合金元素对高熵合金组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统合金设计方式主要是以一种或两种元素为主组元,而后加入其它的少量元素来改善合金的组织结构以及所需的相关性能,如铁碳合金、铜合金、铝合金等。随着合金理论的发展,在2004年,叶均蔚等人提出了一种新型的合金设计理念—高熵合金,引发了关于多组元合金的研究热潮。高熵合金一般被定义为由五个或五个以上的元素按照等原子比或接近于等原子比合金化,其混合熵高于合金的熔化熵,一般形成固溶体的一类合金,这一合金成分设计理念突破了以一种合金元素为基的传统合金设计模式,并且可以通过合金成分优化设计,使高熵合金具有高强度、高硬度、耐高温蠕变、耐高温氧化和耐腐蚀等优异性能。有人曾预言,未来几十年内,最有发展潜力的三大研究热点是大块非晶、复合材料和高熵合金。高熵合金虽然有很多优异的性能,但是目前还没有得到广泛的应用,其主要原因是合金的塑性差,加工性能很低。迄今为止,对合金机械性能的测试还主要集中在合金的硬度及压缩性能,由于合金的高脆性,对合金的室温拉伸试验几乎无法完成。因此,研究如何提高合金的塑性及加工性能,具有重要的理论及实际意义。由于高熵合金具有耐高温氧化和耐腐蚀的优异性能,如果将其制备成镀膜材料,成膜之后将会对基底材料有很好的保护作用,因此,高熵合金薄膜研究也受到了广泛关注。
     基于高熵合金目前所碰到的问题,本论文主要从合金的元素选择、加入元素的含量等方面研究如何提高合金的机械性能,讨论合金元素对高熵合金以及高熵合金薄膜的显微组织和机械性能的影响。本论文制备了FeCoCuNiSn_x系列、FeMnNiCuCoSn_x系列、FeNiCuMnTiSn_x系列合金和FeCoNiCuVZrAl氮化薄膜,并对其显微组织结构、机械性能、腐蚀性能、磁学等性能进行了检测分析,得到了以下研究结果。
     1)通过对合金元素的选择,制备了塑性优良的两个高熵合金体系,分别为FeCoCuNiSn_x系合金和FeNiCuMnTiSn_x系合金。
     通过对这两个系列的合金进行室温拉伸试验,发现这两个系列的合金的塑性明显好于已被文献报道的高熵合金,延伸率分别达到19.8%和16.9%。提高了合金塑性和加工性能,为高熵合金未来的应用提供相关的依据。
     2)揭示出Sn含量对合金的显微组织和性能的影响。
     FeCoCuNiSn_x系高熵合金具有很好的塑性和较高的抗拉强度,合金的塑性随Sn含量的增加呈抛物线型变化。当Sn含量小于0.05时,FeCoCuNiSn_x为单一的面心立方(FCC)固溶体,此时,合金的塑性和强度都随Sn含量的增加而明显提高,延伸率在Sn含量为0.05时,达到了最大值19.8%。而当Sn含量大于0.05时,随Sn含量的继续增加,合金中析出Cu81Sn22相。由于Cu81Sn22相是硬脆相,因此伴随此相的产生,合金的塑性逐渐下降。
     基于合金主元多样性和材料成本的考虑,在FeCoCuNiSn_x合金体系中加入Mn元素,制备了FeMnNiCuCoSn_x系列高熵合金。Mn元素的加入,不仅增加了合金的组元,从而增加混合熵,而且降低了合金的成本。合金的最大延伸率为16.9%,强度为476.9MPa。FeMnNiCuCoSn_x系列高熵合金的显微组织结构和性能随Sn的变化趋势与FeCoCuNiSn_x系合金类似,在Sn含量较少时为单一的面心立方(FCC)固溶体,随Sn含量的增加析出Cu5.6Sn化合物,从而降低了合金塑性。
     3) FeNiCuMnTiSn_x系列合金显微组织和磁学性能
     当x=0时,即FeNiCuMnTi合金,是由Fe_2Ti、NiTi、FeTi、Fe_3Mn_7等金属间化合物组成,宏观上表现为顺磁性。随Sn含量的增加,FeNiCuMnTiSn_x合金逐渐向单一的晶体结构转变,当x=1时,即FeNiCuMnTiSn合金,形成了类似闪锌矿的TiNi2Sn单一晶体结构,磁学性能也由开始的顺磁性转变成软磁性。通过计算机模拟手段对这种磁性转变现象进行研究,发现合金磁性的转变是由于随Sn含量的增加,具有磁性的Ti_4(Ni_4Fe_4)Sn_4固溶体数量随之增多,因而合金宏观表现的磁性得到了加强。
     4)揭示了非晶FeCoNiCuVZrAl氮化膜形成的机理,讨论了N_2浓度对非晶氮化膜的影响。
     通过对合金元素的选择和对N_2浓度的调节,用直流磁控溅射的方法,在N_2浓度为30%时,制备了致密的非晶FeCoNiCuVZrAl氮化薄膜。并从热力学理论角度,解释了氮化薄膜的形成机制。在镀膜过程中发现,Fe、Co、Cu、V、Zr这几种元素的相对沉积量随N_2浓度的增加基本没有变化,而Al元素随N_2浓度的增加而增加。该氮化膜具有适中的显微硬度和杨氏模量,其分别为12GPa和166GPa。
     总之,本论文通过对多系列高熵合金以及合金薄膜的制备与研究,揭示了合金元素对高熵合金的显微组织、力学性能、磁学性能的影响,为高熵合金的发展起到了一定的指导作用。
The conventional strategy for developing alloys is to select one or two elements as theprincipal components, and then to add other minor elements for improving microstructureand properties, such as iron-, copper-, and aluminum-based alloys. In2004, a novel conceptof high-entropy alloy was proposed by Yeh et al., which caused great research attention.The high-entropy alloy system includes five to thirteen principal elements at equimolar ornear-equimolar compositions. The atomic fractions of each element in high-entropy alloycannot be less than5%or more than35%, producing the high mixing entropy that preventsthe formation of intermetallic phases. Therefore, these alloys predominantly consist of amixture of simple solid solutions and have a favorable combination of compressionstrength and ductility. Many high-entropy alloys have high hardness, strength, wear andcorrosion resistance, as well as microstructure stability and anti-oxidation against heattreatment. It has been predicted that in the coming decades, three most potential researchfields would be bulk amorphous materials, composites and high-entropy alloys. In despiteof attractive mechanical and structural features, the low ductility and high brittleness ofhigh-entropy alloys seriously limit their potential applications in engineering, especially atroom temperature. Therefore, the study on improving the plasticity and mechanicalperformance is very important and meaningful. Moreover, the high-entropy alloy filmscould effectively protect the substrates due to the excellent properties of the high corrosionresistance, microstructure stability and anti-oxidation against heat treatment. Thus, thehigh-entropy alloy films also attract our attention.
