国家水污染物排放总量分配方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的水污染物总量分配在本质上属于一种污染物管理的目标总量模式。目前,国家到各省市区的污染物总量分配方案制定过程主要是基于各省市区的经济表现,采取国家与各省市区间协商、以及行政主管部门“拍板”的模式来制定,主观因素较强,各省市区对这种分配方法争议也较大。如何设计在方法上科学合理、在实务上能为各省市区普遍接受的分配方案是中国水污染物总量管理面临的巨大挑战。本研究旨在以中国“十二五”时期的COD总量从国家到各省市区分配为案例,研究确定COD总量分配的指标集,构造不涉及主观决策因素的污染物总量分配模型,以及COD排放与人均GDP等经济变量的关联模型,探讨设计的分配计量模型用于污染物总量分配的可行性,以及与分配方案关联的各省市区的经济指标的动态变化特征,从而为我国的水污染物总量控制管理提供理论方法和技术上的支持。
     首先,本研究分析了COD总量分配的指标集和各省市区在各指标集下的异质性表现。主要包括确定COD总量分配要素、分配指标集、设计分配规则、考察各分配指标的变异特征,以及各地区在分配指标下的异质性表现特征。指出总量分配应采用系统分析思维,以分配对象的异质性为基础,以分配的公平性为前提,紧密围绕COD削减和促进环境质量改进来设计。研究指出影响各省市区COD排放和削减的要素主要包括经济结构和规模要素、人口要素、技术进步要素、污染治理要素、水环境质量要素和水资源禀赋要素,在对这些要素的表征指标进行系统分析的基础上,初步筛选确定了COD总量分配的指标集,进而利用相关性分析方法,最终确定了COD总量分配指标集。该指标集由七项指标构成,分别为:人均GDP、人均污染排放强度、水污染重点行业增加值比重、水环境压力指数、单位国土面积水资源量、工业废水COD处理率、城镇生活污水COD处理率,其中前五项指标为总量分配的正向指标,后两项指标为反向指标。对各分配指标的变异系数测量表明,不同指标的变异程度明显,其中以水环境压力指数、单位国土面积水资源量、人均GDP三个指标的变异程度相对较大,这意味着这些指标在总量分配方案设计时的相对重要性程度较大。对各分配指标的相对差异指数的测量表明,各省市区的指标差异性表现非常明显,说明不同省市区的异质性水平呈离散分布特征,本研究为COD总量分配的定量测度提供了定性基础信息。
     其次,本研究基于信息熵和Gini系数理论,分别构建了COD总量分配计量模型,两种模型的分配结果差异明显。其中,基于信息熵的分配方法与国家“十二五”时期的水环境总量管理需求一致性较好,而基于Gini系数的分配方法则与其关联性较差。进一步利用“十一五”规划的COD总量分配方案对两种方法进行模拟分析,也得出同样的结论,而且,基于信息熵理论构建的计量模型的分配结果也与前述采用变异系数和相对差异指数的定性分析结论相一致。这说明基于信息熵的分配方法较基于Gini系数的分配方法更适用于国家COD的总量分配。利用该分配方法得到的“十二五”时期COD总量分配方案与“十一五”COD总量分配规划方案进行比对分析的结果表明,“十二五”期间,以东部地区和山西、广西等重点省市区减排为主的格局仍未转变过来,尽管这些地区的削减率在总体下降,以及削减率向中国的西部和南部增调。
     最后,对中国30个省市区的第二产业比重、人均GDP的变化与COD排放量之间的面板数据分析表明,两个经济变量与以COD排放指标为表征的环境变量间存在长期稳定关系。通过数值拟合法构造各省市区的人均GDP、第二产业比重与COD排放量的计量模型的分析结果表明:总体上,“十一五”至“十二五”时期,东部省市区的第二产业比重呈下降趋势,西部的大部分省市区的第二产业比重则仍在增长;各地的增加幅度差异较大,西部和中部地区以内蒙古和湖北两地增幅最大,而河北、江西、广西等地则相对较小,东部地区以江苏增幅最大;人均GDP增长率变化的东、中、西分布格局并不明显,大部分省市区分布在20%-40%区间,一些省市区的增幅相差较大,湖北、云南两地的人均GDP增加1倍多,而北京、河北、甘肃、青海四省市的增幅则相对较小,低于15%。以单位COD的GDP贡献来表征各省市区的排放效率,对该指标在时间趋势上进行回归拟合,构造排放效率变化与时间的单变量反应函数,发现该函数在时间趋势上符合指数型特征,但应用于“十二五”时期的趋势分析存在较大误差。这也意味着国家COD总量分配方案设计时,应抛弃过去过度重视各省市区GDP表现的做法,应该选取客观反映区域异质性的指标来设计分配方案。
Total amount allocation of the water pollutants in China is in essence belongs to a kind of target-set pollutant management models. Currently, total amount allocation scheme design mainly considers the respective economic performance of the provinces, municipalities and districts (namely, provincial regions), and was realized by the negotiation between the MEP and the environmental departments of the provincial regions, more subjective decisive factors are involved in the process of allocation scheme design, this brought tremendous dispute amongst the provincial regions. So, how to design a scientific and reasonable scheme that is easy to be accepted by the provincial regions in fact put forwards a big challenge to the China's water pollutant total amount management. This work aims to take the COD allocation from the national to the provincial regions as a case, to explore the allocation indicators, the heterogeneous characteristics of the provincial regions, to construct the pollutant total amount allocation models with no subjective decision factors involved and the correlation calculation models between the COD emission parameter and the economic parameters like per capita GDP, to analyze the feasibility of the constructed allocation method, and the dynamic changing characteristics of the economic parameters in correlation to the allocation scheme, and eventually to provide the theoretic and technical supports to the China's pollutant total amount control management.
