利用三维三分量地震数据预测煤层裂隙
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭生产是我国能源战略发展的重要组成部分,保障矿山安全是确保能源供应的重要前提。近年来威胁矿山安全的两大问题特别突出,一是瓦斯爆炸,二是突水淹井。一般认为,瓦斯和水的富集都与裂隙带有关。此外瓦斯既是灾害也可成为煤层气资源的一部分,并被视为我国未来洁净的替代能源之一,煤层气资源的有效开发和生产同样与裂隙带的发育状况有密切的关系。然而煤层裂隙探测在国内外一直都没有得到很好的解决,与煤层系列有关的裂隙带探测问题成为当前地震勘探面临的挑战和重大课题。
     早在十多年前,煤田地震勘探界就普遍认识到2D勘探的局限性,并意识到同时利用P波和转换波可能会为岩性和裂隙探测带来新的机会,为此在十五期间大力开展了3D3C(三维三分量)地震勘探,在不同地区采集了大量实际资料。与传统单分量地震勘探相比,3D3C能够同时记录到反射P波和反射PS波,但PS波的处理解释相比P波要困难和复杂得多,为此如何发展实际资料处理技术以充分发挥PS波的潜力成为发展3D3C技术的关键。该问题近十年来一直未能得到有效解决,目前对大量实际资料的处理解释仍限于单分量反射P波。
     煤田地震勘探有两个突出特点:一方面煤层埋藏浅,煤层反射波比较清楚,从3D3C容易获得信噪比和激发频率都较高的原始资料;另一方面,同陆地及海上石油地震勘探相比,与反射有关的煤层(包括煤层及上下围岩的煤系地层)很薄,在地震波长的尺度上可视为简单界面反射。为此,能否判断煤层系列中裂隙是否发育,裂隙对反射的影响是否在地震记录资料上有所显示,如有所显示又如何显示,等一系列问题有待回答。以往石油勘探提出利用横波分裂或转换横波分裂到时差推断目的层内裂隙是否发育的方法,其主要针对的是近百米厚的目的层,难以借鉴和应用于薄煤层系列反射的分析解释。另外,利用当前国内外风行的反射P波检测裂隙的方法能否辨认出薄煤层系列内的裂隙在理论上还有待研究。为此,3D3C能否在煤层系列裂隙探测上有所作为的问题一直困扰地震勘探界。
     姚陈在理论上提出倾角CCP道集抽取和利用PS波的视偏振异常来判断裂隙。但煤田地震勘探发展最为关注的问题是,在煤层反射波频带范围内,薄煤层裂隙是否能引起PS波偏振异常,如存在PS波偏振异常,其显示与P波和PS波资料处理的关系是什么,更重要的是含裂隙和不含裂隙的预测结果是否能得到测井或钻探资料的验证。上述问题关系到我国能否形成具有自己独立知识产权的煤系地层裂隙探测技术,涉及到3D3C未来的发展方向,影响到煤矿安全生产和新能源勘探等我国煤炭产业发展的重大问题。
     本文首先讨论反射PS波视偏振异常及其随方位的变化,说明用PS波视偏振异常探索裂隙层的理论依据。再结合实际资料处理,分析对比以往的资料处理方法,重点讨论倾角CCP道集抽取的影响因素,突出强调界面转换点的分散会降低横向分辨率问题。最后我们通过角道集分析对比两个水平分量PS波特征预测煤系地层裂隙,并与做过裂隙检测的钻井岩柱结果进行对比。
     本篇论文包括三部分内容:第一部分,计算理论地震图对比岩性界面反射和裂隙层反射,说明直立裂隙和倾斜裂隙引起三分量反射记录两类反射特征的差异,阐述PS波分裂引起PS波视偏振异常及其有效检测薄煤层裂隙的理论问题。第二部分,集中讨论在3D3C和复杂构造条件下倾角CCP道集抽取的影响因素,论述以往三维转换波成像困难的原因,重点放在倾角CCP叠加及P波、PS波的成像对比。第三部分,说明发挥倾角CCP道集多方位多炮检距PS波资料的优势,通过角道集分析得到转换波的偏振异常与方位有关,避免从单一方位判断是否存在裂隙带反射的困难。
     本文选择了既有3D3C数据采集又有详细钻孔资料的靶区进行对比研究。基于CCP角道集对比含裂隙和不含裂隙井附近的反射,我们惊奇的发现,转换波确实有正常偏振和偏振异常的差异显示,这意味着我们可能找到了一条在薄煤层条件下裂隙探测的新路子。
     煤层系列裂隙的研究是一项具有重大应用价值和远景的工作,国、内外可供借鉴的经验很少,研究本身具有很大的难度和风险。论文涉及的诸多问题在国内外至今尚未见到类似的研究成果。
Coal production is one of the most significant constituents of the development strategy for energy sources in China. The safety for coal mine production is an important prerequisite for coal supply. In recent years, there are two outstanding problems concerned with the safety in coal mines. One is gas explosion, and the other is water invasion and mine flooding. It is usually suggested that gas and water accumulation are associated with cracks(and/or fractures ). On the other hand, gas is a hazard but also a kind of resources of coal bed gas, known as the clean alternative energy sources of our country in the future. Effective exploration and production of coal bed gas are also closely related with the development situation of fracture zones. However, how to detect crack and fracture in mines remains unsolved at home and abroad. Thus it is a remarkble challenge to seismic exploration at present.
