P M, Tsewaen M D. Use of trizine dyes as lignad for the lagre-scale affinity chromatography of a thermostable glycerokinase. J Chromatogr,1986 (366):79-89.
    [9]石卿,苏延磊,姜忠义.表面材料抗蛋白质污染机理研究进展.中国科技论 文在线,2010(3):172-174.
    [10]Hucknall A, Kim D H, Rangarajan S, Hill R T, Reichert W M, Chilkoti A. Simple fabrication of antibody microarrays on nonfouling polymer brushes with femtomolar sensitivity for protein analytes in serum and blood. Adv Mater,2009 (21):1968-1971.
    [11]刘振宇,郑经堂.多孔炭的纳米结构及其解析.化学进展,2001(13):10-18.
    [12]叶振华主编.化工吸附分离过程.1992,中国石化出版社,北京.
    [13]赵振国主编.吸附作用应用原理.2005,化学工业出版社,北京.
    [14]Chen T X, Nie H L, Li S B, White C B, Su S N, Zhu L M. Comparison: Adsorption of papain using immobilized dye ligands on affinity membranes. Colloid Surface B,2009 (72):25-31.
    [15]吴焕领,魏赛男,崔淑玲.吸附等温线的介绍及应用.染整技术,2006(28):12-14.
    [16]甘宏宇,商振华,刘学良,王俊德.批量法研究牛γ-球蛋白在尼龙亲和膜上的吸附等温行为.分析化学,2001(29):637-641.
    [17]Nie H L, Chen T X, Zhu L M. Adsorption of papain on dye affinity membranes: Isotherm, kinetic, and thermodynamic analysis. Sep Purif Technol,2007 (57): 121-125.
    [18]李海燕,汪东风,于丽娜,刘炳杰,张莉,徐莹.球状壳聚糖树脂对柠檬酸的吸附行为.过程工程学报,2009(9):12-17.
    [19]Klein E. Affinity membranes:a 10-year review. J Membr Sci,2000 (179):1-27.
    [20]Denizli A, Tanyolac D, Salih B, Aydinlar E. Adsorption of heavy-metal ions on Cibacron Blue F3GA-immobilized microporous polyvinylbutyral-based affinity membranes. J Membr Sci,1997(137):1-8.
    [21]Karakoc V, Yavuz H, Denizli A. Affinity adsorption of recombinant human interferon-αon a porous dye-affinity adsorbent. Colloid Surface B,2004 (240): 93-99.
    [22]Denizli A, Salih B, Arica M Y, Kesenci K, Hasirci V, Piskin E. Cibacron Blue F3GA-incorporated macroporous poly(2-hydroxyethyl methacrylate) affinity membranes for heavy metal removal. J Chromatogr A,1997 (758):217-226.
    [23]Arica M Y, Testereci H N, Denizli A. Dye-ligand and metal chelate poly(2-hydroxyethylmethacrylate) membranes for affinity separation of proteins. 1998(799):83-91.
    [24]Gan H Y, Shang Z H, Wang J D. New affinity nylon membrane used for adsorption of y-globulin. J Chromatogr A,2000(867):161-168.
    [25]Guo W, Ruckenstein E. A new matrix for membrane affinity chromatography and its application to the purification of concanavalin A. J Membr Sci,2001 (182): 227-234.
    [26]Arica M Y, Yilmaz M, Yalcin E, Bayramoglu G. Affinity membrane chromatography:relationship of dye-ligand type to surface polarity and their effect on lysozyme separation and purification, J Chromatogr B,2004 (805): 315-323.
    [1]Deutscher S L. Phage display in molecular imaging and diagnosis of cancer. Chem Rev.2010 (5):3196-3211.
    [2]Staquicini F I, Sidman R L, Arap W, Pasqualini R. Phagedisplay technology for stem cell delivery and systemic therapy. Adv Drug Deliver Rev,2010 (62): 1213-1216.
    [3]Jordan, Keith S. Engineering RNA phage MS2 virus-like particles for peptide display. proquest,2010 (1):98-100.
    [4]Pavoni E, Pucci A, Vaccaro P, Monteriu G, Ceratti Ade P, Lugini A, Virdis RA, Cortesi E, De Gaetano A, Panunzi S, Felici F, Minenkova O. A study of the humoral immune response of breast cancer patients to a panel of human tumor antigens identified by phage display. Cancer Detect Prev,2006 (30):248-256.
    [5]Cendron A C, Wines B D, Brownlee R T C, Ramsland P A, Pietersz G A, Hogarth P M. An FcyRIIa-binding peptide that mimics the interaction between FcyRIIa and IgG. Mol Immunol,2008 (45):307-319.