     Firstly, the work analyzes the COD total amount allocation indicators and the heterogeneous characteristics of the provincial regions under the respective allocation indicators. Including determining the key allocation factors and indicators, designing allocation rules, exploring variance extent of each indicator and heterogeneous manifestation of each provincial regions under the seven respective allocation indicators. The work states that the allocation scheme design should be taken a systematic idea and taken heterogeneous characteristics of the provincial regions as the bases, taken the fairness as the prerequisite, should facilitate COD reduction and boost the improvement of the environmental quality. The results showed that factors influencing COD emission and reduction mainly including economic scales and structure, population, technical improvements, pollution control capabilities, water quality and natural resources endowment. With a systematic analysis of the indicators used to characterize the factors, the paper determines the indicator systems initially, by the statistic correlation test with SPSS software, seven indicators were selected to consist of the COD total amount allocation indicator system, which are per capita GDP, per capita COD emission intensity, added value proportion of the water pollution key industries compare to GDP, pressure index of the water environment, water resources quantity of the per unit of land. The former five indicators are positive indicators, the later two are negative indicators. Calculation results of the variance coefficient of the different COD allocation indicators showed that variance extent of each indicator is obvious, and that of the pressure index of the water environment, water resources quantity of the per unit of land, and per capita GDP is relatively higher, which means that the three indicators are relatively important in the process of the COD total amount allocation scheme design. Calculation results of the relative difference index of the different allocation indicators showed that the manifestation of the provincial regions differs greatly, which means that the various provincial regions' heterogeneity emerges a discrete distribution. In conclusion, the paper states that the indicators difference and the manifestation difference under different indicators of the various provincial regions should be placed more emphasis in the process of the COD total amount allocation scheme design.
     Secondly, the paper introduced the information entropy and Gini coefficient theory into the pollutant total amount allocation fields, and COD total amount allocation econometric models were designed, the allocation results with the two models differ obviously. The allocation results based on information entropy keep well consistency with the strategic requirements of the China's water environment management in the 12th period, but the allocation results based on Gini coefficient theory do not show the consistency. With a further comparative analysis of the two methods using the COD total amount allocation scheme in the 11th five environmental planning, the same conclusion could be obtained. Moreover, the allocation results based on the information entropy keep well consistency with the qualitative analysis results of the variance coefficient and relative difference indexes method, these indicate that the allocation method based on information entropy is more applicable to the China's COD total amount allocation. Comparative analysis between the COD total amount allocation scheme in the 12th five period based on the information entropy theory and the planned COD total amount allocation scheme in the 11th five period show that overall spatial pollution reduction pattern in the eastern China and the key provincial regions like Shanxi and Guangxi will not change, though the reduction ratios in these regions are keeping decreasing and the reduction ratios in the western and southern China begin to increase.
     Thirdly, panel data analysis to the secondary industry proportion and per capita GDP with COD emission amount in the 30 provincial regions shows, that long term steady relation between the two economic parameters and COD emission amount exists. With analysis of the constructed equation by the statistic data simulation of the economic parameters and environmental parameters, the paper concludes that totally proportion of the secondary industry will decrease in the eastern provincial regions, but most provincial regions in the western China will increase, the increasing level differs great amongst the provincial regions, that in the Inner Mongolia and Hubei is relatively higher, and that in Hebei, Jiangxi, Guangxi and Henan province etc is relatively lower, that in Jiangsu is the highest in the eastern China. Changing pattern of the Per capita GDP increasing ratio in the eastern, central and western China in not obvious, per capita GDP increasing ratio distribution in the most provincial regions lies in the range of 20%-40%, but that in some provincial regions differs great, as that in Hubei, Yunnan is above 100%, but in Beijing, Hebei,Gansu, Qinghai is lower than 15%. Construction of single variable responsive function with emission efficiency characterized with the GDP contribution of per unit of COD emission and the time parameter through simulating the emission efficiency in time trend of the 30 provincial regions was realized, further analysis of that function could be found it follows a exponential change, but errors happens when using the function to analyze the trend of per unit of COD emission, that means when design the COD total amount control scheme should get rid of the idea of overemphasizing the GDP performance of the provincial regions, and indicators reflecting the regional heterogeneity should be chosed to be used in the process of the COD total amount allocation scheme design.
引文
1. 张昌顺,谢高地,鲁春霞.中国水环境容量紧缺度与区域功能的相互作用[J].资源科学,2009,31(4):559-565.
    2. Liem T. Tran, C. Gregory Knight, Robert V. O'Neill, Elizabeth R. Smith, Kurt H. Riitters and James Wickham. Fuzzy Decision Analysis for Integrated Environmental Vulnerability Assessment of the Mid-Atlantic Region[J].Environmental Management,2002, (29)6:845-859.
    3. V. Simeonov, J. A. Stratis, C. Samara, G. Zachariadis, D. Voutsa, A. Anthemidis, M. Sofoniou, and Th. Kouimtzis. Assessment of the Surface Water Quality in Northern Greece[J].water Research,2003,37(17):4119-4124.
    4. 王庆杰,马民涛.因子分析在环境科学与环境工程中的应用[J].北京工业大学学报,2000,26(z1)72-76.
    5. Marisol Vega, Rafael Pardo, Enrique Barrado and Luis Deban.Assessment of Seasonal and Polluting Effects on the Quality of River Water by Exploratory Data Analysis[J].Water Research,1998,32(12):3581-3592.
    6. 赵鸣雁,陈吉宁,王白陆.系统多准则决策研究进展[J].水文,2008,28(6):8-11.
    7. 李嘉.张建高.水污染协同控制[J].水利学报,2002,1:1-5.
    8. Ron Janssen.On the Use of Multi-criteria Analysis in Environmental Impact Assessment in The Netherlands[J].Journal of Multi-Criteria Decision Analysis,2001,10(2):101-109.
    9. B.G. Hermann, C. Kroeze and W. Jawjit.Assessing Environmental Performance by Combining Life Cycle Assessment,Multi-criteria Analysis and Environmental Performance Indicators[J].Journal of Cleaner Production,2007,15(18):1787-1796.
    10. R. Ramanathan. A Note on the Use of the Analytic Hierarchy Process for Environmental Impact Assessment[J]. Journal of Environmental Management,2001,63(1):27-35.
    11. Stavros E. Daniel, Giannis T. Tsoulfas, Costas P. Pappisand Nikos P. Rachaniotis.Aggregating and Evaluating the Results of Different Environmental Impact Assessment Methods[J]. Ecological Indicators,2004,4(2):125-138.
    12. 周四军,庄成杰.基于距离综合评价法的我国国民幸福指数NHI测评[J].财经理论与实践,2008,29(155):112-115.
    13. 时光新,姜运轩,陈学山.基于变异系数的地下水环境质量评价模型及应用[J].地下水,2002,4(3):147-166.
    14. 刘子刚,尚金城,姜建祥.区域环境总量控制模型研究[J].东北师大学报自然科学版,1997,2:116-121.