     In order to solve the above problems, we make effort to improve the mechanical properties by taking advantage of the selection of the alloying elements and the dopingconcentration, and discuss the effects of different alloying elements on microstructure andmechanical properties of high-entropy alloy and films. In this thesis, FeCoCuNiSn_x,FeMnNiCuCoSn_x, FeNiCuMnTiSn_xhigh-entropy alloys and nitride FeCoNiCuVZrAl flimwere prepared. Their microstructure, mechanical properties, magnetic properties andcorrosion behavior were investigated. The main results are as follows:
     1) We got two high-entropy alloy systems with good plasticity and tensile strength,which were FeCoCuNiSn_xand FeNiCuMnTiSn_xsystems.
     The tensile testing of the two high-entropy alloy systems showed that the plasticity,which could reach19.8%and16.9%, were obviously better than other reportedhigh-entropy alloys.
     2) It was found that the content of Sn had great effects on microstructure, crystalstructure and tensile properties of high-entropy alloy systems.
     The FeCoCuNiSn_xalloys had good plasticity and high strength. The results showedthat the alloys had a single FCC solution when Sn content was less than0.05. The plasticityand strength of alloys increased with the increasing Sn content. When Sn content was morethan0.05, the tendency was opposite and a new Cu81Sn22phase appeared. BecauseCu81Sn22phase is hard and brittle, the tensile strain and strength of the alloys decreased.
     Considering the diversity of alloy component and metal material price, we preparedFeMnNiCuCoSn_xalloys by adding Mn element into FeCoCuNiSn_xalloy system. Theaddition of Mn increased the mixing entropy and reduced the cost. The results showed thatthe variation tendency of the plasticity and tensile strength of FeMnNiCuCoSn_xalloys withincreasing Sn contents was similar that of FeCoCuNiSn_xalloys. However, the maximumtensile strain and strength decreased to16.9%and476.9MPa, respectively.
     3) For FeNiCuMnTiSn_xalloy system, the variations of microstructure, crystalstructure and magnetic property of alloys had been discussed. FeNiCuMnTi alloy (x=0),was composed of intermetallic compounds (Fe_2Ti, NiTi, FeTi and Fe_3Mn_7). However,FeNiCuMnTiSn alloy (x=1) had a structure similar to TiNi_2Sn phase, which is zinc blendestructure. Moreover, the magnetic transformation underwent from the paramagnetism (x=0, 0.05,0.1) to superparamagnetism (x=0.5), and finally to soft magnetism (x=1) at roomtemperature. We used computer simulation and found that as Sn content increased, moreTiNi2Sn were formed. When Fe atoms replaced Ni atoms as Ti_4(Ni_4Fe_4)Sn_4, the magnetismappeared.
     4) The formation mechanism of the amorphous FeCoNiCuVZrAl nitride films wasexplored, and the effects of N_2concentration on properties of the amorphous films werediscussed.
     The amorphous nitride films of FeCoNiCuVZrAl high-entropy alloys weresuccessfully deposited by using direct current magnetron sputtering. At different nitrogenflow ratios, all the deposited films had amorphous structure. And the film thicknessdecreased with the increasing nitrogen flow ratio. The relative concentrations of Fe, Co, Cu,V and Zr elements are substantially constant, compared to that of Al and Ni. Al atoms weremore like to be deposited at high N_2concentration. When N_2concentration reached30%, aperfect dense and smooth amorphous film was obtained, where the hardness and Young’modulus of the film reached the maximum values of12and166GPa, respectively. Theformation mechanism of the amorphous film had been briefly discussed at thethermodynamic point of view.
     In summary, we prepared a series of high-entropy alloy systems and films, andexplored the effects of alloying elements on the micostructure, crystal structure, mechanicalbehaviors and magnetic properties, which is important and meaningful for furtherdevelopment of high-entropy alloy.
引文
[1] Handbook Committee [M]. Metals Handbook, vol.1,10th ed. ASM International, MetalPark.1990:3-949.
    [2]安继儒,田龙刚.金属材料手册[M].2008:46-936.
    [3] DREHMAN A J, TURNBULL D. Solidification behaviour of undercooled Pd83Si17andPd82Si18liqui droplets [J]. Scripta Metall,1981,34:543-546.
    [4] KUI H W, GREER A L, TURNBULL D. Formation of bulk metallic glass by fluxing [J].Applied Physics Letters,1984,45:615-616.
