区域尺度主动源探测技术及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波在地球介质中的传播,携带了丰富的地下介质物性的信息,是我们获取地球内部结构、物质组成及状态的最重要的研究手段。通过对天然地震激发地震波的研究,人们对全球地震分布、地球内部圈层结构及动力学过程、物质组成和横向不均匀性等方面的认识已取得了巨大的进步,较为完整地勾画出了地球整体结构的三维图像。但在面对严重的地震灾害和强烈的火山喷发等问题时仍显得不能满足要求,我们不仅需要地球内部清晰的静态图像,还要了解和掌握地球内部的运动变化过程。
     到目前为止,国内外学者已分别尝试利用重复天然地震、自然噪声和人工震源等研究地下介质的动态变化。由于天然地震发生的频率低,地震定位特别是深度确定的精度较低,重复地震发生的时间和地点不可控制,而噪声源能量弱,需要长时间的叠加才能获得可靠的测量,这些因素限制了利用天然源测量地下介质变化的时间和空间精度及分辨率。而人工震源具有精准的激发时间、地点和震源特性可测,并有可能实现高度可重复,观测系统分布灵活方便、可以进行密集观测等优点,从而实现很高的走时变化探测精度,有望弥补天然源的不足。随着人工主动震源探测技术的发展,利用重复人工震源进行地下介质波速变化测量已经成为一个重要的发展趋势。
     本文结合区域尺度地下介质动态变化监测的需要,围绕主动源探测技术的关键问题:1)信噪比;2)震源可重复性;3)波速变化精确测量等开展相关研究。在全面分析和总结现有的理论与实验研究成果的基础上,利用现有的观测天然地震信号的固定台站,与观测位置灵活的流动地震测线相结合作为信号接收方式,对几种大功率人工震源特征进行对比分析和筛选,分别以精密控制机械震源(Accurately Controlled Routinely Operated Seismic Source,以下简称ACROSS)和大容量气枪震源为基础,构建相应的高性能主动源探测技术系统,并进行了现场试验研究。通过对现场试验数据的分析,获取了地下介质波速变化的一些信息,得到了一些有意义的结果,并对区域尺度人工震源波速变化主动测量精度的影响因素、引起波速变化的机理、需要进一步完善的问题、介质波速变化探测的应用等方面进行了探讨。本论文的主要工作大致可以分为以四个方面。
     第一,区域尺度主动源探测原理。介绍了主动源探测技术的原理和方法,针对传统方法波速变化测量精度的不足,发展了波速变化精确测量方法,并采用实际观测的大气压或理论计算得到的固体潮连续变化进行标定和检验。在探测系统构建上,从地震信号的激发、传播、接收以及信号分析等方面入手,给出了开展区域尺度主动源探测系统的技术要求,对震源激发和信号接收之间进行匹配分析。观测方式上结合现有天然地震的观测模式,采用固定台与流动台相结合,台网与测线相结合的观测方式。在震源方面,对现有大功率(激发能量能超过106J)人工震源特征进行对比和筛选,分别从连续源和脉冲源中选用具有代表性的高度重复性震源,即ACROSS和大容量气枪震源。
     第二,ACROSS震源特征及其信号检测方法。根据港震公司生产的10吨ACROSS震源,对其发展历程、工作原理及震源特征进行了全面的介绍,搭建了相应的主动探测技术系统。ACROSS震源激发的扫描信号频带范围为2-10Hz,具有重复性好、频率低的优势,激发能量随频率的上升呈二次方增加,通过多次叠加,在~10km的流动台站检测到了有效信号。并对实际观测数据进行了信号检测方法对比研究,得出对于具有较高信噪比的ACROSS信号,相干和反褶积法的处理结果优于互相关和短时相关法,且能有效的去除震源因素的影响。构建的ACROSS主动源系统探测精度高,观测到的波速变化与大气压呈明显的正相关性。
     第三,汶川地震余震同震波速变化监测。汶川地震后,结合汶川断裂带科学钻探项目,利用ACROSS震源,跨龙门山断裂带—前山断裂带进行了动态监测试验。在观测期间,监测区域内发生了一次Ms5.6级地震,观测到了短期的同震/震后波速变化,在地震前后,跨过断裂带的流动台站的P波走时发生了5-9ms的延迟。综合现有的人工地震剖面和汶川地震科学钻探在前山断裂带附近的钻井资料,在观测区域内跨断裂带建立了二维速度模型,通过相对走时变化模拟分析。研究结果表明:Ms5.6级地震引起的P波走时延迟,主要是由于地震诱发应力调整导致~120m的断裂带内介质同震/震后波速变化,变化幅度约为2.0%。
     第四,大容量气枪区域尺度探测试验。以大容量气枪震源为基础,设计、加工并配备了相关设备,构建了一套大容量气枪震源主动探测技术系统,并与多家单位合作,分别在河北、云南的内陆水库和新疆的人工水体等不同环境下开展了探索性试验研究,从探测尺度和探测精度两方面对利用气枪震源进行地下介质应力变化主动监测的可行性和有效性进行了分析和探讨。研究表明:大容量气枪震源具有激发能量强,优势频率低,可重复性好,可激发较强的S波震相等优点;构建的重复探测技术系统探测距离远,在380km的偏移距上还能检测到有效信号,且探测精度高,观测到了由固体潮引起的地下介质连续变化,为用于区域尺度地下介质变化监测和研究地震孕育过程的动力学过程提供了可靠的技术保障。
The seismic wave carries a wealth of information about the physical properties of the subsurface when propagates in the earth medium. It is the most important research tool for us to get knowledge of the Earth's interior structure, material composition and state, and so on. Through studied on the seismic waves excited by earthquakes, the human being has made tremendous progress in understanding the global distribution of earthquakes, the spherical structure, geodynamic process, material composition, lateral heterogeneity, etc, about the Earth's interior, which sketches out for us a relatively complete three-dimensional static image of the overall Earth's structure. However, it is still not meeting the requirements, when faced with serious earthquake disasters, strong volcanic eruptions and other issues, what we needs is not only the static images of the Earth's interior, also to understand and master the process of change in the Earth's interior.