     More than ten years ago, it has been widely recognized in the community of coal exploration that 2D prospecting is limited. And it has been realized that the utility of P wave and converted waves could bring about new chance for detection of lithology and cracks. Therefore a great number of three-dimensional and three component (3D3C) seismic exploration has been made during the period of the“Tenth Five-Year Plan”, yielding a lot of valuable data in varied areas in China. Comparing with traditional seismic exploration of single component, the 3D3C can record simultaneously P and PS waves. The interpretation of PS wave is much more difficult and complicated than that of P wave, however. In last nearly ten years, it remains unsolved how to develop methods for real data processing to fully use PS wave that is the key of the 3D3C technique also. Currently processing and interpretation of real data are still confined to single-component reflective P wave.
     Coal seismic exploration has two prominent features. The coal bed is shallow which produces distinct reflective waves, thus original data with high signal/noise ratio and high excitation frequency can be obtained from 3D3C. The other is that the coal strata (including coal beds and upper and lower country rocks) is very thin with respect to seismic wavelength that different from oil exploration on land or sea, so it is often resulted as a reflection from simple interface. How to determine whether crack existing or not in coal beds? Whether the effects of cracks are appeared on seismic data or not and how to display them? These questions remain to be answered. In previous oil exploration, it was suggested to use splitting of S-wave reflection and/or difference of arrival time of splitting converted S waves to predict cracks in target layer. Such a method is primarily focused on target layer with nearly 100m thickness, and not applicable to reflection of thin bed of coal. In addition, it is not clear in theory whether the prevailing method using reflective P wave can be used to detect cracks in thin coal beds. Thus, it has been a debt whether the 3D3C method can be successfully applied to detecting cracks for coal mine production.
     Yao Chen theoretically proposed the dip CCP gathers and to use the apparent polarization anomalies of PS wave for detecting cracks. The most concerned problem in coal exploration is, however, whether cracks in thin coal beds can produce apparent polarization anomalies of PS wave. If the answer is positive, what is the relationship between their expressions and data processing of P and PS waves. Furthermore, the prediction of containing cracks or lacking could be tested by logging or drilling data? These problems are associated with whether our country is able to develop its own independent technology of detecting cracks in coal mine. It is also concerned with the development direction of the 3D3C in the future, as well as safety of coal production and exploration of new energy sources.
     In this paper, I firstly make analysis of the apparent polarization anomalies of PS wave for different azimuths, addressing the theoretical basis for using these anomalies to detect cracks. Then in conjunction with actual data handling, analysis and comparison of previous methods of data processing, the influence factors on the extraction of dip CCP gathers are studied as a focused topic. It is emphasized that the dispersion of conversion points on the interface would lower lateral resolution. Finally, by analysis of azimuth gathers, I compare the features of PS wave of two horizontal components to predict cracks in coal beds, and make comparison with the rock cores from wells that cracks detection has been carried out individually.