    [5] ECKERT J, SCHULTZ L. Formation of quasicrystals by mechanical alloying [J].Applied Physics Letters,1989,55:117-119.
    [6] JACOBSON L A, KITTRICK J M. Rapid solidification processing [J]. MaterialsScience and Engineering R,1994,11(8):355-408.
    [7] KOCH C C, CARVIN O B, MCKAMEY C G, et al. Preparation of “amorphous”Ni60Nb40by mechanical alloying [J]. Applied Physics Letters,1983,43:1017-1019.
    [8] GENTE C, OEHRING M, BORMAN R. Formation of thermodynamically unstablesolid solutions in the Cu-Co system by mechanical alloying [J]. Physical Review B,1993,48:13244-13252.
    [9] KOCH C C. Intermetallic matrix composites prepared by mechanical alloying-a review[J]. Materials Science and Engineering A,1998,244:39-48.
    [10] GRANT P S. Spray forming. Progress in Materials Science.1995,39:497-545.
    [11] BIROL Y. Semi-solid processing of the primary aluminium die casting alloy A365[J].Journal of Alloys and Compounds,2009,473(1-2):133-138.
    [12] EDDAHB M, PEREZ P, MONGE M A. Microstructural characterization of anextruded Mg-Ni-Y-RE alloy processed by equal channel angular extrusion [J]. Journalof Alloys and Compounds,2009,473:79-86.
    [13] CHOU C Y, LEE S L, LIN J C. Effects of cross-channel extrusion on microstructureand mechanical properties of AA6061aluminum alloy [J]. Materials Science andEngineering A,2008,485(1-2):461-467.
    [14] HSU C C, WANG W H. Superplastic forming characteristics of a Cu-Zn-Al-Zr shapememory alloy [J]. Materials Science and Engineering A,1996,205:247-253.
    [15] WARDCLOSE C M, MINOR R, DOORBAR P J. Intermetallic-matrix composites-areview [J]. Intermetallic,1996,4(3):217-229.
    [16] TJONG S C, MA Z Y. Microstructural and mechanical characteristics of In situ metalmatrix composites [J]. Materials Science and Engineering R,2000,29:49-113.
    [17] INOUE A. Stabilization of metallic supercooled liquid and bulk amorphous alloys [J].Acta Materialia,2000,48:279-306.
    [18]叶均蔚,陈瑞凯.高熵合金[R].科学发展,2004,377(5):16-21.
    [19] YEH J W, CHEN S K, LIN S J, GAN J Y, et al. Nanostructured high-entropy alloyswith multiple principal elements: novel alloy design concepts and outcomes [J].Advanced Engineering Materials,2004,6(5):299-303.
    [20] CHEN H Y, TSAI C W, TUNG C C, et al. Effect of substitution of Co by Mn inAl-Cr-Cu-Fe-Co-Ni high-entropy alloys [J]. Annales De Chimie-Science DesMateriaux,2006,31(6):685-698.
    [21] WU J M, LIN S J, YEH J W, et al. Adhesive wear behavior of AlxCoCrCuFeNihigh-entropy alloys as a function of Aluminum content [J]. Wear,2006,261(5-6):513-519.
    [22] WANG X F, ZHANG Y, QIAO Y, et al. Novel microstructure and properties ofmulticomponent CoCrCuFeNiTixalloys [J]. Intermetallics,2007,15(3):357-362.
    [23] ZHOU Y J, ZHANG Y, WANG Y L, et al. Microstructure and compressive propertiesof multicomponent Alx(TiVCrMnFeCoNiCu)100-xhigh-entropy alloys [J]. MaterialsScience and Engineering A,2007,454-455:260-265.
    [24] ZHOU Y J, ZHANG Y, WANG Y L, et al. Solid solution alloys of AlCoCrFeNiTixwith excellent room-temperature mechanical properties [J]. Applied Physics Letters,2007,90(18):181904-1181904-3.
    [25] YEH J W, S CHANG Y, HONG Y D, et al. Anomalous decrease in x-ray diffractionintensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements [J].Materials Chemistry and Physics,2007,103:41-46.
    [26]叶均蔚,陈瑞凯,林树均.高熵合金的发展概况[J].工业材料杂志,2005,224:71-79.
    [27] CANTOR B. Stable and metastable multicomponent alloys [J]. Annales DeChimie-Science Des Materiaux,2007,32(3):245-256.
    [28]徐祖耀.材料热力学[M].科学出版社.2000:19-27.
    [29] HSU U S, HUNG U D, YEH J W, et al. Alloying Behavior of iron, gold and silver inAlCoCrCuNi-Based equimolar high-entropy alloys [J]. Materials Science andEngineering A,2007,460-461:403-408.
    [30] KIM K B, WARREN P J, CANTOR B, et al. Devitrification of nano-scale icosahedralphase in multicomponent alloys [J]. Materials Science and Engineering A,2007,449-451:983~986.
    [31] YAO C Z, ZHANG P, LIU M, et al. Electrochemical preparation and magnetic studyof Bi-Fe-Co-Ni-Mn high entropy alloy [J]. Electrochimica Acta,2008,53:8359-8365.
    [32] LEE C P, CHANG C C, CHEN Y Y, et al. Effect of the aluminium content ofAlxCrFe1.5MnNi0.5high-entropy alloys on the corrosion behaviour in aqueousenvironments [J]. Corrosion Science,2008,53:2050-2060.
    [33] RAYNOR G V. Hume-rothery and the development of the science of alloy formation[J]. Journal of Institute of Metals,1970,98:321-327.