     Now many scholars used the repeated earthquake, noise and artificial source to study the dynamics monitoring of the subsurface in domestic and foreign. As the low frequency of earthquake occurrence, especially the low accuracy in the depth of the earthquake location, and the occurrence time and location of the repeat earthquake can not be controlled, so it is not suitable for carry out monitoring in long-term. The energy of the noise source is very weak, needed a long time to stack for get reliable measurements. The resolutions and precisions of passive source monitoring are limited by the spatial and temporal distributions of source, but the artificial sources with precise timing, location and characteristics can be measured, and likely to achieve highly repeatable. In addition, the observation system can achieve high accuracy detection of changes in travel time with flexible and intensive, expected to compensate the lack of the natural source in accuracy with the precise time and location. With the development of the artificial source detection technology, monitoring subsurface changes with the seismic wave generated by repeatable artificial source has become another goal to pursue.
     In this dissertation, combined with the need of dynamic monitoring subsurface on regional scale, we carried out research focus on the key issues of the dynamic monitoring technology with active source, which are the signal to noise ratio (SNR), repeatability of the seismic source and accuracy in measure velocity change. Based on comprehensive analysis and summary of the existing theoretical research achievements and experiment results, we adopted fixed stations monitored for earthquakes and portable seismic station with flexible and intensive to receive signal, conducted comparative analysis on several high-power artificial source and select two sources representative for continuous and pulse sources, respectively. We constructed the corresponding high-performance dynamic monitoring system with Accurately Controlled Routinely Operated Seismic Source (ACROSS) and large volume airgun, and studied on field experiments. We observed some information of velocity change, obtained some meaningful results, and discussed the reasons for seismic-wave velocity changes, the experimental measurement accuracy, the problems in the method that need further refinement and study, and practical applications of the exploration for seismic-wave velocity changes in the medium. The main researches of this dissertation can be divided into the following four aspects.
     First, the detecting principle used active source on regional scale. We introduced the principle and method of dynamic monitoring technology with active source, developed the precise measurement method in velocity changes contrary to the low precision used the traditional methods, and took the observed atmospheric or tidal change by theoretical calculation as a continuous calibrated and test signal. On the aspect of building up the active monitoring system, we take the hand from the signal excitation, propagation, reception, signal analysis and other aspects, given out the technical requirements for carry out dynamic monitoring with artificial source on regional scale, and conducted matching analysis between the active source excitation and signal reception. Considering the existing observation mode for earthquake, we used fixed station and portable seismic station, combined network with mobile survey line mode. With the seismic source, we carry out comparative analysis the existing high-power (excitation energy can exceed106J) artificial source characteristics, and select two sources representative for continuous source and pulse source, respectively, namely ACROSS and large volume airgun sources.
     Second, the characteristics and signal detection method of ACROSS. According to10tons ACROSS produced by Beijing Gangzhen Mechanical and Electronic Technology Company, we give a comprehensive introduce its development process, working principle, source characteristics, and build up a high-performance dynamic monitoring system, which was widely used to detect and monitor the velocity change in subsurface, with its simple structure, easy operation and maintenance. The ACROSS signal has the characteristic of high repeatability and low frequency rang from2Hz to10Hz, and there is a relationship of square times between the energy and scan frequency. On signal detection, the cross-coherence and deconvolution method are more suitable than the cross-correlation and short-window correlation with comprehensive analysis from repeatability, travel time profile, spectral characteristics, SNR, and can remove the effect of the source characteristic. The dynamic monitoring system has high detection precision with ACROSS, and observed velocity changes have a relationship of positive correlation with atmospheric pressure.