    15. 张志耀,张海明.污染物排放总量分配的群体决策方法研究[J].系统科学与数学,2001,21(4):473-479.
    16. 林高松,李适宇,李娟.基于群决策的河流允许排污量公平分配博弈模型[J].环境科学学报,2009,29(9):2010-2016.
    17. 杨雷,席酉民.资源分配的群体决策模型[J].系统工程理论与实践,1997,6:22-26.
    18. 袁辉,王里奥,胡刚,崔志强,詹艳慧.三峡重庆库区水污染总量的分配[J].重庆大学学报,2004,7(2):136-139.
    19. Shiyu Li, Tohru Morioka. Optimal Allocation of Waste Loads in a River with Probabilistic Tributary Flow under Transverse mixing [J].Water Environ. Res,1999,71 (2):156-162.
    20. Shiyu Li. A Programming Model for River Quality Management under Transverse Mixing [J]. Water Sci. Tech,1992,26 (7-8):1823-1830.
    21. Fujiwara O, Gnanendran S K, Ohgaki S. River Quality Management under Stochastic Streamflow [J] J. Environ.Eng.,1986,112 (2):185-198.
    22. Burn D H, Mcbean E A. Optimization Modeling of Water Quality in an Uncertain Environment [J]. Water Resoure Res,1985,21 (7):934-940.
    23. Burn D H, Lence B J. Comparison of Optimization Formulations for Waste-load Allocations [J]. J. Environ. Eng,1992,118 (4):597-612.
    24. Joshi V, Modak P. Heuristic Algorithms for Waste Load Allocation in a River Basin [J]. Water Sci. Tech.,1989,21:1057-1064.
    25.孙秀喜,冯耀奇,丁和义.河道污染物总量分配模型的建立及分析方法研究[J].地下水,2005,27(6):427-429.
    26.何冰,欧厚金.区域水污染物削减总量分配的层次分析方法[J].环境工程,1991,9(6):50-53.
    27. 裴相斌,赵冬至.基于GIS的海湾陆源污染物排海总量控制的空间优化分配方法研究——以大连湾为例[J].环境科学学报,2000,20(3):294-298.
    28. 淮斌,李清雪,陶建华.离散规划在近海地区排海废水污染物总量控制中的应用[J].城市环境与城市生态,1999,12(1):37-39.
    29. 王亮,张宏伟,岳琳.水污染物总量行业优化分配模型研究[D].天津大学学报(社会科学版),2006,8(1):59-63.
    30. 王金南,潘向忠.线性规划方法在环境容量资源分配中的应用[J].环境科学,2005,26(6):195-198.
    31. 尹军,李骁君,官正.水污染控制系统污染物削减量优化分配[J].环境科学丛刊,1997,10(3):49-52.
    32. 曹瑞钰,顾国维.水环境治理工程费用优化模型[J].同济大学学报,1997,25(5):548-552.
    33. 胡康萍,许振成.污染物允许排放总量分配方法研究[J].中国环境科学,1991,11(6):447-451.
    34. 王有乐.区域水污染控制多目标组合规划模型研究[J].环境科学学报,2002,22(1):107-110.
    35. 许洪佘,王照之,刘年丰,白保柱,罗津新.墨水湖水污染物总量控制方案的优化研究[J].环境科学与技术,1993,3:10-13.
    36. 李开明,陈铣成.东莞运河水环境容量优化研究[J].环境科学研究,1991,4(5):13-16.
    37. 林高松,李适宇,江峰.基于公平区间的污染物允许排放量分配方法[J].水利学报,2006,37(1):52-57.
    38. Burn D H, Yulianti J S. Waste Load Allocation Using Genetic Algorithms [J]. Journal of Water Resources Planning andManagement,2001,127(2):121-129.
    39. Hathhorn W E, Tung Y K. Waste Load Allocation in Stochastic Stream Environments[R]. WWRC-8709. Laramie,Wyoming: Wyoming Water Research Center,1987.
    40. 林巍,傅国伟,刘春华.基于公理体系的排污总量公平分配模型[J].环境科学,1996,17(3):35-38.
    41. 李睿.天津市水污染物总量分配方法研究[D].天津大学硕士学位论文,2007.
    42. 方栋,高翔霞.邯郸市排放总量控制研究[J].环境科学,1994,15(4):14-18.
    43. 杨志平,陆景宣.污染物排放总量控制优化分配数学模型探讨[J].上海环境科学,1989,8(10):9-13.
    44. Ronald Chadderton, Irene Kropp. An Evaluation of Eight Waste-load Allocation Methods[J]. Water Resources Bulletin,1985,21(5):833-839.
    45. Ecker J G. A Geometric Programming Model for Optimal Allocation of Stream Dissolved Oxygen[J]. Management Science,1975,21(6):658-668.
    46. Converse A.O. Optimum Number and Location of Treatment Plants[J]. Water Pollution Control Federation Journal,1972,44(8):438-447.
    47. Revelle C S. Loucks D P. Lynn W R. Linear Programming Applied to Forecasting[J].Water Resources Research,1968,4(1):1-9.
    48. Thomann R V, Sobel M S. Estuarine Water Quality Management and Forecasting[J]. Journal of Sanitary Engineering Division, ASCE,1964,89(SA5):9-36.
    49. 孙郅博.水污染物总量分配方案的研究[D].吉林农业大学硕士论文,2008.
    50. 于术桐,黄贤金,程绪水,万一,张晓蕾.流域排污权初始分配模式选择[J].资源科学,2009,31(7):1175-1180.
    51. 刘娜,谢绍东.中国不同经济区域大气污染总量分配方法的选择研究[J].北京大学学报(自然科学版),2007,43(6):803-807.
    52. 孟伟.流域水污染物总量控制技术与示范[M].北京:中国环境科学出版社,2008,7.
    53. 侯晓梅.我国总量控制政策的现状与适应性变革[J].长江论坛,2003,1:39-42.
    54. 赵绘宇,赵晶晶.污染物总量控制的法律演进及趋势[J].上海交通大学学报(哲学社会科学版),2009,17(1):28-34.
    55. 宋国君.论中国污染物排放总量控制和浓度控制[J].环境保护,2000,6:11-13.
    56. 国家环保总局总量控制办公室.主要污染物总量减排管理实用手册[M].中国环境科学出版社,北京:2008,1.