    [34]KE G Y, CHEN S K, HSU T, et al. FCC and BCC equivalents in as-cast solid solutionsof AlxCoyCrzCu0.5FeVNiW high-entropy alloys [J]. Annales De Chimie-Science DesMateriaux,2006,31:669-683.
    [35] CHEN H Y, TSAI C W, TUNG C C, et al. Effect of the substitution of Co by Mn inAl-Cr-Cu-Fe-Co-Ni high-entropy alloys [J]. Annales de chimie,2006,31:685-698.
    [36] TONG C J, CHEN M R, CHEN S K, et al. Mechanical performance of theAlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements [J].Metallurgical and Materials Transactions A,2005,36:1263-1271.
    [37] TUNG C C, YEH J W, SHUN T T, et al. On the elemental effect of AlCoCrCuFeNihigh-entropy alloy system [J]. Materials letters,2007,61:1-5.
    [38] HUANG Y S, CHEN L, LUI H W, et al. Microstructure, hardness, resistivity andthermal stability of sputtered oxide films of AlCoCrCu0.5NiFe high-entropy alloy [J].Materials Science and Engineering A,2007,457:77-83.
    [39] LIN C H, DUH J G, YEH J W. Multi-component nitride coatings derived fromTi-Al-Cr-Si-V target in RF magnetron sputter [J]. Surface and Coatings Technology,2007,201:6304-6308.
    [40] LAI C H, LIN S J, YEH J W, et al. Effect of substrate bias on the structure andproperties of multi-element (AlCrTaTiZr)N coatings [J]. Journal of Physics D,2006,39:4628-4633.
    [41] CHEN T K, WONG M S, SHUN T T, et al. Nanostructured nitride films ofmulti-element high-entropy alloys by reactive DC sputtering [J]. Surface and CoatingsTechnology,2005,200:1361-1365.
    [42] HUANG P K, YEH J W, SHUN T T, et al. Multi-principal-element alloys withimproved oxidation and wear resistance for thermal spray coating. AdvancedEngineering Materials,2004,6:74-78.
    [43] J W Yeh, S K Chen, J Y Gan, et al. Formation of simple crystal structures inCu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J]. Metallurgicaland Materials Transactions A,2004,35:2533-2536.
    [44] ZHANG Y, WANG X F, CHEN G L, et al. Effect of Ti on the microstructure andproperties of CoCrCuFeNiTixhigh-entropy alloys [J]. Annales De Chimie-Science DesMateriaux,2006,31:699-709.
    [45] CHENG K H, LAI C H, LIN S J, et al. Recent progress in multi-element alloy andnitride coatings sputtered from high-entropy alloy targets [J]. Annales DeChimie-Science Des Materiaux,2006,31:723-736.
    [46] CHEN Y Y, HONG U T, SHIH H C, et al. Electrochemical kinetics of the high entropyalloys in aqueous environments acomparison with type304stainless steel [J].Corrosion Science,2005,47:2679-2699.
    [47] CHEN Y Y, DUVAL T, HUNG U D, et al. Microstructure and electrochemicalproperties of high entropy alloys a com-parison with type-304stainless steel [J].Corrosion Science,2005,47:2257-2279.
    [48] LEE C P, CHANG C C, CHEN Y Y, et al. Effect of the aluminium content ofAlxCrFe1.5MnNi0.5high-entropy alloys on the corrosion behaviour in aqueousenvironments [J]. Corrosion Science,2008,50:2053-2060.
    [49] CHOU Y L, YEH J W, SHIH H C. The effect of molybdenum on the corrosionbehaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Moxin aqueous environments[J]. Corrosion Science,2010,52:2571-2581.
    [50] CHEN Y Y, DUVAL T, HONG U T, et al. Corrosion properties of a novel bulkCu0.5NiAlCoCrFeSi glassy alloy in288degrees C high-purity water [J]. MaterialsLetters,2007,61:2692-2696.
    [51] BOER F R, BOOM R, MATTENS W C M, et al. Cohesion in Metals: Transition MetalAlloys [M]. Amsterdam: North-Holland,1988.
    [52] BAKKER H. Enthalpies in alloys, Materials Science Foundations [M]. Netherlands:Trans. Tech. Publications,1998.
    [53] IBERS J A, Hamilton W C. International Union of Crystallography, InternationalTables for X-ray Crystallography [M]. Birmingham: Kynock Press,1968.
    [54] DAAMS J L C, VILLARS P, VUCHT J H N. Atlas of Crystal Structure Types forIntermetallic Phases [M]. Metals Park: ASM International,1991.
    [55] CHEN Y Y, HONG U T, YEH J W, et al. Mechanical properties of a bulkCu0.5NiAlCoCrFeSi glassy alloy in288°C high-purity water [J]. Scripta Materialia,2006,57:1997-2001.
    [56] ZHOU Y J, ZHANG Y, WANG F J, et al. Effect of Cu addition on the microstructureand mechanical properties of AlCoCrFeNiTi0.5solid-solution alloy. Journal of Alloysand Compounds,2008,466:201-204.
    [57] WEN L H, KOU H C, Li J S, et al. Effect of aging temperature on microstructure andproperties of AlCoCrCuFeNi high-entropy alloy. Intermetallics,2009,17(4):266~269.
    [58] ZHU J M, FU H M, ZHANG H F, et al. Synthesis and properties of multiprincipalcomponent AlCoCrFeNiSixalloys [J]. Materials Science and Engineering A,2010,527:7210-7214.
    [59] SHUN T T, DU Y C. Microstructure and tensile behaviors of FCC Al0.3CoCrFeNi highentropy alloy [J]. Journal of Alloys and Compounds,2009,479:157-160.