     Third, the monitoring and analysis on coseismic velocity change in Wenchuan aftershock. After the Wenchuan earthquake, combined with Wenchuan Fault Scientific Drilling (WFSD) Project, we carried out continuous monitoring across the range-front fault zone of Longmenshan fault using10tons ACROSS, and adjacent to WFSD. We observed travel time delay of~5-9ms associated with a Ms5.6earthquake from the seismic stations on hanging wall of the Jiangyou-Guanxian fault, while from stations on the footwall, they did not observe any travel time delay larger than measuring error. We in this study carry out forward modeling by using two-dimensional Spectral Element Method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width~120m rather by dynamic strong ground shaking, and a velocity decrease of~2.0%within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.
     Fourth, the active monitoring experiment on regional scale used large volume airgun source. Based on the large volume airgun source, we designed, processed and allocated relative equipments, and constructed a high-performance active monitoring system with large volume airgun source. Cooperation with a number of units, carried out experiment with inland reservoirs and artificial water body in Hebei, Yunnan and Xinjiang, and conducted a feasibility and effectiveness analysis with dynamic monitoring the stress state and its change used airgun from detection distance and precision. The results showed that:The large volume airgun source has power of energy, the characteristic of low frequency, high-repeatability, can stimulate strong S wave, and so on. The active monitoring system has long detection distance at380km also can detect signal by stack, high detection precision, and have observed the continuous change caused by the Tide. It can be applied to carry out the active monitoring of subsurface and4D seismology on regional scale, which are provide a new technology to study on the medium properties, crustal stress distribution and dynamic variety.
引文
安艺敬一,P G理查兹.1987.定量地震学.北京:地震出版社
    彼得.鲍曼.2006.新地震观测实践手册.北京:地震出版社
    陈顺,朱日祥.2005.设立“地下明灯研究计划”的建议.地球科学进展,20(5):485~489
    陈顒,周华伟,葛洪魁.2006.华北地震台阵探测计划.大地测量与地球动力学,25(4):1-5
    陈顒,李丽.2003a.地震科学的几个发展趋势.国际地震动态,1:2-6
    陈顒,李宜晋.2007b.地震波雷达研究展望:用人工震源探测大陆地壳结构.中国科学技术大学学报,37(8):813~819
    陈顒,张先康,丘学林等.2007.陆地人工激发地震波的一种新方法.科学通报,52(1):1-5
    陈顒,王宝善,葛洪魁等.2007.建立地震发射台的建议.地球科学进展,22(5):441~446
    陈浩林,宁书年,熊金良.2003.气枪阵列子波数值模拟.石油地球物理勘探,38(4):363~368
    陈浩林.2002.气枪震源单枪子波计算机模拟.物探装备,12(4):241~244
    陈浩林,全海燕,於国平等.2008.气枪震源理论和技术综述(上).物探装备,18(4):211~217
    陈蒙,王宝善,王伟涛等.2013.利用气枪地震资料研究燕山隆起带南部地区地壳S波速度及泊松比结构.地球物理学进展,28(1):0102~0110
    陈剑雄.2010.大容量气枪震源的陆地应用及气枪资料对华北地区低速层的约束.[硕士学位论文],中国地震局地球物理研究所
    房立华,吴建平,张天中等.2011.2011年云南盈江Ms5.8地震及其余震序列重定位.地震学报,33(2):262~267
    高原,郑斯华,孙勇.1995.唐山地区地壳裂隙各向异性.地震学报,17(3):283~293
    高原.1999.唐山地区快剪切波偏振图像及其变化.地球物理学报,42:228-232
    葛洪魁,林建民,王宝善等.2006.编码震源提高地震探测能力的野外实验研究.地球物理学报,49(3):864~870
    黄伟传,葛洪魁,杨微等.2009.汶川地震断裂带东北端浅部结构的人工地震探测.地球物理学报,52(2):547~552
    蒋长胜,吴忠良,李宇彤.2008.首都圈地震“重复地震”及其在区域地震台网定位精度评价中的应用.地球物理学报,51(3):817~827
    嘉世旭,刘昌铨.1995.华北地区人工地震测深震相与地壳结构研究.地震地质,17(2): 97-105
    嘉世旭,齐诚,王夫运等.2005b.首都圈地壳网格化三维结构.地球物理学报,48(6):1316~1324
    嘉世旭,张先康,方盛明.2001.华北裂陷盆地不同块体地壳结构及演化研究.地学前缘,8(2):259-265