    57. Gene M. Grossman; Alan B. Krueger.Economic Growth and the Environment. The Quarterly Journal of Economics[J],1995,110(2):353-377.
    58. Sander M. De Bruyn. Explaining the Environmental Kuznets Curve:Structural Change and International Agreements in Reducing Sulphur Emissions[J]. Environment and Development Economics,1997,2(4):485-503.
    59. Panayotou Theodore. Demystifying the Environmental Kuznets Curve:Turning a Black Box into a Policy Tool[J].Environment and Development Economics,1997,2(4):465-484.
    60. Vincent,Jeffrey.Testing for Environmental Kuznets Curves within a Developing Country[J].Environment and Developmental Economics,1997,2(4):417-433.
    61. Tao Song,Tingguo Zheng, Lianjun Tong. An Empirical Test of the Environmental Kuznets Curve in China:A Panel Cointegration Approach. China Economic Review,2008,19(3):381-392.
    62. Tom Verbeke, Marc De Clercq. Environmental Quality and Economic Growth[R]. http://www.feb.ugent.be/nl/Ondz/wp/Papers/wp_02_128.pd. Ghent,Belgium, Feb,2002.
    63. Mark De Haan. Structural Decomposition Analysis of Pollution in the Netherlands[J]. Economic Systems Research,2001,13(2):181-196.
    64. Arrow Kenneth,Bolin Bert,Costanza Robert, Dasgupta Partha et al. Economic Growth, Carrying Capacity, and the Environment [J]. Ecological Economics,1995,15(2):91:95.
    65. Markus Pasche. Technical Progress, Structural Change, and the Environmental Kuznets curve[J]. Ecological Economics,2002,42(3):381-389.
    66. Roy BK. Water in India with Reference to Agriculture and Population:Some Issues and Patterns--Dynamic Approaches Needed for Development[J]. Geo Journal.1990,20(3):271-284.
    67. Saeijs HL, Van Berkel MJ. Global Water Crisis:the Major Issue of the 21st Century, a Growing and Explosive Problem[J]. Eur Water Pollut Control.1995,5(4):26-40.
    68. Falkenmark M, Widstrand C.Population and Water Resources:a Delicate Balance[J]. Popul Bull,1992,47(3):1-36.
    69. Moomaw, William R,Gregory C. Unruh. Are Environmental Kuznets Curves Misleading Us? The case of CO2 Emissions[J]. Environmental and Development Economics,1997,2(4):451-463.
    70. Hilton, Hank, Arik Levinson. Factoring the EKC:Evidence from Automotive Lead Emissions" [J]. Journal of Environmental Economics and Management,1998,35:126-141.
    71. Harbaugh, William T., Arik Levinson, and David Molloy Wilson. Reexamining the Empirical Evidence for An Environmental Kuznets Curve[J]. The Review of Economics and Statistics, 2002,84(3):541-551.
    72. Jacques Savoy.Statistical Inference in Retrieval Effectiveness Evaluation[J].Information Processing and Management,1997,33(4):495-512.
    73. L Canos, V Liern. Soft Computing-based Aggregation Methods for Human Resource Management[J].European Journal of Operation Research,2008,189(3):669-681.
    74. Malte Peters, Stephan Zelewski. Pitfalls in the Application of Analytic Hierarchy Process to Performance Measurement[J]. Management Decision,2008,46(7):1039-1051.
    75. Allan Jessop. A Multicriteria Blockmodel for Performance Assessment[J].Omega,2009, 37(l):204-214.
    76. John Duggan, Implementing the Efficient Allocation of Pollution[EB/OL].http://www.chass.utoronto.ca/~jorob/Research/DUNG-JOROB-99-01.pdf, Sept,1999.
    77. Nava Kahana,Yosef Mealem,Shmuel Nitzan. A Complete Implementation of the Efficient Allocation of Pollution[J]. Economics Letters,2008,101(2):142-144.
    78. Stefan Weishaar. CO2 Emission Allowance Allocation Mechanisms, Allocative Efficiency and the Environment:a Static and Dynamic Perspective[J].European Journal of Law and Economics,2007,24(1):29-70.
    79. Jensen, Jesper,Rasmussen, Tobias N. Allocation of CO2 Emissions Permits:A General Equilibrium Analysis of Policy Instruments[J]. Journal of Environmental Economics and Management,2000,40(2):111-136.
    80. Dallas Burtraw, Karen Palmer, and Danny Kahn, Allocation of CO2 Emissions Allowances in the Regional Greenhouse Gas Cap-and-Trade Program[J]. RFFDP 05-25, http://www.rff.org/documents/RFF-DP-05-25.pdf, June 2005.
    81. Ho Wen Chen, Ni Bin Chang. Decision Support for Allocation of Watershed Pollution Load Using Grey Fuzzy Multi-objective Programming[J]. Journal of the American Water Resources Association,2006,42(3):725-745.
    82. Pradeep P. Mujumdar and V. R. Subbarao Vemula. Fuzzy Waste Load Allocation Model: Simulation-Optimization Approach[J].Journal of Computing in Civil Engineering 2004,18(2):120-131.
    83. Office of Air and Radiation of U.S. Environmental Protection Agency, Corrected CAIR SO2 Allocation Approach Analysis[EB/OL], http://www.epa.gov/cair/pdfs/0053-2360.pdf, April 2006.
    84. 杨玉峰.污染物排放总量控制系统的不确定性分析[D].清华大学博士论文,1999.
    85. 杨玉峰,傅国伟.区域差异与国家污染物排放总量分配[J].环境科学学报,2001,21(2):129-133.
    86. 徐祥发.评价指标相关性消除的方法研究[J].系统工程理论与实践,2002,22(11):1-5.
    87. 李亮,吴瑞明.消除评价指标相关性的权值计算方法[J].系统管理学报,2009,18(2):221-225.
    88. 李国柱.中国经济增长与环境协调发展的计量分析[D].辽宁大学博士论文,2007,5.
    89. 鲍全盛,王华东,曹利军.中国河流水环境容量区划研究[J].中国环境科学,1996,16(2):87-91.
    90. 张昌顺,谢高地,鲁春霞.中国水环境容量紧缺度与区域功能的相互关系[J].资源科学,2009,31(4):559-565.
    91. 王媛,张宏伟,杨会民,刘冠飞.信息熵在水污染物总量区域公平分配中的应用[J].水利学报,2009,40(9):1103-1108.