    [60] ZHU J M, FU H M, ZHANG H F, et al. Microstructures and compressive properties ofmulticomponent AlCoCrFeNiMoxalloys [J]. Materials Science and Engineering A,2010,527:6975-6979.
    [61] HSU C Y, YEH J W, CHEN S K, et al. Wear resistance and high-temperaturecompression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition [J].Metallurgical and Materials Transactions A,2004,35:1465-1469.
    [62] CHEN M R: Master’s Thesis, National Tsing Hua University, Hsinchu, Taiwan, June2003.
    [63] KHRUSCHOV M M. Principles of abrasive wear [J]. Wear,1974,28:69-88.
    [64] REED-HILL R E, ABBASCHIAN R. Physical Metallurgy Principles [M]. Boston:PWS-KENT Publishing Company,1994.
    [65] COURTNEY T. Mechanical Behavior of Materials [M]. New York: McGraw-Hill,1990.
    [66] DIETER G E. Mechanical Metallurgy [M]. New York: McGraw-Hill Book Company,1988.
    [67] HSU C Y, SHEU T S, YEH J W. Effect of iron content on wear behavior ofAlCoCrFexMo0.5Ni high-entropy alloys [J]. Wear,2010,268:653-659.
    [68] CHEN M R, LIN S J, YEH J W, et al. Effect of vanadium addition on themicrostructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy[J]. Metallurgical and Materials Transactions A,2006,37:1363-1369.
    [69] HSU Y J, CHIANG W C, WU J K, et al. Corrosion behavior of FeCoNiCrCuxhigh-entropy alloys in3.5%sodium chloride solution [J]. Materials Chemistry andPhysics,2005,92:112-117.
    [70]李伟,刘贵仲,沈灿军.多主元AlFeCuCoNiCrTi1.5合金的研究[J].桂林电子科技大学学报,2009,29(2):117-121.
    [71]罗晓艳,刘贵仲,李伟,郭景杰. AlFeCoNiCrTiVx系高熵合金的组织结构及电化学性能[J].腐蚀与防护,2010,31(5):355-359.
    [72] REN B, LIU Z X, Li D M, et al. Corrosion behavior of CuCrFeNiMn high entropyalloy system in1M sulfuric acid solution [J]. Materials and Corrosion,2011,62:1-7.
    [73]宋春晖,甘章华,卢志红,陈汉杰,黄峰.具有低自腐蚀电位的AlMgZnSn-PbCuMnNi高熵合金的制备及其电化学性能[J].材料科学与工程学报,2011,29(5):747-752.
    [74] LEE C P, CHEN Y Y, HSU C Y, et al. Enhancing pitting corrosion resistance ofAlxCrFe1.5MnNi0.5high-entropy alloys by anodic treatment in sulfuric acid [J]. ThinSolid Films,2008,517:1301-1305.
    [75] LEE C P, CHEN Y Y, HSU C Y, et al. The effect of boron on the corrosion resistanceof the high entropy alloys Al0.5CoCrCuFeNiBx[J]. Journal of The ElectrochemicalSociety,2007,154: C424-C430.
    [76] SHINDE S R, OGALE S B, HIGGINS J S. Co-occurrence of superparamagnetism andanomalous Hall Effect in highly reduced cobalt-doped rutile TiO2-δfilms [J]. PhysicalReview Letters,2004,92:166601-166604.
    [77] ZHANG K B, FU Z Y, ZHANG J Y, et al. Annealing on the structure and propertiesevolution of the CoCrFeNiCuAl high-entropy alloy [J]. Journal of Alloys andCompounds,2010,502:295-299.
    [78] MICLEA C, TANASOIU C, MICLEA C F. Soft ferrite materials for magnetictemperature transducers and applications [J]. Journal of Magnetism and MagneticMaterials,2005,290:1506-1509.
    [79] SINGH S, WANDERK N, KIEFER K, et al. Effect of decomposition of the Cr-Fe-Corich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties [J].Ultramicroscopy,2011,111:619-622.
    [80] KAO Y F, CHEN S K, CHEN T J, et al. Electrical, magnetic, and hall properties ofAlxCoCrFeNi high-entropy alloys [J]. Journal of Alloys and Compounds,2011,509:1607-1614.
    [81] YAO C Z, ZHANG P, LIU M, et al. Electrochemical preparation and magnetic studyof Bi-Fe-Co-Ni-Mn high entropy alloy [J]. Electrochimica Acta,2008,53:8359-8365.
    [82] FRANCO V, BORREGO J M, CONDE A. Influence of Co addition on themagnetocaloric effect of FeCoSiAlGaPCB amorphous alloys [J]. Applied PhysicsLetters,2006,88:132509-132512.
    [83]宋光铃.镁合金的腐蚀与防护[M].北京:化学工业出版社,2006
    [84] GODARD H P, JEPSON W B. The Corrosion of Light Metals [M]. NY: John Wiley&Sons, Inc,1967,259.
    [85]谭昌瑶,王钧石.实用表面工程技术[M].北京:新时代出版社,1998.
    [86]谢希文,过梅丽.材料工程基础[M].北京:北京航空航天大学出版社,1999.
    [87] SIDDIQUEY I A, FURUSAWA T, SATO M, et al. Microwave-assisted silica coatingand photocatalytic axtivities of Zno nanoparticles [J]. Materials Research Bulletin,2008,43:3416-3424.
    [88] XU X L, LAU S P, CHEN J S, et al. Dependence of electrical and optical properties ofZnO films on substrate temperature [J]. Materials Science in Semiconductor Processing2001;4:617-620.
    [89] JIANG Y F, ZHAI C Q, LIU L F, et al. Zn-Ni alloy coatings pulse-plated onmagnesium alloy [J]. Surface and Coatings Technology,2005,191:393-399.