    [6]Jayanna P K, Torchilin V P, Petrenko V A. Liposomes targeted by fusion phage proteins. Nanomed Nanotechnol Biol Med,2009 (5):83-89.
    [7]Lowe C R. Combinatorial approaches to affinity chromatography. Curr Opin Chem Biol,2001 (5):248-256.
    [8]Chen Q, Liu J N, Tang F Y, Yuan D W, Guo Z G, Zhang J. A novel strategy for proteome-wide ligand screening using cross-linked phage matrices. J Biol Chem, 2010 (13):9367-9372.
    [9]Neidhardt F C. Bacterial growth:Constant obsession with dN/dt. J Bacteriol,1999 (181):7405-7408.
    [10]沈苹主编.微生物学.高等教育出版社,2000,北京.
    [11]Herigstada B, Hamilton M, Heersink J. How to optimize the drop plate method for enumerating bacteria. JMicrob meth,2001(44):121-129.
    [12]Hoben H J, Somasegaran P. Comparison of the pour, spread and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Appl Environ microb,1982 (44):1246-1247.
    [13]张怀强,刘玉庆,刘波,高培基.分批培养条件下细菌群体生长阶段的区分及生长参数的确定.中国科学C辑,2005(35):502-512.
    [14]Anacker R L, Ordal E J. Study of a bacteriophage infecting the myxobacterium chondrocaccus columnaris. JBacteriol.1955 (6):738-741.
    [15]薛国柱,窦科峰.噬菌体抗体库筛选技术研究进展.细胞与分子免疫学杂志,2005(21):S58-S59.
    [16]Engvall E, Perlman P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochem,1971 (9):871-874.
    [17]Yuasa Y. Analysis of pesticide residues by immunoassay. J. Food Hyg Soc Jpn, 1998 (39):61-66.
    [18]Mercader J V, Montaya A. Development of monoclonal ELISAs for azinphos-methy assay optimization and water sample analysis. J Agric Food Chem,1999(47):1285-1293.
    [19]Abad A, Moreno M J, Pelegri R, Martinez M I, Saez A, Gamon M, Montaya A. Determination of carbaryl, carbofuran and methiocarb in cucumbers and strawberries by monoclonal enzyme immunoassays and high-performance liquid chromatography with fluorescence detection, An analytical comparison. J Chromatogr A,1999 (833):3-12.
    [20]Klein E, Eichholz E, Theimer F. Chitosan modified sulfonated poly(ethersulfone) as a support for affinity separations. JMembr Sci,1994 (95):199-204.
    [21]Fry D W, White J C, Goldman I D. Rapid separation of low molecular weight solutes from liposomes without dilution. J Anal Biochem,1978 (90):809-810.
    [22]穆成华,姚红娟,马光辉,连宾.肝素-琼脂糖凝胶6FF的制备及其在抗凝血酶111分离纯化中的应用.过程工程学报,2005(5):545-549.
    [23]Smith G P, Petrenko V A, Matthews L J. Cross-linked filamentous phage as an affinity matrix. J Immunol Meth,1998(215):151-161.
    [24]Ji X, Oh J, Dunker A K, Hipps KW. Effects of relative humidity and applied force on atomic force microscopy images of the filamentous phage fd. Ultramicroscopy 1998 (72):165-176.
    [25]NEB Ph.D.TM Phage Display Libraries Instruction Manual.
    [26]Barrett R W, Cwirla S E, Ackerman M S et al. Selective enrichment and characterization of high affinity ligands from collections of random peptides on filamentous phage. Anal Biochem,1992 (204):357-364.
    [27]Weber P C, Pantoliano M W and Thompson L D. Crystal structure and ligand binding studies of a screened peptide complexed with streptavidin. Biochem, 1992(31):9350-9354.
    [28]Zhang D H, Bai S, Ren M Y, Sun Y. Optimization of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquid. Food Chem,2008 (109):72-80.
    [29]任军,贾凌云.亲和色谱仿生配基的筛选和设计.分析化学,2005(9):1345-1349.
    [30]徐焰,熊鸿燕,宋建勇,王思雄.1株宽宿主谱大肠杆菌噬菌体的生物学特性观察.第三军医大学学报,2003(25):2106-2108.
    [1]Mutalik S R, Vaidya B K, Joshi R M. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresour Technol,2008 (99):7875-7880.