    92. 陈六君,王大辉,方福康.中国污染变化的主要因素——分解模型与实证分析[J].北京师范大学学报(自然科学版),2004,40(4):561-568.
    93. 黄显峰,邵东国,顾文权.河流排污权多目标优化分配模型研究[J].水利学报,2008,39(1):73-78.
    94. 时光新,王其昌,刘建强.变异系数法在小流域治理效益评价中的应用[J].水土保持通报,2000,20(6):47.
    95.徐建新,闫旖君.基于变异系数法的灰色关联决策模型在城市供水方案优选中的应用[J].水资源与水工程学报,2007,18(4):9-11.
    96. 门宝辉,赵燮京,梁川.基于变异系数权重的水质评价属性识别模型[J].郑州大学学报(理学版),2003,35(3):86-89.
    97. 沙安文,沈春丽,邹恒甫.中国地区差距的经济分析[M].北京:人民出版社,2006.8.
    98. K.R.G.Nair.Economic Reforms and Regional Disparities in Economic and Social Development in India[R], http://planningcommission.nic.in/reports/sereport/ser/stdy_errd.pdf,Aug, 2004.
    99. Guy L. Cote.Socio-economic Attainment, Regional Disparities, and Internal Migration[J]. European Sociological Review,1997,13(1):55-77.
    100. Michael Beenstock, Daniel Felsenstein.Regional Heterogeneity, Conditional Convergence and Regional Inequality[J]. Regional Studies,2008,42(4):475-488.
    101. Niles Hansen. Economic Development and Regional Heterogeneity:A Reconsideration of Regional Policy for the United States[J]. Economic Development Quarterly,1988,2(2):107-118.
    102. R. Girardi.J. H. P. Paelinck. A Regional Equilibrium Growth Model and its Disequilibrium Dynamics:A One Sector Approach[J]. Regional Studies,1994,28(3):305-317.
    103. Kenneth Jameson.Development Patterns and Regional Imbalance in Brazil[J]. The Review of Economics and Statistics.1975,57(3):361-364.
    104.阎长俊,王绍华,Mathhew Fletcher工程投标信息评价的熵方法[J].系统工程,2001,19(5):82-85.
    105.邱宛华.管理决策与应用熵学[M].北京:机械工业出版社.2002.
    106.孟宪萌,胡和平.基于熵权的集对分析模型在水质综合评价中的应用[J].水利学报.2009.40(3):257-262.
    107.杨玉中,吴立云,丛建春.基于熵权的煤矿运输安全性模糊综合评价[J].哈尔滨工业大学学报,2009,41(4):257-259.
    108.张悦玫,迟国泰,许龙安.基于熵权法的人的全面发展评价模型及“十五”期间的实证[J].管理学报,2009,6(8):1047-1055.
    109.杨晓华,陆桂华,陈晓燕,郦建强.最大熵DFP算法及其在水环境优化问题中的应用[J].系统工程理论与实践,2008,9:138-144.
    110.朱丽.运用熵值法探讨广州25年社会、环境和经济变化状况[J].生态环境,2008,17(1):411-415.
    111.李习彬.嫡——信息理论与系统工程方法论的有效性分析[J].系统工程理论与实践,1994,2:37-42.
    112.徐祖信,刘遂庆,R.Guereio熵在水分配系统优化设计中的应用[J].同济大学学报,1997,25(1):71-76.
    113.黄定轩.基于客观信息熵的多因素权重分配方法[J].系统工程理论方法应用,2003,12(4):321-324.
    114. 朱方霞,陈华友.确定区间数决策矩阵属性权重的方法——熵值法[J].安徽大学学报(自然科学版1,2005,30(5):4-6.
    115. 金菊良,程吉林,魏一鸣,李如忠.确定区域水资源分配权重的最小相对熵方法[J].水力发电学报,2007,26(1):28-32.
    116. Tove A. Larsen and Willi Gujer. The Concept of Sustainable Urban Water Management [J]. Water Science Technique,1997,35(9):3-10.
    117. 张妍,杨志峰,何孟常,胡廷兰.基于信息熵的城市生态系统演化分析[J].环境科学学报,2005,25(8):1127-1134.
    118. 邹志红,孙靖南,任广平.模糊评价因子的熵权法赋权及其在水质评价中的应用[J].环境科学学报,2005,25(4):552-556.
    119. 刘利霞,王凤兰,徐永新.基于熵权法的区域农村饮水安全评价——以云南省为例[J].水资源与水工程学报,2009,20(1):99-103.
    120. 黄松,黄卫来.基于熵权系数与VAGUE集的多目标决策方法[J].管理学报,2005,2:120-123.
    121. 梦宪萌,束龙仓,卢耀如.基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用[J].水利学报,2007,38(1):94-99.
    122. 张戈丽,王立本,董金玮.基于熵权法的济南市水安全时间序列研究[J].水土保持研究,2008,15(1):131-134.
    123. 闫文周,顾连胜.熵权决策法在工程评标中的应用[J].西安建筑科技大学学报,2004,36(1):98-100.
    124. 饶清华,张江山,许丽忠.基于熵权的等效数值法在水环境质量综合评价中的应用[J].福建师范大学学报(自然科学版),2009,25(4):109-112.
    125. 陈强,杨晓华.基于熵权的TOPSIS法及其在水环境质量综合评价中的应用[J].环境工程,2007,25(4):75-78.
    126. 孙志高,秦泗刚,刘景双,于君宝.环境经济系统分类及协调发展的熵研究[J].华中师范大学学报(自然科学版),2004,38(4):533-538.
    127. 郭显光.改进的熵值法及其在经济效益评价中的应用[J].系统工程理论与实践,1998(12):98-102.
    128. 乔家君.改进的熵值法在河南省可持续发展能力评估中的运用[J].资源科学,2004,26(1):113-119.
    129. 韩尚富,蔡邦成,陆根法.改进的熵值法在江苏省工业环境压力变化评价中的应用[J].生态经济,2007,5:336-38.
    130. Cesar Martinez-Olvera. Entropy as an Assessment Tool of Supply Chain Information Sharing[J].European Journal of Operational Research,2008,185(1):405-417.
    131. Li Liu, Jianzhong Zhou, Xueli An, Yongchuan Zhang, Li Yang.Using Fuzzy Theory and Information Entropy for Water Quality Assessment in Three Gorges Region, China[J].Expert Systems with Applications,2010,37(3):2517-2521.