    [90] HOSONO H. Recent progress in transparent oxide semiconductors: Materials anddevice application [J]. Thin Solid Films,2007,515:6000-6014.
    [91] GERISCHER H, HELLER A. Photocatalytic oxidation of organic molecules at TiO2particles by sunlight in aerated water [J]. Journal of Electrochemical Society,1992,139:113-118.
    [92] YU J G, Yu H G, Chen B, et al. The effect of calcinations temperature on the surfacemicrostructure and photocatalytic activity of TiO2film prepared by liquid phasedeposition [J]. Journal of Physical Chemistry B,2003,107:13871-13879.
    [93]吴锦雷,吴全德.几种新型薄膜材料[M],北京:北京大学出版社,1999.
    [94] PELLEG J, ZEVIN L Z, LUNGO S. Reactive-sputter-deposited TiN films on glasssubstrates [J]. Thin Solid Films,1991,197:117-128.
    [95] OH U C, JE J H. Effects of strain energy on the preferred orientation of TiN thin films[J]. Journal of Applied Physics,1993,74:1692-1696.
    [96] YOON S Y, CHUNG W S, KIM K H. Impact-wear behaviors of TiN and Ti–Al–Ncoatings on AISI D2steel and WC–Co substrates [J]. Surface and Coatings Technology,2004,177-178:645-650.
    [97] WITTLING M, BENDAVID A, MARTIN P J, et al. Influence of thickness andsubstrate on the hardness and deformation of TiN films [J]. Thin Solid Films,1995,270:283-288.
    [98] TSAI C W, LAI S W, CHENG K H, et al. Strong amorphization of high-entropyAlBCrSiTi nitride film [J]. Thin Solid Films,2012,520:2613-2618.
    [99] INOUE A. High strength bulk amorphous alloys with low critical cooling rates Mater[J]. Materials Transactions JIM,1995,36:866-875.
    [100] INOUE A, ZHANG T, TAKEUCHI A. Ferrous and nonferrous bulk amorphousalloys [J]. Materials Science Forum,1998,269:855-864.
    [101] INOUE A, Bulk Amorphous Alloys: Preparation and Fundamental Characteristics,Trans Tech Publications, Uetikon-Zuerich, Switzerland; Enfield, N.H.,1998.
    [102] INOUE A, Bulk Amorphous Alloys-Preparation and Fundamental Characteristics
    [M]. Netherland: Trans. Tech. Publications,1998.
    [103] INOUE A, Stabilization of metallic supercooled liquid and bulk amorphous alloys [J].Acta Materialia,2000,48:279-306.
    [104] GREER A L. Confusion by design [J]. Nature,1993,366:303-304.
    [105] TURNBULL D. On the gram-atomic volumes of metal-metalloid glass formingalloys [J]. Scripta Metallurgica,1977,11:1131-1136.
    [106] TURNBULL D. Metastable structures in metallurgy [J]. Metallurgical Transactions B,1981,12:217-230.
    [107] YAO C Z, MA H X, TONG Y X. Electrochemical preparation and magnetic study ofamorphous nanostructural Nd-Fe-Co-Ni-Mn high entropy alloy film [J]. ChineseJournal of Applied Chemistry,2011,28:1189-1194.
    [108] ZHANG H, PAN Y, HE Y, et al. Microstructure and properties of6FeNiCoSiCrAlTihigh-entropy alloy coating prepared by laser cladding [J]. Applied Surface Science,2011,257:2259-2263.
    [109] TSAI M H, YEH J W, GAN J Y. Diffusion barrier properties of AlMoNbSiTaTiVZrhigh-entropy alloy layer between copper and silicon [J]. Thin Solid Films,2008,516:5527-5530.
    [110] CHANG H W, HUANG P K, YEH J W, et al. Influence of substrate bias, depositiontemperature and post-deposition annealing on the structure and properties ofmulti-principal-component (AlCrMoSiTi)N coatings [J]. Surface and CoatingsTechnology2008,202:3360-3366.
    [111] CHANG H W, HUANG P K, DAVISON A, et al. Nitride films deposited from anequimolar Al-Cr-Mo-Si-Ti alloy target by reactive direct current magnetron sputtering[J]. Thin Solid Films,2008,516:6402-6408.
    [112] CHEN T K, SHUN T T, YEH J W, et al. Nanostructured nitride films ofmulti-element high-entropy alloys by reactive DC sputtering [J]. Surface and CoatingsTechnology,2004,188-189:193-200.
    [113]姚陈忠,张鹏,李高仁,刘鹏,童叶翔.电化学制备Fe13.8Co28.7Ni4.0Mn22.1Bi14.9Tm16.5高熵合金及其磁性研究[J].中国稀土学报.2008,26:367-369.
    [114] VARALAKSHMI S, KAMARAJ M, MURTY B S. Synthesis and characterization ofnanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J].Journal of Alloys and Compounds,2008,460:253-257.
    [115] CHEN Y L, HU Y H, TSAR C W, et al. Alloying behavior of binary to octonaryalloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying [J]. Journalof Alloys and Compounds,2009,477,696-705.
    [116]张勇,周云军,陈国良.快速发展中的高熵溶体合金.物理.2008,37(8):601-605.
    [117] LI C, LI J C, ZHAO M, et al. Microstructure and properties of AlTiNiMnBxhighentropy alloys [J]. Materials Science and Technology,2008,24:376-378.
    [118] LI C, LI J C, ZHAO M, et al. Effect of alloying elements on microstructure andproperties of multiprincipal elements high-entropy alloys [J]. Journal of Alloys andCompounds,2009,475:752-757.