     This thesis includes three parts. In Part one, I compare reflections between lithological interface and crack layer by synthetic seismograms, demonstrating the differences of three-component reflection records for models with vertical and inclined cracks respectively. The purpose is to elucidate the apparent polarization anomalies of PS wave caused by PS wave splitting and how to use them to detect cracks in thin coal beds. Part two focuses on influence factors on dip CCP gather for 3D3C and complicated geological structure. I have explained why the previous efforts on 3D converted wave imaging are so difficult. The emphasis is focused on dip CCP stacking and imaging of PS wave in comparison with P wave. Part three indicates the advantage of using PS wave of dip CCP gather with multiple azimuths and multiple offsets that reveal the apparent polarization anomalies of PS depend on azimuth, indicating the single azimuth analysis is difficult to detect cracks.
     This work has made a comprehensive study in a chosen target area with both available 3D3C data and detailed well data. Based on comparison of reflections near the wells with and without cracks, it is found the there is indeed difference appearing as normal and abnormal polarization of PS-wave. This means that it is possible to find a new approach to detect cracks in thin coal beds from PS polarization anomaly.
     The research for detecting cracks in coal mine has important application value and prospects, in the background without experience at home and abroad, and it is carried out with great difficulties and risks. Many problems involved in this study have no relevant report from home and abroad.
引文
[1]曾勇.煤层裂隙系统及其对煤层气产出的影响.江苏地质,2000,24(2),91-94.
    [2]傅雪海.多相介质煤岩体物性的物理模拟与数值模拟.博士学位论文.徐州:中国矿业大学,2001.
    [3]霍全明.三维三分量的野外观测设计.博士学位论文.北京:中国矿业大学,2002.
    [4]霍全明,程增庆,勾精卫.高分辨率地震勘探采集技术及影响因素分析.煤炭学报,2001,2,117-121.
    [5]柳楣,霍全明.采区三维地震勘探技术的新进展.徐州:煤矿采区三维地震经验交流会论文集,中国矿业大学出版社,2001,79-85.
    [6]韩德馨,彭苏萍.我国煤矿高产高效矿井地质系统研究回顾及发展构想.中国煤炭,2002,28(2),5-9.
    [7]李庆忠.走向精确勘探的道路—高分辨率地震勘探系统工程剖析.石油工业出版社,1993.
    [8]曲寿利.全方位P波属性裂缝检测方法.石油地球物理勘探,2001,36(4):390-397.
    [9]霍全明.发展高分辨率地震勘探技术为煤炭生产服务.中国煤田地质,1999,增刊,64-69.
    [10]姚陈.地震三维矢量反射波场.地球物理学进展,2006,21(2):430-439.
    [11]多波多分量煤层气地震勘探技术的研究.涿州:煤田物探研究院,1997.
    [12]董守华.地震资料煤层横向预测与评价方法.徐州:中国矿业大学出版社,2001.
    [13] Crampin S.A review of wave motion in anisotropic and cracked elastic-media, Wave motion,1981,3:343-391.
    [14] Rai,C S and Hanson,K E. Shear-wave velocity anisotropy in sedimentary rocks:a laboratory study.Geophysics,1988,53, 800-806.
    [15] Roberts,G and Crampin, S. Shear-wave polarizations in a hot-dry-rock geothermal reservoir: anisotropic effects of fractures.Int. J. Rock Mech. Min. Sci.,1986,23,291-302.
    [16] Vernik,L and X Liu. Velocity anisotropy in shales: A petrophysical study. Geophysics, 1997,62,521-532.
    [17] Hudson J A. Wave Speeds and attenuation of elastic wave in material containing cracks. Geophy. J.R.astr.Soc.,1981,64:133-150.
    [18] Thomsen,L. Weak elastic anisotropy.Geophysics,1986a.51,1954-1966.
    [19] Thomsen,L.Reflection seismology in azmuthally anisotropy media. Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded Abstracts. 1986b,56,468-470.
    [20] Alford R M. Shear data in the presence of azimuthal anisotropy.Expanded Abstracgts of 56th SEG Mtg,1986,476-479.
    [21] Tsvankin I., Thomsen L. Inversion of reflection traveltimes for transverse isotropy.Geophysics,1995,60: 1095-1107.
    [22] Tsvankin I. P-wave signatures and notation for transversely isotropic media: An overview.Geophysics,1996,61:467-483.
    [23] Grechka V and Tsvankin I.Feasiblility of nonhyperbolic moveout inversion in transversely isotropic media. Geophysics,1998a,63(3):957-969.
