复杂地基与结构静、动力相互作用分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百色水电站位于珠江上游右江上,是多种综合效益的大型水利枢纽。进水塔在整个枢纽中起着极其重要的地位,它和进水口边坡的稳定安全与否将对整个枢纽的正常运行起关键作用。如何研究在复杂地基条件下进水塔与边坡的相互作用具有重要的理论意义和工程应用价值。
     岩质边坡的稳定性不仅受到岩体内部地质结构因素的作用,还受到外界环境的影响,是多种因素的综合作用。如何分析它的稳定性是比较困难的。常用的边坡稳定分析方法中的极限平衡法由于采用了刚体假定以及块体间力的传递方向假定等,使得计算结果与实际出入较大且用于含有复杂地质条件的三维边坡问题非常困难。其它的岩质边坡分析方法虽然有各自的优点,但是在考虑各种荷载(如自重、渗流及地震等)的综合作用时,不如有限元法方便、有效。本文采用了合理模拟以夹层、结构面等为滑动面的薄层单元及相应的非线性分析为基础的三维非线性有限元解法来求解岩质边坡的稳定性。该方法被用于百色水利枢纽进水口边坡静、动力稳定计算。得出了该进水口边坡在施工和运行工况下是稳定的结论。
     地基与结构的相互作用的分析方法有解析法和数值解法,目前常用的方法是有限元法和子结构法以及杂交法。当把地基与结构相互作用作为一个整体的力学问题来考虑时,分析中的关键环节就是两者相互作用界面上的接触问题。论文介绍了常用的接触面单元。本文针对百色水电站的地基和进水塔均是主要分析对象,而地基的地质条件十分复杂,提出了非一致网格位移协调解法。地基采用四面体单元和进水塔采用六面体单元。该方法以交界面上结构或地基相连一侧节点的位移变量作为基本变量,而另一侧节点的位移变量作为从变量,通过线性插值建立从变量与基本变量之间的线性关系,导出以基本变量作为未知量的总体线性方程组,从而在两者交界面处建立位移协调关系。
     论文对目前常用的地基与结构动力相互作用的方法进行了归纳和总结,分析了各自的优缺点。针对百色水利工程实际情况,采用了振型分解反应谱法对进水塔进行了动力分析,得出了合理的结论。
     论文采用三维非线性有限元法、非一致网格位移协调解法、振型分解反应谱法对复杂地质条件下的百色水电站进水口边坡与进水塔的相互作用进行了静、动力分析,得出了一些合理的结论,为今后类似的工程计算分析提供了一种可行的方法。
Baise hydroelectric station lies on You river, which is a branch of Zhujiang river. It is a big all-around benefits hydro-junction. The role of intake tower is very important in the hydro-junction. The stability of intake tower and access ramp plays a key role in the failure-free operation of the hydro-junction. Considered the complexity of geological structure, how to study the interaction of intake tower and slope is important both in theoretical research and engineering.
    The stability of rock slope is affected both by the interior action of rock mass and by the exterior factors of environment. Its stability is the result of the multi-factors. So, it is difficult to analyze the stability of rock slope. At present, limit equilibrium method is one of the conventional slope stability analysis methods. The calculation results by the method don't always conform to the facts, since the rigid body assumption and the assumed direction of inactive forces between slices in this method. Furthermore, it is difficult to analyze 3D slope with limit equilibrium method, considered the complexity of geologic structure. The other analysis methods of rock slope have respective advantages, but when many forces are considered (for example, gravitation, seepage force and earthquake force), these methods are as not convenient and effective as finite element method. 3D nonlinear finite element method is applied to analyze the stability of rock slope in the paper. When using this method, the thin layer element is used to simulate interlayer and structural joint for sliding surfaces. The static and dynamic analysis of intake slope of Baise hydroelectric station is calculated by this method. The stability of the intake slope during construction and operation are obtained in the paper.
    The analytical methods about foundation-structure interaction have two main categories. They are analytic methods and numerical methods. At present, finite element method, sub-structural analysis method and mixture method are common methods. When both foundation and structure are considered in analysis, interface problem on interface of them is keystone. Several common interface elements are described in the paper. When the foundation and the intake tower are both important analytical objects, and the geological condition of foundation is very complex, the slope is meshed with tetrahedral element, while the intake tower is meshed with hexahedral element. For this problem, compatible displacement method of different mesh is presented in the paper. On the interface of different mesh, nodes belonging to
    
    
    
    structure or foundation are regarded as basic nodes, and nodes belonging to the other side are regarded as subordinate nodes. The linear interpolation relation between basic nodes and subordinate nodes is founded on the interface. So global linear equations are deducted. In these equations, unknown variables are basic nodes. Based on these assumptions, compatible displacement relation is founded on the interface of foundation and intake tower.
    The common methods of foundation-structure dynamic interaction are summarized and their advantages and shortages are analyzed in the paper. For Baise hydroelectric station, response spectrum of mode-superposition is applied in the dynamic analysis of intake tower. The rational conclusions are obtained.