    [2]Mohanty P, Majhi S, Sahu J N, Pant K K. Response surface modeling and optimization of CO hydrogenation for higher liquid hydrocarbon using Cu-Co-Cr+ZSM-5 bifunctional catalyst. Ind Eng Chem Res,2012, (13): 4843-4853.
    [3]Laemmli U K. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature,1970 (227):22962-22968.
    [4]吴冠芸,潘华珍,吴翚.生物化学与分子生物学实验常用数据手册.科学出版社,2002,北京.
    [5]Rosenblueth E. Two point estimates in probabilities. Appl Math Modelling,1981 (3):329-335.
    [6]Wong F S. Slope reliability and response surface method. Jgeotech Eng div ASCE, 1985(1):32-53.
    [7]Yang G, Gao Y P, Dong J, Xue Y N, Fan M, ShenB F, Liu C, Shao N S. A novel peptide isolated from phage library to substitute a complex system for a vaccine against staphylococci infection. Vaccine,2006 (24):1117-1123.
    [8]Tan G H, Yusoff K, Seow H F, Tan W S. A phage-displayed single chain variable fragment that interacts with hepatitis B core antigen:Library construction, selection and diagnosis. J Clin Virol,2007 (1):49-56.
    [9]Languren M, Becerril B, Cabral A R, Fernandez-Altuna L E, Pascual V, Hernandez-Ramrez D F, Cabiedes J. Characterization of monoclonal anti-β2-glycoprotein-I and anti-prothrombin antibody fragments generated by phage display from a patient with primary antiphospholipid syndrome. J Autoimmun,2006 (26):57-65.
    [10]任军,贾凌云.亲和色谱仿生配基的筛选和设计.分析化学,2005(9):1345-1349.
    [11]Gaskina D J H, Starcka K, Turnera N A, Vulfson E N. Phage display combinatorial libraries of short peptides:ligand selection for protein purification. Enzyme Microb Tech,2001 (28):766-772.
    [1]张艳梅,曾虹燕,蔡西玲,熊龙斌,张存滢,侯茜.汞离子对木瓜蛋白酶结构的影响及抑制机理的研究.中国生物工程杂志,2012(32):87-91.
    [2]姚菊霞,付宝权.寄生性线虫半胱氨酸蛋白酶抑制剂研究进展.中国寄生虫学与寄生虫病杂志,2012(30):146-151.
    [3]邱谷,黄桥林,陈红梅.健康人群血清Cystatin C参考值调查及其对糖尿病肾损害诊断的作用.现代检验医学杂志,2007(7):94-95.
    [4]Filler G, Bokenkamp A, Hofmann W. Cystatin C as a marker of GFR-history, indications, and future research. Clin Biochem,2005 (38):1-8.
    [5]俞夏美,陈金红,田根富.半胱氨酸蛋白酶抑制剂C在妊娠高血压综合征中的意义.检验医学,2008(23):90-92.
    [6]Lehmensiek V, Sussmuth S D, Brettschneider J. Proteome analysis of cerebrospinal fluid in Guillain Barre syndrome (GBS). J Neuroimmunol,2007, (185):190-194.
    [7]Kasy A J, Wildi B S. Proteases of the genus Bacillus. I. Neutral proteases. Biotechnology and Bioengineering,1970(12):179-212.
    [8]Chen Q X, Kubo I. Kinetics of mushroom tyrosinase inhibition by quercetin. J. Agric. Food Chem.2002 (50):4108-4112.
    [9]J. C. Espin, H. J. Wichers. Effect of captopril on mushroom tyrosinase activity in vitro. Biochim Biophys Acta,2001 (1544):289-300.
    [10]臧荣春,夏凤毅.微生物动力学模型.化学工业出版社,2004,北京.
    [11]A. G. Marangoni(著),赵裕蓉,张鹏(译).酶催化动力学-方法与应用.化学工业出版社,2007,北京.
    [12]Espin J C, Tudela J. Experimental approach to the kinetic study of unstable site-directed irreversible inhibitors:kinetic origin of the apparent positive co-operativity arising from inactivation of trypsin by p-amidinophenylmethanesulphonyl fluoride. Biochemical Journal,1994 (299): 29-35.
    [13]Duggleby R G. Product inhibition of reversible enzyme-catalysed reactions. Biochim Biophys Acta,1994(1209):238-240.
    [14]http://zh.wikipedia.org/wiki/%E5%B8%8C%E5%B0%94%E6%96%B9%E7%A 8%8B_(%E7%94%9F%E7%89%A9%E5%8C%96%E5%AD%A6).
    [15]Umezawa H. Enzyme inhibitors of microbial origin, University of Tokyo Press, 1972(142):15-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700