    [24] Grechka V and Tsvankin I . 3-D description of normal moveout in anisotropic inhomogeneous media. Geophysics,1998b,63(4):1079-1092.
    [25] Grechka V and Tsvankin I . 3-D moveout inversion in azimuthally anisotropic media with lateral velocity :Theory and a case study .Geophysics,1999,64:1202-1218.
    [26] Grechka V and Tsvankin I. Inversion of azimuthally dependent NMO velocity in transversely isotropic media with titled axis of symmetry .Geophysics,2000,65:232-246.
    [27] Lynn,H and Thomsen,L. Shear wave exploration along the principlal axes. Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded Abstracts,1986,56,473-476.
    [28] Willis,H, Rethford,G and Bielanski,E. Azimuthal anisotropy:Occurrence and effect on shear wave data quality. Ann.Internat.Mtg.,Soc.Expl.Geophys.,Expanded Abstracts, 1986.56,479-481.
    [29]季玉新.用地震资料检测裂隙型油气藏的方法.勘探地球物理进展,2002,25(5):28-35.
    [30] Jenner,E. Azimuthal anisotropy of 3D compressional wave seismic data, Weyburn field,Saskatchewan,Canada:Ph.Dthessis,colorado School of Mines. 2001.
    [31] Lynn,H,Compagna,D, Simon,K M and Beckham,W E. Relationship of P-wave seismic attributes ,azimuthal anisotropy,and commerical gas pay in 3D P-wave multiazimuth data ,Rulison Field,Priceance Basin,Colorado.Geophysics, 1999,64,1293-1311.
    [32] Thomus L D, Edward L S, and Robert D B. Colorado School of Mines.新墨西哥州圣胡安盆地Cedar Hill煤层甲烷气藏得多分量三维储集层描述. SEG第63届年会论文集,石油工业出版社,1994,169-171.
    [33] Garotta, R and Granger, PY. Acquistion and processing of 3-C*3-D data using converted wave. Ann . Internat. Mtg., Soc . Expl. Geophys. Expanede abstracts,,1988,58,995-997.
    [34]黄中玉.多分量地震勘探的机遇和挑战.石油物探,2001,40(3):131-137.
    [35]何樵登,张忠杰.横向各向同性介质中的弹性波理论.吉林:吉林大学出版社,1998:1-10.
    [36]姚陈,王培德,陆玉美,陈运泰.对大同地震横波分裂的研究.华北地震科学,1992, 10(3).
    [37]姚陈,王培德,陈运泰.卢龙地区S波偏振与上地壳裂隙各向异性.地球物理学报,1992,35(3).
    [38]藤吉文,张中杰,何樵登.各向异性介质中AVO分析.石油物探信息,1993.
    [39]张中杰.2D与3D TIV介质地震波动理论研究.长春地质学院博士论文,1991.
    [40]张中杰.各向异性介质中地震波动理论研究.博士后出站报告,中国科学院地球物理研究所,1993.
    [41]张中杰.地震各向异性研究进展.地球物理学进展,2002,17(2).
    [42]牛滨华.裂隙各向异性介质中地震波传播与数值模拟.长春地质学院博士论文,1992 .
    [43]牛滨华,何樵登.裂隙各向异性介质波场VSP多分量记录的数值模拟.地球物理学报,1995,38(4).
    [44]牛滨华,孙春岩编著.半空间介质与地震波传播.石油工业出版社,2002.
    [45]徐果明编著.反演理论及其应用.地震出版社,2003.
    [46]魏修成,董敏煜,陈运泰.非均匀各向异性介质中弹性波的传播.地震学报,1998,20(6).
    [47]刘洋,董敏煜,牟永光.,具有倾斜对称轴的横向各向同性介质中的弹性波.石油地球物理勘探,1998,33(2).
    [48]刘洋,李承楚.双相各向异性介质中弹性波传播特征研究.地震学报,1999,21(4).
    [49]刘洋,董敏煜,各向异性介质中的方位AVO.石油地球物理勘探,1999,34(3).
    [50]刘劲松.三维非均匀各向异性介质中的纵波走时反演研究.博士后出站报告,中国科学院地球物理研究所,1999.
    [51]高原,李世愚,周惠兰等.大理岩的剪切波分裂对应力变化响应的实验研究.地球物理学报, 1999,42(6).