    132. James Philip F. J. Ryan.Information, Entropy and Various Systems[J].Journal of Theoretical Biology,1972,36(1):139-146.
    133. Yan Zhang, Zhifeng Yang, Wei Li.Analyses of Urban Ecosystem Based on Information Entropy[J].Ecological Modelling,2006,197(1-2):1-12.
    134. 张敦富,覃成林.中国区域经济差异与协调发展[M].北京:中国轻工业出版社,2001:6-8.
    135. Peter J. Lambert, Social Welfare and the Gini Coefficient Revisited[J]. Mathematical Social Sciences,1985,9(1):19-26.
    136. Stefano Bosi, Thomas Seegmuller.Optimal Cycles and Social Inequality: What Do We Learn from the Gini Index? [J]. Research in Economics,2006,60 (1):35-46.
    137. Victor Sadras, Rodolfo Bongiovanni. Use of Lorenz Curves and Gini Coefficients toAssess Yield Inequality within Paddocks[J].Field Crops Research,2004,90(2-3):303-310.
    138. A. Druckman, T. Jackson. Measuring Resource Inequalities:The Concepts and Methodology for an Area-based Gini Coefficient[J]. Ecological Economics,2008,65(2):242-252.
    139. Don Zagier. Inequalities for the Gini Coefficient of Composite Populations[J].Journal of Mathematical Economics,1983,12(2):103-118.
    140. Ekber Tomul.Measuring Regional Inequality of Education in Turkey:an Evaluation by Gini Index[J].Procedia-Social and Behavioral Sciences,2009,1(1):949-952.
    141. Arne Jacobson, Anita D. Milman, Daniel M. Kammen.Letting the (energy) Gini Out of the Bottle:Lorenz Curves of Cumulative Electricity Consumption and Gini coefficients as Metrics of Energy Distribution and Equity[J].Energy Policy,2005,33(14):1825-1832.
    142. Baiding Hu.A Note on Calculating the Gini Index[J].Mathematics and Computers in Simulation,1995,39(3-4):353-358.
    143. 罗日镁.从基尼系数看居民收入差距[J].统计观察,2005,8(6):89-90.
    144. 王丽琼.基于公平性的水污染物总量分配基尼系数分析[J].生态环境,2008,17(5):1796-1801.
    145. 梁进社,孔健.基尼系数和变差系数对区域不平衡性度量的差异[J].北京师范大学学报(自然科学版),1998,34(3):409-413.
    146. 吴克宁,曹志宏,梁流涛,赵珂,韩春建.基于基尼系数的耕地质量差异程度分析——以广东省南方稻田耕地地力结果为例[J].资源科学,2007,29(3):165-170.
    147. 姚继军.中国教育平等状况的演变——基于教育基尼系数的估算(1949-2006)[J].教育科学,2009,25(1):14-17.
    148. 王金南,逯元堂,周劲松,李勇,曹东.基于GDP的中国资源环境基尼系数分析[J].中国环境科学2006,26(1):111-115.
    149. 娄峰,李雪松,中国城镇居民消费需求的动态实证分析[J].中国社会科学,2009,3:109-115.
    150. 徐宽.基尼系数的研究文献在过去八十年是如何拓展的[J].经济学(季刊),2003,2(4):757-778.
    151. 王媛,牛志广,王伟.基尼系数法在水污染物总量区域分配中的应用[J].中国人口·资源与环境,2008,18(3):177-180.
    152. 孟祥明,张宏伟,孙韬,王媛,钟定胜,李云生,王艳坤.基尼系数法在水污染总量分配中的应用[J].中国 给水排水,2008,24(23):105-108.
    153. 张有贤,李炳红,荀彦平.西部地区SO2总量控制指标分配合理性研究[J].干旱区资源与环境,2009,23(6):44-47.
    154. 肖伟华,秦大庸,李玮,褚俊英.基于基尼系数的湖泊流域分区水污染物总量分配[J].环境科学学报,2009,29(8):1765-1771.
    155. 孙才志,刘玉玉,陈丽新,张蕾.基于基尼系数和锡尔指数的中国水足迹强度时空差异变化格局[J].生态学报,2010,30(5):1312-1321.
    156. 王丽琼.中国能源利用效率区域差异基尼系数分析[J].生态环境学报,2009,18(3):974-978.
    157. 吴悦颖,李云生,刘伟江.基于公平性的水污染物总量分配评估方法研究[J].环境科学研究,2006,19(2):66-70.
    158. 王金南,田仁生,吴舜泽,董战峰.国家“十二五”时期污染物排放总量控制路线图分析[J].中国人口·资源与环境,2010,8(3):177-180.
    159. 孟祥明.基尼系数法在水污染物总量分配中的应用[D].天津大学硕士论文,2007,01.
    160. 杨雪燕.基于过程和结果的评价:社会性别公平性评价体系[J].系统工程理论与实践,2008(6):151-157.
    161. 钱水苗.环境公平应成为农村环境保护法的基本理念[J].当代法学,2009,23(1):77-80.
    162. 文同爱,李寅铨.环境公平、环境效率及其与可持续发展的关系[J].中国人口·资源与环境,2003 13(4):13-17.
    163. 武翠芳,姚志春,李玉文,钟方雷.环境公平研究进展综述[J].地球科学进展,2009,24(11):1268-1274.
    164. Stretesky P, Hogan M J. Environmental justice:An Analysis of Superfund Sites in Florida [J].Social Problems,1998,45(2):268-287.
    165. Andrew Dobson. Justice and the Environment:Conceptions of Environmental Sustainability and Theories of Distributive Justice [M].Oxford:Oxford University Press,1998:63-84.
    166. Scandrett E, McBride G, Dunion K. The Campaign for Environmental Justice in Scotland [J].Local Environment,2000,5(4):467-474.
    167. 陈文颖,吴宗鑫.碳排放权分配与碳排放权交易[J].清华大学学报(自然科学版),1998,38(12):15-18.
    168. 李如忠,钱家忠,汪家权.污染物允许排放总量分配方法研究[J].水利学报,2003,5:112-115.
    169. 李彦武,张永良.污染负荷分配计算的方法研究[J].环境科学研究,1992,5(2):45-48.
    170. 苏惠波.嫩江水污染物排放总量分配方法研究[J].环境科学进展,1997,5(5):70-74.