    嘉世旭,张先康.2005a.华北不同构造块体地壳结构及其对比研究.地球物理学报,48(3):611~620
    雷建设,赵大鹏,苏金蓉等.2009.龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报,52(2):339~345
    李海兵,王宗秀,付小方等.2008.2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征.中国地质,35(5):803~813
    李庆忠.1994.走向精确勘探的道路—高分辨率地震勘探系统工程剖析.北京:石油工业出版社
    李松林,张先康,宋占隆等.2001.多条人工地震测深剖面资料联合反演首都圈三维地壳结构.地球物理学报,44(3):360-370
    李乐,陈棋福,钮凤林等.2008.利用“重复地震”估算丽江-宁蒗断裂带的深部滑动速率.科学通报,23:2925-2932
    李乐,陈棋福.2010.利用重复地震估算北京平原区隐伏断裂深部活动速率.地震地质,32(3):508~519
    梁慧云,李松林.2004.俄罗斯的人工地震探测研究进展.大地测量与地球动力学,24(4):117~122
    梁慧云,张先康.1996.各国地壳上地幔深地震反射研究计划与进展.地球物理学进展,11(1):42~60
    廖成旺,庄灿涛,梁鸿森.2003.精密控制常时震源系统(精密控制)的初步试验.中国地震,19(1):89~96
    林建民,王宝善,葛洪魁等.2008.大容量气枪震源特征及地震波传播的震相分 析.地球物理学报,51(1):206~212
    林建民,王宝善,葛洪魁等.2006.重复地震及其在人工探测中的潜在应用.中国地震,22(1):1-9
    林建民.2008.基于人工震源的长偏移距地震信号检测和探测研究.[博士学位论文],中国科学技术大学
    林君.2004.电磁驱动可控震源地震勘探原理及应用.北京:科学出版社
    刘志,张先康,嘉世旭等.2000.泰安—忻州剖面S波分裂计算及介质各向异性与深部构造相关性探讨.地球物理学进展,15(3):61~69
    罗桂纯,葛洪魁,王宝善等.2007.气枪震源激发模式及应用.中国地震,23(3):225~232
    罗桂纯,王宝善,葛洪魁等.2006.气枪震源在地球深部结构探测中的应用研究进展.地球物理学进展,21(2):400~407
    丘学林,陈顒,朱日祥等.2007.大容量气枪震源在海陆联测中的应用:南海北部试验结果分析.科学通报,52(1):1-7
    丘学林,赵明辉,叶春明等.2003.南海东北部海陆联测与海底地震仪探测.大地构造与成矿学,27(4):295~300
    齐诚,陈棋福,陈顒.2007.利用背景噪声进行地震成像的新方法.地球物理学进展,22(3):771-777
    唐杰.2008.区域尺度深部探测的人工源震源特性及信号检测研究.[博士学位论文],中国科学技术大学
    唐新功,尤双双,胡文宝等.2012.龙门山断裂带地壳密度结构.地震地质,34(1),28~38
    王洪体,庄灿涛,薛兵等.2009.精密主动震源监测.地球物理学报,52(7):1808~1815
    王伟涛,王宝善,葛洪魁等.2009.利用主动震源检测汶川地震余震引起的浅层波速变化.中国地震,25(3):223~233
    王伟涛.2009.基于人工震源的区域尺度介质波速探测研究.[博士学位论文],中国科学技术大学
    王彬.2009.利用多种震源测量介质波速变化的实验研究.[博士学位论文],中国科学技术大学
    王宝善,王伟涛,葛洪魁等.2011.人工震源地下介质变化动态监测.地球科学进 展,26(3):249~256
    王宝善,杨微,王伟涛等.2013.利用大容量气枪监测北天山地壳介质变化.中国地球物理年会
    徐平.2009.地壳应力深部变化监测技术及其应用研究.[博士学位论文],中国科学院地质与地球物理研究所
    徐朝繁,田晓峰,嘉世旭等.2012.龙门山中段及其临近地区上地壳细结构—人工地震测深结果.国际地震动态,6:82
    杨光亮,朱元清.2007.可控震源在深部地壳探测中的应用.大地测量与地球动力学,27(5):72~81
    杨光,李海兵,张伟等.2012.四川龙门山安县—灌县断裂带的特征—以汶川地震断裂带科学钻探3号孔(WFSD-3)岩心为例.地质通报,31(8):1219~1232
    杨微,葛洪魁,王宝善等.2010.由精密控制人工震源监测到的绵竹5.6级地震前后波速变化.地球物理学报,53(5):1149~1157
    杨微,王宝善,葛洪魁等.2013.精密控制机械震源特征及信号检测方法.中国石油大学学报(自然科学版),37(1):50~55
    杨微,王宝善,葛洪魁等.2013.大容量气枪震源主动探测技术系统及试验研究.中国地震,已接收
    姚陈.1992.卢龙地区S波偏振与上地壳裂隙各向异性.地球物理学报,35(3):305~315
    姚陈,陈祥国,唐建侯.1999.爆破源地震反射波三分量记录理论地震图研究.石油地球物理勘探,34:210~217
    易桂喜,龙锋,张致伟.2012.汶川Ms8.0地震余震震源机制时空分布特征.地球物理学报,55(4):1213~1227
    赵雯佳.2013.基于水库气枪震源的剪切波分裂初步研究.[硕士学位论文],中国地震局兰州地震研究所
    赵明辉,丘学林,夏戡原等.2004.南海东北部海陆联测地震数据处理及初步结果.热带海洋学报,23(1):58-63
    赵明辉,丘学林,夏少红等.2008.大容量气枪震源及其波形特征.地球物理学报,51(2):558~565
    张先康,李松林,王夫运等.2003.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异-深地震测深的结果.地震地质,25(1):52~60
    张中杰.2002.地震各向异性研究进展.地球物理学进展,17(2):281~293
    张蔚,戴恒昌,李向阳等.2009.水库气枪震源产生的S波分裂.地震地质,31(1):22~33
    张蔚.2008.利用小当量人工震源进行区域性深部探测的试验研究.[博士学位论文],浙江大学
    张勇,冯万鹏,许力生等.2008.2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学,38(10):1186~1194
    周宝华,刘威北.1998a.气枪震源的发展与使用分析(上).物探装备,8(1):1-6
    周宝华,刘威北.1998.气枪震源的发展与使用分析(下).物探装备,8(2):1-6
    周龙泉,刘桂萍,马宏生等.2007a.利用重复地震观测地壳介质变化.地震,27(3):1-9
    周龙泉,刘杰,张晓东.2007b.2003年大姚6.2和6.1级地震前三维波速结构的演化.地震学报,29(1):20~29
    庄灿涛.2002.探索预报大城市直下型灾害性地震的一种技术措施.国际地震动态,8:35~37
    Aki, K.,1984. Asperities, barriers, characteristic earthquake, and strong motion prediction. J. Geophys. Res.,89(B7),5867-5872