    [52]李录明.多波多分量地震勘探原理及数据处理方法.成都:成都科技大学出版社,1997.
    [53]刘洋,魏修成.三维反射纵波旅行时检测裂隙.石油地球物理,1999,34(6):607-613.
    [54]董渊,杨慧珠.利用P波层间时差确定裂隙性地层的各向异性参数.石油地球物理勘探,1999,34(5):520-523.
    [55]曲寿利,季玉新,王鑫.全方位P波属性裂隙检测方法.石油地球物理勘探,2001,36(4)
    [56]高云峰.AVO技术在煤层瓦斯富集部位检测中的应用—以淮南煤田为例.博士学位论文.北京:中国矿业大学,2003 .
    [57]戚敬华.纵横波地震综合勘探方法.煤田物探岩性勘探论文集.煤炭工业出版社1997,46-60.
    [58]地质矿产部石油物探研究所.三维三分量地震方法在天然气勘探中的应用.南京:1999,28-129
    [59]地质矿产部石油物探研究所.三维三分量地震方法在天然气勘探中的应用,南京,1995,46-60
    [60]张树林.海上多波多分量地震烃类直接检测方法研究及应用.石油地球物理勘探,2000,35(4):428-432.
    [61]张树林.海上多分量地震技术新进展与发展方向.物化探计算技术,2000,22(2):97-107.
    [62] Engelmark F.用转换波对低阻抗油藏成像.赵剑敏译.石油物探译丛, 2001,(2):14~17.
    [63] Rognoe H, Amundsen L, Kvistensen A. Improved structural and stratigrahic definition from 3D/4C data-statfjord Field. Expanded Abstrcts of 69th annual Internat SEG Mtg,1999,736-739
    [64]李庆忠.岩石的纵、横波速度规律.石油地球物理勘探,1992,27(1):1-12.
    [65] Tinivella U, Carcione J M. Estimation of Gas hydrate concentration and free gas saturation from log and seismic data. Expanded Abstracts of 70th Annual Internat SEG Mtg,2000,1586-1571.
    [66] Gray D, And ersen E. The application of AVO and Inversion to the Estimation of Rock Properties. Expanded Abstracts of 70th nnual Internat SEG Mtg,2000,549-552 .
    [67] Englehart T.墨西哥湾中部气云区4分量地震数据的解释.吴官生等译.石油物探译丛,2001,(4):47-54.
    [68] Begay d K, Miller R D, Watney W L,etal. High resolution P and S wave flection todetecta shallow gas and in south east Kansas. Expanded Abstracts of 70th nnual Internat SEG Mtg,2000,1319-1322.
    [69] Klimentos T. Attenuation of P and S waves as a method of distinguishing gas and condensate from oil and water. Grpphysics,1995,60(2):447-458.
    [70]王光杰,陈东.多波多分量地震勘探技术.地球物理学进展,2000,15(1):54-916.
    [71] Nieuwland F.横波在地震勘探中的应用一例.严建文译.石油物探译丛,1994,(5):1-11.
    [72] Lynn H B, Simon M K, Bates C R. Correlation between P wave AVO and S wave traveltime anisotropy in a naturally fractured gas reservoir. The Leading Edge ,1996, 15(8):931-935.
    [73]黄中玉,高林,徐亦鸣等.三分量数据的偏振分析及应用.石油物探,1993,35(2):10-15.
    [74]陶春辉,何樵登.地面多分量地震资料纵横波分离方法.石油物探,1993,32(2):47-55.
    [75]唐建侯,邓富求.利用横波分裂研究各向异性.石油物探译丛,1992,(2):23-32.
    [76] Li Xiangyang . Viability of azimuthal variation in P-wave moveout for fracture detection . Expanded Abstrcts of SEG 67th Ann Internat Mtg,1997
    [77] Sayers C M , Ebrom D A . Seismic traveltime analysis for azimuthally anisotropic media: Theory and experiment . Geophysics,1997,62(5):1570-1582
    [78] Al-Dajani , Tsvankin . Nonhyperbolic reflection moveout for horizontal transverse isotropy . Geophysics,1998,63(5):1738-1753
    [79]石玉梅.各向异性非线性波形层析及裂隙裂缝参数反演.博士学位论文.徐州:中国矿业大学,2001.