    171. Kyung So Im, M. Hashem Pesaran, Yongcheol Shin.Testing for Unit Roots in Heterogeneous Panels[J].Journal of Econometrics,2003,115(1):53-74.
    172. 杨政,田铮,党怀义.面板数据的单位根检验和协整检验——实证分析西部省市固定投资与工业增加值之间的关系[J].数理统计与管理,2007,26(3):420-426.
    173. Engle, Robert F and Granger, Clive W J. Cointegration and Error Correction:Representation, Estimation and Testing[J]. Econometrica,1987,55(2):1551-1580.
    174. Johansen, Soren. Estimation and Hypothesis Testing of Cointegration Vectors in Ganussian Vector Auto regressive Models[J]. Econometrica,1991,59(5).1551-1580.
    175. Peter Pedroni. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors[J].Oxford Bulletin of Economics and Statistics,1999,61(4):653-670.
    176. Chihwa Kao, Min-Hsien Chiang.On the Estimation and Inference of a Cointegrated Regression in Panel Data [J].Advances of Econometrics,2000,15:7-51.
    177. 宋涛,郑挺国,佟连军,赵妍.基于面板模型的中国省区环境分析[J].中国软科学,2006,10:121-127.
    178. 何立华,金江.自然资源、技术进步与环境库兹涅茨曲线[J].中国人口·资源与环境,2010,20(2):56-61.
    179. Tao Song, Tingguo Zheng, Lianjun Tong. An Empirical Test of the Environmental Kuznets Curve in China:A Panel Cointegration Approach[J].China Economic Review,2008,19(3):381-392.
    180. 宋涛,郑挺国,佟连军.基于面板协整的环境库茨涅兹曲线的检验与分析[J].中国环境科学,2007,27(4):572-576.
    181. Andrew Levin, Chien-Fu Lin, Chia-Shang James Chu.Unit Root Tests in Panel Data Asymptotic and Finite Sample Properties[J]. Journal of Econometrics,2002,108(1):1-24.
    182. Chihwa Kao.Spurious Regression and Residual2based Tests for Cointegrstion in Panel Data[J].Journal of Econometrics,1999,90:1-44.
    183. 汪涛,饶海斌,丽娟Panel Data单位根和协整分析[J].统计研究,2002,5:53-57.
    184. 郭军华,李帮义.中国经济增长与环境围绕的协整关系研究——基于1991-2007年省际面板数据[J].数理统计与管理,2010,29(2):281-293.
    185. 刘笑萍,张永正,长青.基于EKC模型的中国实现减排目标分析与减排对策[J].管理世界,2009,4:75-82.
    186. Gene M. Grossman. Alan B. Krueger. Environmental Impact of a North American Free Trade Agreement[Z].NBER Working Paper, oct,1991.
    187. Grossman GM,Krueger A. Economic Growth and the Environment[J].Quarterly Journal of Economics,1995,110(2):353-377.
    188. 包群,彭水军.经济增长与环境污染:基于面板数据的联立方程估计[J].世界经济,2006,11:48-58.
    189. Soumyananda Dinda. Environmental Kuznets Curve Hypothesis:A Survey[J].Ecological Economics,2004,49(4):431-455.
    190. David I. Stern. The Rise and Fall of the Environmental Kuznets Curve[J]. World Development, 2004,32(8):1419-1439.
    191. Kyung So Im, M. Hashem Pesaran, Yongcheol Shin. Testing for Unit Roots in Heterogeneous Panels[J]. Journal of Econometrics,2003,115:53-74.
    192. G. S. Maddala and Shaowen Wu. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test[J]. Oxford Bulletin of Economics and Statistics,1999,61:631-652.
    193. Harris R D, Tzavalias F E. Inference for Unit Roots in Dynamic Panels Where the Time Dimension is Fixed[J]. Journal of Econometrices,1999,91:201-226.
    194. Org Breitung. The Local Power of Some Unit Root Tests for Panel Data[Z].Working Papers, http://econpapers.repec.org/paper/wophumbsf/1999-69.htm.2000.
    195. 顾春林.体制转型期的我国经济增长与环境污染水平关系研究——环境库兹涅茨理论假说及其对我国的应用分析[D].复旦大学博士论文,2003,5.
    196. 夏自兰,赵小风,王继军.江苏省环境库兹涅茨曲线特征及其成因分析[J].水土保持研究,2010,17(1):198-206.
    197. 张炳,毕军,葛俊杰,王仕,刘凌轩.江苏苏南地区环境库茨涅茨曲线实证研究[J].经济地理,2008,28(3):386-379.
    198. 沈满洪,许云华.一种新型的环境库兹涅茨曲线——浙江省工业化进程中经济增长与环境变迁的关系研究[J].浙江社会科学,2000,(7):53-57.
    199. 张捷,张玉媚.广东省的库兹涅茨环境曲线及其决定因素——广东省工业化进程中经济增长与环境变迁关系的实证研究[J].广东社会科学,2006,(3):17-23.
    200. 王志华,温宗国,闫芳,陈吉宁.北京环境库兹涅茨曲线假设的验证[J].中国人口·资源与环境,2007,17(2):40-47.
    201. 高振宁,缪旭波,邹长新.江苏省环境库兹涅茨特征分析[J].农村生态环境,2004,20(1):41-43,59.
    202. 殷福才,高铜涛.安徽省环境库兹涅茨曲线的区域差异研究[J].环境科学研究,2008,21(4):215-218.
    203. 陈腊娇,冯利华,徐璐.浙江省废水排放增长的EKC曲线特征分析[J].城市环境与城市生态,2006,19(4):15-18.
    204. 符森.我国环境库兹涅茨曲线:形态、拐点和影响因素[J].数量经济技术经济研究,2008,11:40-55.
    205. Phillips P. C.B. and Moon H. R. Linear Regression Limit Theory for Nonstationary Panel Data [J].Econometrica,1999,67:1057-1111.
    206. Laura Barbieri. Panel Unit Root Tests:a Review[Z]. http://dipartimenti.unicatt.it/dises_wp_rossa_06_43.pdf.
    207. Anindya Banerjee. Panel Data Unit Roots and Cointegration:An Overview[J]. Oxford Bulletin of Economics and Statistics,1999,61(s1):607-629.
    208. 白仲林.同期相关面板数据退势单位根检验的小样本性质[J].数量经济技术经济研究,2006,5:146-152.