    Atsushi Saiga, Koshun Yamaoka, Takahiro Kunitomo, et al.,2006. Continuous observation of seismic wave velocity and apparent velocity using a precise seismic array and ACROSS seismic source. Earth Planets Space,58,993-1005
    Abercrombie R. E.,1995. Earthquake source scaling relationships from-1 to 5 Ml using seismograms recorded at 2.5-km depth. J. Geophys. Res., 100(B12):24015-24036
    Aggarwal Y. P., Sykes L. R., Simpson D. W., et al.,1973. Spatial and temporal variations oftsAp and in P wave residuals at Blue Mountion Lake, New York: Application to earthquake prediction. J. Geophys. Res.,80,718-732
    Alekseev A. S., I. S. Chichinin and V. A. Korneev,2005. Powerful low-frequency vibrators for active seismology. Bull. Seismol. Soc. Am.,95,1-17
    Aster R. C., P. M. Shearer and J. Berger,1990. Quantitative measurements of shear wave polarizations at the Anza Seismic Network, southern California: Implications for shear wave splitting and earthquake prediction. J. Geophys. Res., 95,12449-12473
    Birch F.,1960. The velocity of compressional waves in rocks to 10 kilobars, Part 1. J. Geophys. Res.,65,1083-1102
    Birch F.,1961. The velocity of compressional waves in rocks to 10 kilobars, Part 2. J. Geophys. Res.,66,2199-2224
    Brenguier F., M. Campillo and C. Hadziioannou, et al.,2008. Postseismic relaxation along the San Andreas Fault at Parkfield from continuous seismological observations. Science,321,1478-1481
    Bungum, H., T. Risbo, E. Hjorenberg,1977. Precise continuous monitoring of seismic velocity variations and their possibility connection to solid tides. Journal of Geophysical Research,11,82(33)
    Cespedes I., Huang Y, Ophir J.,1995. Methods for estimation of subsample time delays of digitized echo signals. Ultrasonic Imaging,17,142-171
    Cheng X., F. L. Niu and B. S. Wang,2010. Coseismic velocity change in the rupture zone of the 2008 Mw 7.9 Wenchuan earthquake observed from ambient seismic noise. Bull. Seismol. Soc. Am.,100,5B,2539-2550
    Carter G.,1987. Coherence and time delay estimation. Proceedings of the IEEE,75, 236-255
    Calvert A. J.,2004. Seismic reflection imaging of two megathrust share zones in the northern Cascadia subduction zone. Nature,428,163-167
    Chen Y., Liu L. B., Ge H. K., et al.,2008. Using an airgun array in a land reservoir as the seismic source for seismotectonic studies in northern China:experiments and preliminary results. Geophysical Prospecting,56,601-612
    Claerbout J. F.,1968. Synthesis of a layered medium from its acoustic transmission response. Geophysics,33:264-269
    Crampin S., Zatsepin S. V.,1997. Modelling the compliance of crustal rock-Ⅱ. Response to temporal changes before earthquakes. Geophys. J. Int,129,495-506
    Crampin S.,1998. Stress-forecasting:a viable alternative to earthquake prediction in a dynamic Earth. Trans. R. Soc. Edin., Earth Sci,89,121-133
    Crampin S., Volti T. and Stefansson R.,1999. A successfully stress-forecast earthquake. Geophys. J. Int,138(1)
    Crampin S.,2001. Developing stress-monitoring sites using cross-hole seismology to stress-forecast the times and magnitudes of future earthquakes. Tectonophysics, 338(3-4),233-245
    De Fazio T.L., Aki K. and Alba J.,1973. Solid earth tide and observed change in the in situ seismic velocity. J. Geophys. Res.,78,1319-1322