    3D nonlinear finite element method, compatible displacement method of different mesh and response spectrum of mode-superposition are used to analyze the intake tower-intake slope static and dynamic interaction, since the complexity of geologic structure. The rational results provide a feasible way for the similar projects analysis in the future.
引文
[1] 钱家欢,殷宗泽主编.土工原理与计算(第二版).北京:中国水利水电出版社,1996
    [2] 赵光恒.结构动力学.中国水利水电出版社,北京,1996
    [3] 弹性力学问题的有限元法.河海大学教材,1996
    [4] 朱伯芳.有限单元法原理与应用(第二版).中国水利水电出版社,1998
    [5] 王勖成,邵敏.有限单元法基本原理与数值方法.清华大学出版社,北京,1988
    [6] 徐芝纶.弹性力学(上、下).高等教育出版社,1990
    [7] 姜弘道,陈和群.有限单元法程序设计.水利电力出版社,北京,1989
    [8] 傅作新.水工结构力学问题的分析与计算.河海大学出版社,1993
    [9] 沈明荣主编.岩石力学.同济大学出版社,1999
    [10]陈慧远编著.土石坝有限元分析 河海大学出版社 1988
    [11]顾淦臣.土石坝地震工程,河海大学出版社,1989.10
    [12]龙驭球,包世华 主编 结构力学(下册)高等教育出版社,1996
    [13]李杰,李国强编著.地震工程学导论.地震出版社,1992
    [14]A.P.S.SELVADURAI著.土与基础相互作用的弹性分析.中国铁道出版社,1984
    [15] 塑性力学.河海大学教材,1998
    [16]孙玉科、牟会宠、姚宝魁著.边坡岩体稳定性分析.科学出版社,1988
    [17]张有天主编.岩石高边坡的变形与稳定.中国水利水电出版社,北京,1999
    [18]吴世明,杨挺,周健.岩土工程新技术.中国建筑工业出版社,2001.1
    [19]J.P.瓦尔夫.土与结构动力相互作用.地震出版社.1989.12
    [20]姜弘道《水工结构工程与岩土工程的现代计算方法及程序》.河海大学出版社,1992
    [21](美)Walter S. Brainerd, Charles H. Goldberg, Jeanne C. Adams 著,袁驷、叶康生译.Fortran 90编程指南(第三版).高等教育出版社,施普林格出版社,2000
    [22]桂良进、王军等著.Fortran PowerStation 4.0使用与编程.北京航空航天大学出版社,1999
    [23]崔政权、李宁编著.边坡工程——理论与实践最新发展.中国水利水电出版社,1999
    [24]张孟喜、陈炽昭.土坡稳定分析的有限元追踪法.岩土工程学报,1991.11
    [25]林峰、黄润秋.边坡稳定性极限条分法的探讨.地质灾害与环境保护,1997.11
    [26]孙君实.条分法的提法及其数值计算的最优化方法.水力发电学报,1983.1
    [27]丰定祥、吴家秀、葛修润.边坡稳定性分析中几个问题的探讨.岩土工程学报,1990.5
    [28]姚纬明,李同春,任旭华.带软弱结构面岩体的弹塑性有限元分析.河海大学学报,1999.3
    [29]李先炜、卢世宗等译.国际岩石力学会议论文选集.煤炭工业出版社,1987
    [30]郭诚谦.有软弱夹层岩体边坡稳定分析安全系数的确定.水利水电技术.1995.3.27~30.
    [31]王芝银.王思敬等.岩石大变形分析的流形方法.岩石力学与工程学报.1997.16(5)399~404.
    [32]王水林,葛修润.流形元方法在模拟裂纹扩展中的应用.岩石力学与工程学报.1997.16(5).405~410.
    [33]朱建业.90年代水电工程地质科技研究课题的建议.水力发电学报.1995.3.10~12
    [34]李宁等.当前岩石力学数值方法的几点思考.岩石力学与工程学报.1997.16(5).502~505
    
    
    [35]罗瓒锦.岩质边坡破坏模式初探.广东公路交通.2001(增刊)11~14.
    [36]郑颖人等.边坡稳定分析的一些进展.地下空间.2001.21(4).262~271.
    [37]王书法等.节理岩质边坡变形的DDA模拟.岩土力学.2002.23(3).352~354.
    [38]姚纬明.三峡永久船闸闸室墙及边坡的强度与稳定研究.河海大学博士研究生毕业论文,1999
    [39]李同春、卢智灵等.边坡抗滑稳定安全系数的有限元迭代解法.岩石力学与工程学报2003.1
    [40]刘晓青、李同春、顾清华.用有限元法求解复杂结构体系的内力.河海大学学报,2000(增刊)
    [41]窦兴旺.深覆盖层上高土石坝坝与地基静动态相互作用研究.河海大学博士研究生毕业论文,1999
    [42]熊建国 土与结构动力相互作用问题的新进展(Ⅰ)、(Ⅱ).世界地震工程,1992.3
    [43]杨柏坡等.结构-土相互作用有限元解法及改造通用程序的初步结果.地震工程与工程振动,1986.4
    [44]王开顺等.土与结构相互作用地震反应研究及实用计算.