    209. Choi I. Unit root test for panel data[J].Journal of International Money and Banking, 2001,20:249-272.
    210. Krishna P. Paudel, Hector Zapata, Dwi Susanto.An Empirical Test of Environmental Kuznets Curve for Water Pollution[J]. Environmental and Resource Economics,2005,31(3):325-348.
    211. 蔡惠光,李怀政.人均收入、产业结构与环境质量——基于EKC曲线的分析[J].经济与管理,2009,23 (1):15-17.
    212. 凌虹,朱晓东,王惠中,尹荣尧,王向华,赵文珺.苏州市经济增长与工业污染物排放的关系:EKC如何[J]. 应用生态学报,2009,20(4):955-962.
    213. Lopez Ramon, the Environment as a Factor of Production:The Effects of Economic Growth and Trade Liberalization[J].Journal of Environmental Economics and Management,1994,27(2): 163-184.
    214. Selden Thomas M, Song Daqing. Environmental Quality and Development:Is there a Kuznets Curve for Air Pollution Emissions?[J]. Journal of Environmental Economics and Management, 1994,27(2):147-162.
    2 现状年相对于基础年的污染排放变化率Ejter为Ejter=Ejter-Ejero/Ejero;Ejter:现状年j地区t污染物现状排放量;Ejero:基年j地区t污染物排放量。
    3 根据现有环境统计口径,农村(禽、畜、浅水养殖等)污染以及农业种植面源总量管理尚未被考虑,所以此处考虑的COD总量主要指现行COD总量控制涉及的工业和生活源COD总量。
    4 指企业排污口出水COD达到国家行业排放标准或国家标准。
    5 虽然区域水环境容量大小与当地的社会经济、排放强度等众多因素有关,是一个动态变量,但由于不可能每年都对各地区水环境容量给予核定,因此其连续年度数据难以获取。2006年,我国曾开展地表水环境容量核定工作,本研究主要取该研究测度的年度分省的水环境容量值。其他的单位开展该方面的研究较少,目前已有的分省的COD容量研究仅见张昌顺等(2009)。该研究主要利用各省级地区的水资源量、COD排放标准值和环境背景值来确定。表达式为:CODjc=Qjr*(Cr-Cr0)/100。Qjr:表示j地区的水资源量;C1表示污染物t的环境标准值(mg/L);Ct0:表示污染物t的环境背景值(mg/L)。该研究在方法学上较粗放,所得结果难以应用。
    6 人均GDP被认为是体现区域经济差异的核心指标,如张敦富等(张敦富,覃成林,2001)认为:人均GDP是一定时期内全国各区域之间人均意义上的经济发展总体水平非均等化的现象的表现,能较好地表征区域的经济差异特征。
    7 重点行业此处指COD排放总量占工业行业总排量80%左右的那些行业。
    8 产业结构调整一直是政府工作的重中之重。如,2001年11月2日,国家经贸委颁布《“十五”工业结构调整规划纲要》中指出:“调整纺织、煤炭、冶金、化工、钢铁等行业淘汰落后和压缩过剩生产能力。”;2005年10月2日,国务院开始实施《促进产业结构调整暂行规定》,要求各省市“合理引导投资方向,鼓励和支持发展先进生产能力,限制和淘汰落后生产能力”;2006年3月12日,国务院下发《关于加快推进产能过剩行业结构调整的通知》,要求各地大力采取各类政策措施加速落后产能调整。2010年2月6日,国务院又下发了《国务院关于进一步加强淘汰落后产能工作的通知》,进一步加快转变经济发展方式,促进产业结构调整和优化升级,推进节能减排。
    9 括号内3个数值分别为造纸及纸制品业在2005年、2006年和2007年的行业污染压力指数值。其他行业的行业污染压力指数表示与此相同。
    13 水资源利用量包括工业用水、生活用水、农业用水和生态用水四项。
    14 水资源量包括当地的地表水资源量以及地下水水资源量(扣除地表水与地下水资源重复量)
    16 对于A地区而言,其COD削减率大于B地区,并不意味着A地区在“十二五”的分配量就大,因为各地区分配量的大小还与各地区在COD总量分配基准年的COD总量水平有关系。
    17 “差异”或“异质”在学术界一般译为regional disparity (Guy L. Cote,1997; K.R.G.Nair,2004)、regional heterogeneity (Niles Hansen,1998; Michael Beenstock和Daniel Felsenstein,,2008)、regional enequilibrium (R. Girardi和J. H. P. Paelinck,1994)、regional imbalance (Kenneth Jameson,1997).
    18 尽管不同的研究者由于研究视角、研究倾向或研究目标不同,选取的总量分配的特征性参量或指标往往存在较大差异,但总不能回避该问题。由于地区差异化评估是制定总量分配政策的基础,无论是国内还是国外都开展了大量研究,不过,研究更多地是集中于经济分析(沙安文,沈春丽,邹恒甫,2006)。
    26 由于我国的COD总量分配是一个行政管制手段,实行的是一种自上而下的污染物总量管理模式,不同的COD总量分配方案对各地的COD削减目标要求不同,而不同的削减目标要求事关各省市的发展空间受限程度,与各地的发展权紧密相连。以往,污染物总量分配设计时,分配方案制定过程中过多地采用专家协商和领导“拍板”的方式,总量分配方案的公平合理性度量也没有统一和确切的标尺,只是凭专家和领导的认识经验进行估计判断,由于污染物总量分配属于多属性决策问题,总量分配系统的复杂性以及专家和领导对总量分配认识的多样性和主观性,造成各省市对总量分配方案的意见很大,不仅影响各省市实施总量管理的积极性,也使得各省市COD削减目标如期完成难以保证。因此,公平合理的总量方案制定过程中,选择合理的总量分配方法尤为关键。
    27 如前所述,污染物总量分配对象末将西藏包括在内。
    28 这些指标即为构建污染物总量削减分配模型的“参量”。
    29 指标值越大对系统越有利的采用正向指标处理方法,这类指标也常称为效益型指标。
    30 指标值越小对系统越有利的采用反向指标处理方法,这类指标也常称为成本型指标。
    31 这也意味着各地区的削减率水平与国家COD总量削减目标水平直接相关,设置不同的国家COD总量削减率目标后,地方的削减率就确定下来了,分配对象削减率的大小取决于其在总量分配指标下的削减分配得分值大小。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700