    Fuis G. S., Clayton R. W., Davis P. M., et al.,2003. Fault systems of the 1971 San Fernando and 1994 Northridge earthquakes, southern California:Relocated aftershocks and seismic images from LARSE Ⅱ. Geology,31(2),171-174
    Furumoto M., Ichimori Y., Hayashi N., et al.,2001. Seismic wave velocity changes and stress build-up in the crust of the Kanto-Tokai region. Geophys. Res. Lett., 28:3737-3740
    Furumoto J. and Tsuda T.,2001. Characteristics of Energy Dissipation Rate and Effect of Humidity on Turbulence Echo Power Revealed by MU radar-RASS Measurements. J. Atmos. Solar-Terr. Phys.,63(2-3),285-294
    Gret A, Snieder R. and Ozbay U.,2006a. Monitoring in situ stress changes in a mining environment with coda wave interferometry. Geophys. J. Int.,167, 504-508, doi:10.1111/j.1365-246X.2006.03097.x
    Gret, A., Snieder R. and Scales J.,2006b. Time-lapse monitoring of rock properties with coda wave interferometry. J. Geophys. Res., 111, B03305, doi:10.1029/2004 JB003354
    Gret A., Snieder R., Aster R.C., et al.,2005. Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophys. Res. Lett.,32, L06304, doi:10.1029/2004GL021143
    G D. Bensen, M. H. Ritzwoller, M. P. Barmin, et al.,2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. GeophysicalJ ournal International,169,1239-1260
    Haase J. S., P. M. Shearer and R. C. Aster,1995. Constraints on temporal variations in velocity near Anza, California, from analysis of similar event pairs. Bull. Seismol. Soc. Am.,85,194-206
    Ikuta R., Yamaoka K., Miyakawa K., et al.2002. Continuous monitoring of Propagation velocity of seismic wave using ACROSS. Geophys Res Lett,29(13), 1627, doi:10.1029/2001GL013974
    Ikuta R., and K. Yamaoka,2004. Temporal variation in the shear wave anisotropy detected using the Accurately Controlled Routinely Operated Signal System. J. Geophys. Res.,109, B09305, doi:10.1029/2003JB002901
    James H. Dieterich,1978. Time-dependent friction and the mechanics of stick-slip. Pure and Applied Geophysics,1978,116(4),790-806
    Katherine F. Brittle, Laurence R. Lines, and Ayon K. Dey,2001. Vibroseis deconvolution:a synthetic comparison of cross correlation and frequency domain sweep deconvolution. Geophysical Prospecting,49,675-686
    Karageorgi E., R. Clymer and T. V. McEvilly,1992. Seismological studies at Parkfield. II. Search for temporal variations in wave propagation using Vibroseis. Bull. Seism. Soc. Am.,82,1388-1415
    Kanamori H., and G. Fuis,1976. Variation of P wave velocity before and after the Gal way Lake earthquake (ML=5.2) and the Goat Mountain earthquakes (ML= 4.7),1975, in the Mojave desert, California. Bull. Seismol. Soc. Am.,66, 2027-2037
    Keiiti Aki.,1984. Asperities barriers characteristic earthquakes and strong motion prediction. J. Geophys. Res.,89,5867-5872
    Komatitsch D., and J. Tromp,1999. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int.,139,806-822
    Korneev V. A., T. V. McEvilly and E. D. Karageorgi.,2000. Seismological Studies at Parkfield VIII:Modeling the Observed Controlled-Source Waveform Changes. Bull. Seism. Soc. Am.,90,702-708
    Leary, P.C., P.E. Malin, R.A. Phinny,1979..Systematic monitoring of millisecond travel time variations near Palmdale, California. J. Geophys. Res.,84,659-666