    [80]托马斯L戴维斯,罗伯特D本森.用多波多分量地震测量描述裂缝性储层—庆祝《石油物探》创刊30周年.石油物探,1992,31(3):15-19.
    [81] Subhashis M , Kenneth L C, Laurent J M,et al. Determination of the principal directions of azimuthal anisotropy from seismic wave data. Geophysics,1998,63(2):692-706.
    [82]阴可,杨慧珠.各向异性介质中AVO.石油物探,1997,36(4):28-37.
    [83]刘洋、董敏煜.各向异性介质中的方位AVO.石油地球物理勘探,1999,34(3):260-267 .
    [84]胡光岷,贺振华,黄德济等.利用纵波资料反演裂隙发育密度和方向.成都理工学院学报,2000,27(2):145-147.
    [85]朱培民,王家映,於文辉等.用纵波AVO数据反演储层裂隙密度参数.石油物探,2001,40(2):1-12.
    [86]王炳章.勘探地球物理方法技术的最新进展---第68届SEG年会’暨98国际展览会综述.石油地球物理勘探,1990,34(4):465-483.
    [87]郑晓东. AVO异常检测技术及其应用.石油地球物理勘探,1991,26(5):643-649.
    [88]曾联波,高绍清.吉林大安油田储层裂隙的综合评价.高校地质学报,1998,4(4) :459-464.
    [89]杨振武. 3D-AVO处理和应用.石油物探译丛,1998,(5):11-15.
    [90]李建英,刘金萍.天然裂缝气藏的检测与分析.石油物探译丛,2000,(2):50-52.
    [91]朱庆杰,王波.轮南奥陶系裂缝研究的综合定量方法.石油地球物理勘探,2001,36(4):392-397.
    [92]朱成宏.裂缝预测技术在松南工区应用效果分析.石油物探,2001,40(4):62-68.
    [93]姚陈.各向异性介质中震源能量远场辐射.中国地球物理学会年刊2002,中国地震学会,421-421.
    [94]蔡明刚.各向异性介质中三位倾斜界面P波时距模拟.中国地震局地质研究所硕士论文, 2003.
    [95]张建中.三维TI质介中P波NMO速度及VSP走时联合反演.中国地震局地质研究所博士学位论文,2005.
    [96]樊明珠,王树华.煤层气勘探开发中的割理研究.煤田地质与勘探,1997,25(1):29-32.
    [97] Schoenberg, M and F Muir. A calculus for finely layered anisotropic media. Geophysics,1989,54(5):581-589.
    [98]勾精卫,于光明,柳楣.用转换波检测煤层裂隙的方法探讨.中国煤田地质,2001,13(3),52-56.
    [99]姚陈.地震三维矢量反射波场.地球物理学进展,2006,21(2),430-439.
    [100]傅旦丹,何汉漪,朱宏彰等.海上多分量地震资料处理技术研究.中国海上油气(地质),2003,17(4):259-263.
    [101] Tessmer, G. and Behle, A. Common reflection point data-stacking technique for converted wave. Geophysics. Prosp., 1988,36,671-688.
    [102] Thomsen,L. Converted-wave reflection seismology over inhomogenous,anisotropy media. Geophysics, 1999,64,678-690.
    [103] Yuan, J and X Li. PS-wave conversion-point equations for layered anisotropic media. 63rd Annual Conference, European Association of Geoscientists and Engineers, Extended Abstracts,2001, 112.
    [104] Lane, M and Lawton, D C. 3-D converted wave asymptotic binning. CREWES Research Project, 1993,5, 29, 1-25.
    [105] Lawton, D C. Optimum bin size for converted-wave 3-D asymptotic mapping. CREWES Research Project, 1993,5, 28, 1-12.
    [106] Chunfang Yuan,Suping Peng ,and Chunming Li. An exact solution of the conversion point for the converted waves from a dipping reflector with homogeneous (isotropic) overburden : Geophysics, 2006, 71, 7-11.
    [107]姚陈.倾角CDP和倾角CCP叠加.中国地球物理(2005).长春:吉林大学出版社,2005. 556.
    [108]于光明,姚陈,蔡明刚.三维反射PS波共转换点道集抽取方法.中国地球物理学会年刊,2005.
    [109]张爱敏.采区高分辨率三维地震勘探.徐州:中国矿业大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700