    [119] LI C, LI J C, ZHAO M, et al. Effect of aluminum contents on microstructure andproperties of AlxCoCrFeNi alloys [J]. Journal of Alloys and Compounds,2010,504:S515-S518.
    [120]王艳萍. AlFeCrCoNiCu系多主元高熵合金及其复合材料的组织与性能[D].哈尔滨工业大学博士毕业论文.2009:20-66.
    [121] HU Z H, ZHAN Y Z, ZHANG G H, et al. Effect of rare earth Y addition on themicrostructure and mechanical properties of highentropy AlCoCrCuNiTi alloys [J].Materials and Design,2010,31:1599-1602.
    [122]邱星武,张云鹏.粉末冶金法制备CrFeNiCuMoCo高熵合金的组织与性能.粉末冶金材料科学与工程[J],2012,17:377-382.
    [123] VARALAKSHMI S, KANARAJ M, MURTY B S. Synthesis and characterization ofnanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J].Journal of Alloys and Compounds,2007,5:104-108.
    [124]朱海云,孙宏飞,李业超.多主元高熵合金的研究现状与发展[J].新材料产业,2008,37:600-605.
    [125] VARALAKSHMI S, RAO G A, KANARAJ M, et al. Hot consolidation andmechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloyafter mechanical alloying [J]. Journal of Materials Science,2010,45:5158-5163.
    [126] TSAO L C, CHEN C S, CHU C P. Age hardening reaction of the Al0.3CrFe1.5MnNi0.5high entropy alloy. Materials and Design,2012,36:854-858.
    [127] ISO6892-1:2009. Metallic materials-tensile testing-Part1: Method of test at roomtemperature.
    [128] WANG Y P, LI B S, REN M X, et al. Microstructure and compressive properties ofAlCrFeCoNi high entropy alloy. Materials Science and Engineering A,2008,491:154-158.
    [129] EL-BEDIWI A B. Effects of Cu and Ag as ternary and quaternary additions on somephysical properties of SnSb7bearing alloy [J]. Radiation Effects and Defects in Solids,2004,159:125-132.
    [130] UDA M, ISHIZAKI A, SATOH R, et al. Portable X-ray diffractometer equipped withXRF for archaeometry [J]. Nuclear Instruments and Methods in Physics ResearchSection B,2005,239:77-84.
    [131] ZHANG H, HE Y Z, YUAN X M, et al. Microstructure and age characterization ofCu-15Ni-8Sn alloy coatings by laser cladding [J]. Applied Surface Science,2010,256:5837-5842.
    [132] CUI G J, NIU M Y, ZHU S Y, et al. Dry-Sliding tribological properties ofbronze-graphite composites [J]. Chemistry and Materials Science,2012,48:111-122.
    [133] HAO Y L, LI S J, SUN S Y, et al. Effect of Zr and Sn on young’s modulus andsuperelasticity of Ti-Nb-based alloy [J]. Materials Science and Engineering A,2006,441:112-118.
    [134] HAO Y L, LI S J, SUN S Y, et al. Elastic deformation behaviour ofTi-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomaterialia,2007,3:277-286.
    [135]章守华.合金钢[M].冶金工业出版社.1981,4-33.
    [136]崔约贤,王长利.金属断口分析[M].哈尔滨工业大学出版社.1998:34-75.
    [137]杨德庄.位错与金属强化机制[M].哈尔滨工业大学出版社.1991:160-164.
    [138] LIAO X Z, ZHAO Y H, SRINIVASAN S G, et al. Deformation twinning innanocrystalline copper at room temperature and low strain rate [J]. Applied PhysicsLetters,2004,84:592-594.
    [139] SHEN Y F, LU L, LU Q H, et al. Tensile properties of copper with nano-scale twins[J]. Scripta Materialia,2005,52:989-994.
    [140] SHEN F, ZHOU J Q, LIU Y G, et al. Deformation twinning mechanism and itseffects on the mechanical behaviors of ultrafine grained and nanocrystalline copper [J].Computational Materials Science,2010,49:226-235.
    [141] BEHPOUR M, GHOREISHI S M, KASHANI M K, et al. Inhibition of304stainlesssteel corrosion in acidic solution by Ferula gumosa (galbanum) extract [J]. Materialsand Corrosion,2009,60:895-898.
    [142] CHEN H X, MA X H, CHEN J B, et al. Pitting corrosion transformation of SUS304stainless steel in lithium bromide solution at high temperature [J]. Materials andCorrosion,2009,60:360-364.
    [143] ZHANG T C, LI D Y. Improvement in the corrosion-erosion resistance of304stainless steel with alloyed yttrium [J]. Journal of Materials science,2001,36:3479-3486.
    [144] TANG W Y, CHUANG M H, CHEN H Y, et al. Microstructure and mechanicalperformance of new Al0.5CrFe1.5MnNi0.5high-entropy alloys improved by plasmanitriding [J]. Surface and Coating Technology,2010,204:3118-3124.
    [145] LI B S, WANG Y P, REN M X, et al. Effects of Mn, Ti and V on the microstructureand properties of AlCrFeCoNiCu high entropy alloy [J]. Materails Science andEngineering A,2008,498:482-486.
    [146] REN B, LIU Z X, CAI B, et al. Aging behavior of a CuCr2Fe2NiMn highentropyalloy [J]. Materails and Design,2012,33:121-126.
    [147] ZHANG X M, WANG W L, RUAN Y, et al. Metastable phase separation andconcomitant solute redistribution of liquid Fe-Cu-Sn ternary alloy [J]. Chinese PhysicsLetters,2010,27(026401):1-4.