    Li Le, Q.-F. Chen, Xin Cheng, et al.,2007. Spatial clustering and repeating of seismic events observed along the 1976 Tangshan fault, North China. Geophys. Res. Lett.,2007,34(23), L23309, doi:10.1029/2007GL031594
    Li Y. G, W. L. Ellsworth and C. H. Thurber, et al.,1997. Observations of fault-zone trapped waves excited by explosions at the San Andreas fault, central California. Bull. Seismol. Soc. Am.,87,210-221
    Li Y. G, P. Chen and E. S. Cochran, et al.,2007. Seismic velocity variations on the San Andreas fault caused by the 2004 M6 Parkfield Earthquake and their implications. Earth Planets Space,59,21-31
    Liu Q. Y,2006. Spectral-element simulations of three-dimensional seismic wave propagation and applications to source and structural inversions. Thesis (Ph. D.), California Institute of Technology. Publication Number:AAI3235583, ISBN: 9780542892585
    Lutter W. J., Fuis G S., Thurber C. H., et al.,1999. Tomographic images of the upper crust from the Los Angeles basin to the Mojave Desert, California:Results from the Los Angeles Region Seismic Experiment. Journal of Geophysical Research, 104(B 11),25543-25565
    McEvilly T. V. and L. R. Johnson,1974. Stability of P and S velocities from central California quarry blasts. Bull. Seismol. Soc. Am.,64,343-353
    McIntosh K., Nakamura Y., Wang T. K., et al.,2005. Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics,401,23-54
    Melhuish A., Holbrook W. S., Davey F.,2005. Crustal and upper mantle seismic structure of the Australian Plate. Tectonophysics,395,113-135
    Nadeau R. M., M. Antolik and P. Johnson, et al.,1994a. Seismological studies at Parkfield. Ⅲ:Microearthquake clusters in the study of fault-zone dynamics. Bull. Seismol. Soc. Am.,83,247-263
    Nadeau R. M., E. D. Karageorgi and T. V. McEvilly,1994b. Fault-zone monitoring with repeating similar microearthquakes:A search for the Vibroseis anomaly at Parkfield. Seismol. Res. Lett.,65,69
    Niu F. L., P. G Silver and T. M. Daley, et al.,2008. Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site, nature, 454,204-208
    Norimitsu Nakata, Roel Snieder, Takeshi Tsuji, et al.,2011. Shear wave imaging from traffic noise using seismic interferometry by cross-coherence. Geophysics,76 (6), 97~106, doi:10.1190/GEO2010-0188.1
    Poupinet G, W. L. Ellsworth and J. Frechet,1984. Monitoring velocity variations in the crust using earthquake doublets:An application to the Calaveras Fault, California. J. Geophys. Res.,89,5719-5731
    Peng, Z. G., and Y. Ben-Zion,2006. Temporal changes of shallow seismic velocity around the Karadere-Duzce branch of the north Anatolian fault and strong ground motion. Pure Appl. Geophys.,163,567-599
    Ratdomopurbo A. and Poupinet G.,1995. Monitoring a temporal change of seismic velocity in a volcano:application to the 1992 eruption of Mt.Merapi(Indonesia). Geophys. Res.Lett.,22(7),775-778
    Reasenberg P. and Aki K.,1974. A precise continuous measurement of seismic velocity for monitoring in situ stress. J. Geophys. Res.,79,399-406
    Rice J. R.,1992. Fault stress states, pore pressure distributions, and the weakness of the san andreas fault. In B. Evans and T.-F.Wong, editors, Fault Mechanics and Transport Properties of Rocks, number 475-503. Academic, San Diego, Calif.