    [44]窦兴旺等.土石坝—地基相互作用研究的现状与展望.水利水电科技进展,1999.4
    [45]徐志英等.土与地下结构动力相互作用的大型振动台试验与计算.岩土工程学报.1993,4
    [46]魏汝龙、杨守华、王年香,结构基码头和岸坡的相互作用.岩土工程学报,No.3,1992
    [47]殷宗泽,朱泓等.土与结构材料的接触面的变形及数学模型,岩土工程学报,1994.16(3):14~22
    [48]雷晓燕,G.Swoboda,杜庆华,接触摩擦单元理论及其应用,岩土工程学报,1994,Vo.16,No.3
    [49]卢廷浩、鲍伏波,接触面薄层单元耦合本构模型,水利学报,2000.2
    [50]曾丁,黄文彬等.库仑摩擦接触问题的位移-力混合接触单元.中国农业大学学报.1998.3(2).23~28
    [51]杜成斌、任青文,用于接触面模拟的三维非线性接触单元,东南大学学报,2001.7,Vol.31 No.4
    [52]邵炜、金峰、王光纶,用于接触面模拟的非线性薄层单元,清华大学学报,1999,Vol.39 No.2
    [53]张崇文、赵剑明、张社荣.有限层有限元混合法研究桩土相互作用.天津大学学报.1995.11.28(6)
    [54]门玉明、黄义,土—结构动力相互作用问题的研究现状及展望,力学与实践,2000,Vol.22
    [55]石根华著,任放等译.块体系统不连续变形数值分析新方法.北京:科学出版社,1993.
    [56]李同春等.杆件与块体结构共同受力的有限元分析方法.工程力学(增刊).2002.
    [57]李同春等 局部非协调网格在高拱坝应力分析中的应用.河海大学学报,2003(1),42~45.
    [58]温召旺.高拱坝设计中的有限元法实用化研究.南京:河海大学硕士论文 2002.3
    [59]Duncan J.M. "State of the Art: Limit Equilibrium and Finite-Element Analysis of Slope" Journal of Geotechnical Engineering, 1996, 122 (7), 577-596
    [60]Hovland H.J. "Three Dimensional Slope Stability Analysis Method" ,J. Georech. Engry. Div., ASCE, 1977, 103(9), 971-986
    [61]Chugh A.K. "Variable factor of safety in slope stability analysis", Géotechnique, London, 36 (1), 57-64
    [62]Hardin, B.O. & Drenvich, V.P.J. of Mech. and Found. Div., ASCE, Vol.98, No. SM6, 1972, p603~624
    [63] T. F. Conry and A. Seirg, A Mathematical Programming Method for Design Elastic Bodies in Contact, J. Appl. Mech. 1971, Vol,38, p387~392
    [64] W. X. Zhong and S. M. Sun, A Finite Method for Elastic-plastic Structure and Contact Problem by
    
    Parametric Quadratic Programming, Int. J. Numer. Methods Engrg. 1988, Vol.26, p2723~2738
    [65]R. E. Goodman, R. L. Taylor and T. L. Berkke, A Model for the Mechanics of Jointed Rock, J. ASCE,1968, Vol.94, SM3, p637~659
    [66]H. Peterson, Application of the Finite Element Method in the Analysis of Contact Problems, Proc. Int. Conf. On Finite Elements and Mechanics, Geilo, Norway, Vol.2, Aug., 1977
    [67]O. C. Zienkiewicz et al. Analysis of Nonlinear Problems with Particular Reference to Jointed Rock Systems, Proc. 2nd, Int. Conf. Soc. Of Rock Mech., Belgard, 1970 Vol.3, Aug.
    [68]J. Ghaboussi, E. L. Wilson and J. Isenberg, Finite Element for Rock Joints and Interfaces, J. ASCE, Vol.99, SM10, p834~848, 1973
    [69]M. G. Katona, A Simple Contact-friction Interface Element With-Applications to Buried Culverts, Int. J. Numer, & Anal. Meth. Engrg, 1988, Vol.7, p2723~2738
    [70]L. R. Herrmann, Finite Element Analysis of Contact Problems, J. ASCE, 1978, Vol. 104, EM5, p1043~1057
    [71]C. S. Desai et al, Thin-Layer Element for Interfaces and Joints, Int. J. Numer. Anal. Meth. Engng, 1984, Vol.8, p19~43
    [72]C. S. Desai et al, Modelling for Cyclic Normal and Shear Behavior of Interfaces, ASCE., 1988, Vol.34, No.7,p398~1217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700