    [148] DI-MICHI M, HAIBEL A. On the formation of voids in internal tin Nb3Snsuperconductors [J]. Applied Physics Letters,2007,90:132510-132513.
    [149]翟秋亚,杨扬,徐锦锋.快速凝固Cu-Sn合金的组织形态及相结构[J].中国有色金属学报,8:1374-1379.
    [150]束德林.金属力学性能[M].机械工业出版社,1987.
    [151]贾起民,郑永令,陈暨耀.电磁学[M].高等教育出版社,2011.
    [152] PIERRE J, SKOLOZDRA R V, STADNYK V Y. Influence of cobalt vacancies andnickel substitution on the magnetic properties of TiCo2Sn Heusler-type compound [J].Journal of Magnetism and Magnetic Materials,1993,128:93-100.
    [153] KNODLER H. The crystalline structure and structural relationship of the gamma andepsilon phases in the system Cu-Sn [J]. Metallurgy,1966,20:823-829.
    [154] HONES P, SANJINES R, LEVY F. Sputter deposited chromium nitride based ternarycompounds for hard coatings [J]. Thin Solid Films,1998,332:240-246.
    [155] PALDEY S, DEEVI S C. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review [J]. Materials Science and Engineering A,2003,342:58-79.
    [156] YAMAMOTO K, SATO T, TAKAHARA K, et al. Properties of (Ti, Cr, Al)N coatingswith high Al content deposited by new plasma enhanced arc-cathode [J]. Surface andCoatings Technology,2003,174-175:620-626.
    [157] CARVALHO S, REBOUTA L, RIBEIRO E, et al. Microstructure of (Ti, Si, Al)Nnanocomposite coatings [J]. Surface and Coatings Technology,2004,177-178:369-375.
    [158] LEE D K, KANG D S, SUH J H, et al. Synthesis and mechanical evaluation ofquaternary Ti-Cr-Si-N coatings deposited by a hybrid method of arc ion plating andsputtering techniques [J]. Surface and Coatings Technology,2004,200:1489-1494.
    [159] MARTINA P J, BENDAVIDA A, CAIRNEY J M, et al. Nanocomposite T-Si-N,Zr-Si-N, Ti-Al-Si-N, Ti-Al-V-Si-N thin film coatings deposited by vacuum arcdeposition [J]. Surface and Coatings Technology,2005,200:2228-2235.
    [160] SHTANSKY D V, SHEVEIKO A N, PETRZHIK M I, et al. Hard tribological Ti-B-N,Ti-Cr-B-N, Ti-Si-B-N and Ti-Al-Si-B-N coatings [J]. Surface and Coatings Technology,2005,200:208-212.
    [161] LIU L, ZHU J B, ZHANG C, et al. Microstructure and the properties ofFeCoCuNiSnxhigh entropy alloys [J]. Materials Science and Engineering A,2012,548:64-68.
    [162] LIU L, ZHU J B, LI L, et al. Microstructure and tensile properties ofFeMnNiCuCoSnxhigh entropy alloys [J]. Materials and Design,2013,44:223-227.
    [163] MUSIL J, KARVANKOVAP, KASL J. Hard and superhard Zr-Ni-N nanocompositefilms [J]. Surface and Coatings Technology,2001,139:101-109.
    [164] UCHIDA M, NIHIRA N, MITSUO A, et al. Friction and wear properties of CrAlNand CrVN films deposited by cathodic arc ion plating method [J]. Surface and CoatingsTechnology,2004,177-178:627-630.
    [165] KIM C W, KIM K H. Anti-oxidation properties of TiAlN film prepared byplasma-assisted chemical vapor deposition and roles of Al [J]. Thin Solid Films,1997,307:113-119.
    [166] JOSHI A, HU H S. Oxidation behavior of titanium-aluminium nitrides [J]. Surfaceand Coatings Technology,1995,76-77:499-507.
    [167] KALE A N, RAVINDRANATH K, KOTHARI D C, et al. Tribological properties of(Ti, Al)N coatings deposited at different bias voltages using the cathodic arc technique[J]. Surface and Coatings Technology,2001,145:60-70.
    [168] WUHRER R, YEUNG W Y. A comparative study of magnetron co-sputterednanocrystalline titanium aluminium and chromium aluminium nitride coatings [J].Scripta materialia,2004,50:1461-1466.
    [169] GUO S, LIU C T. Phase stability in high entropy alloys: Formation of solid-solutionphase or amorphous phase [J]. Progress in Natural Science,2011,21:433-446.
    [170] ANDERSEN H H, BAY H L. Sputtering yield measurements [J]. Topics in AppliedPhysics,1981,47:145-218.
    [171] PIERSON H O, Handbook of Refractory Carbides and Nitrides: Properties,Characteristics, Processing, and Applications [M]. Westwood: Noyes Publications,1996.
    [172] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic sizedi erence, heat of mixing and period of constituent elements and its application tocharacterization of the main alloying element [J]. Materials transactions,2005,46:2817-2829.
    [173] MASON R M, PICHILING M. Sputtering in a glow discharge ion source-pressuredependence: theory and experiment [J]. Journal of Physics D: Applied Physics,1994,27:2363-2371.
    [174] CHAPMAN B. Glow Discharge Processes [M]. Hoboken: John Wiley&Sons,1980.
    [175] THORNTON J A. The microstructure of sputter-deposited coatings [J]. Journal ofVacuum Science and Technology A,1986,4:3059-3066.
    [176] MESSIER R, VENUGOPAL V C, SUNAL P D. Origin and evolution of sculpturedthin films [J]. Journal of Vacuum Science and Technology A,2000,18:1538-1545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700