    Rubinstein J. L., N. Uchida and G C. Beroza,2007. Seismic velocity reductions caused by the 2003 Tokachi-Oki earthquake. J. Geophys. Res.,112, B05315, doi 10.1029/2006JB004440
    Ronen S.,2002. Psi, pascal, bars, and decibels, The Leading Edge,21,60-61
    Schaff D. P., G. C. Beroza,2004. Coseismic and postseismic velocity changes measured by repeating earthquakes. J. Geophys. Res.,109, B10302, doi:10.1029/2004JB003011
    Sawazaki K., H. Sato and H. Nakahara, et al.,2009. Time-lapse changes of seismic velocity in the shallow ground caused by strong ground motion shock of the 2000 western-Tottori earthquake, Japan, as revealed from coda deconvolution analysis. Bull. Seism. Soc. Am.,99(1),352-366
    Schaff D. P., and G. C. Beroza,2004. Coseismic and postseismic velocity changes measured by repeating earthquakes. J. Geophys. Res.,109, B10302, doi:10.1029/2004JB003011
    Scholz C. H.,1968. Microfracturing and the inelastic deformation of rock in compression, J. Geophys. Res.,73,1417-1432
    Scholz C. H., L. R. Sykes and Y. P. Aggarwal,1973. Earthquake Prediction:A Physical Basis. Science,181,803-810
    Semenov A. N.,1969. Variation in the travel time of transverse and longitudinal waves before violent earthquakes. Bull. Acad. Sci. USSR, Phys. Solid Earth,3, 245-248
    Silver P. G, T. M. Daley and F. L. Niu, et al.,2007. Active source monitoring of cross-well seismic travel time for stress-induced changes. Bulletin of the Seismological Society of America,97(1B),281-293
    Simmons G.,1964. Velocity of shear waves in rocks to 10 kilobars 1. J. Geophys. Res., 69,1123-1130
    Snieder R., Gret A., Douma H. et al.,2002. Coda wave interferometry for estimating nonlinear behaviour in seismic velocity. Science,295,2253-2255
    Snieder R. and Hagerty M.,2004a. Monitoring change in volcanic interiors using coda wave interferometry:Application to Arenal Volcano, Costa Rica. Geophys. Res. Lett.,31, L09608, doi:10.1029/2004GL 019670
    Snieder R.,2004b. Extracting the Green function from the correlation of coda wave:A derivation based on stationary phase. Phys. Rev., E69,046610, doi:10.1103/ PhysRevE.69.046610
    Snieder R. and Vrijlandt M.,2005. Constraining the source separation with coda wave interferometry:Theory and application to earthquake doublets in the Hayward fault, California. J. Geophys. Res.,110, B04301, doi:10.1029/2004JB003317
    Snieder R.,2006. The theory of coda wave interferometry. Pure Appl. Geophys.,163, 455~473, doi10.1007/s00,024-005-0026-6
    Takagi R., T. Okada and H. Nakahara,2012. Coseismic velocity change in and around the focal region of the 2008 Iwate-Miyagi Nairiku earthquake. J. Geophys. Res., 117, B06315, doi:10.1029/2012JB009252
    Terashima T.,1974. Change of Vp/Vs before the large earthquake of April 1,1968 in Hyuganada, Japan, Bull. Int. Inst. Seismol. Earth. Eng.,12,17-29
    Thomas L., De Fazio, and K. Aki, et al.,1973, Solid earth tide and observed change in the in-situ seismic velocity. Journal of Geophysical Research,78(8)
    Wang C., W. Han and J. Wu, et al.,2007. Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications. J. Geophys. Res.,112, doi:10.1029/2005J13003873
    Wang B. S., P. Zhu and Y. Chen et al.,2008. Continuous subsurface velocity measurement with coda wave interferometry. J. Geophys. Res.,113, B12313, doi:10.1029/2007 JB005023
    Wang B. S., H. K. Ge, W. Yang, et al.,2012. Transmitting seismic station monitors fault zone at depth. EOS, Transactions, American Geophysical Union,93(5), 49-50
    Wang Z., Yoshio Fukao and S. P. Pei,2009. Structural control of rupturing of the Mw7.9 2008 Wenchuan Earthquake, China. Earth and Planetary Science Letters, 279,131-138
    Wegler U. and Sens-Schonfelder C.,2006. Fault zone monitoring with passive image interferometry. Geophys. J. Int.,168,1029-1033, doi:10.1111/j.1365-246X. 2006.03284.x,2007
    Wu C. Q., Z. G. Peng and B. Z. Yehuda,2009. Non-linearity and temporal changes of fault zone site response associated with strong ground motion. Geophys. J. Int., 176,265-278
    Yamaoka K., T. Kunitomo and K. Miyakawa, et al.,2001. A trial for monitoring temporal variation of seismic velocity using an ACROSS system. The Island Arc, 10,336-347
    Yamamura K., O. Sano, H. Utada, et al.,2003. Long-term observation of in situ seismic velocity and attenuation. J. Geophys. Res.,108,10.1029/2002JB002005
    Yoko Hasada, Hiroyuki Kumagai and Mineo Kumazawa,2001. Autoregressive modeling of transfer function in frequency domain to determine complex travel times. Earth Planets Space,53(1),3-11
    Yukutake H., Nakajima T., Doi K.,1988. In situ measurements of elastic wave velocity in a mine, and the effects of water and stress on their variation. Tectonophysics,149,165-175
    Zhiwei Li, Qingyu You, Sidao Ni, et al.,2012. Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment. Pure and Applied Geophysics, doi:10.1007/s00024-012-0585-2
    Zhou H. W.,2004. Multi-scale tomography for crustal P and S velocities in southern California. Pure and Applied Geophysics,161,283-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700