利用剪切波分裂方法研究玉树和冰岛地区各向异性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震波各向异性反映了地球内部的结构、构造变形、应力状态等方面的信息,在岩石圈演化、壳幔耦合变形以及地幔对流等研究中发挥着重要的作用。剪切波分裂现象是地震各向异性最直观的表现形式,在各向异性的研究中扮演着重要的角色。本文回顾了地震各向异性的研究进展和研究意义,特别介绍了剪切波分裂的原理、方法,以及近年来剪切波分裂研究的进展和现状。
     利用剪切波分裂分析方法,可以获得地壳和上地幔的各向异性空间分布特征,分析各向异性分布与构造背景之间的关系,进而探讨壳幔变形机制、地幔物质流动等地球动力学过程。此外,通过对剪切波分裂参数在时间上的变化分析,可以获得地震、火山等自然灾害发生前后地壳应力及地壳中微裂隙的变化特征等。本论文围绕剪切波分裂方法在地震各向异性研究中的应用,开展了以下工作。
     一,利用玉树地震震源区密集流动观测台站数据,研究了该地区地壳各向异性分布特征。研究结果表明玉树地区的快波偏振方向为南东向,与该区域的水平主压应力方向及断裂带的走向一致,揭示了此次玉树地震断裂走滑性质的特征。研究区域内平均慢波延迟时间是5.68ms/km。通过对比其他地区的慢波延迟时间结果,玉树地区各向异性强度高于首都圈西北部地区和四川紫平铺水库地区。慢波延迟时间的空间分布显示慢波延迟时间在玉树台周围最大,而且也揭示了研究区域各向异性强度的空间分布特征。
     二,针对青藏高原东部以往各向异性研究结果的稀缺,我们利用青藏高原东部固定台站、玉树地震应急流动观测台站及玉树科考流动台站的资料,研究了青藏高原东部地区上地幔各向异性特征。研究结果表明,快波偏振方向在金沙江缝合带及羌塘地块为南东向,在巴颜喀拉地块表现为北东向和南东向。结合研究区域地壳各向异性的结果,我们推断青藏高原东部地区壳幔变形类型属于垂直连贯变形。研究区域内上地幔慢波延迟时间普遍较高,而且变化范围较大。我们推断上地幔各向异性多源于上地幔矿物的晶格优选方位和熔体的定向分布,进一步表明青藏高原东部是地幔流活动较强烈的地区。
     三,冰岛作为天然的地球物理实验室,为火山喷发的剪切波分裂研究提供了先决条件。基于冰岛Eyj afj allaj okull火山周围的地震事件数据,通过剪切波分裂研究获得了火山喷发前后剪切波分裂参数在时间上的变化,从各向异性的角度分析并讨论了冰岛火山喷发前后地壳应力的变化。该研究区域快波偏振方向为北东向,这与台站周围断裂带的走向以及区域主压应力的方向是一致的。在火山喷发前后快剪切波偏振方向并没有发生明显变化。慢波延迟时间在Eyjafjallajokull火山喷发前表现出长期的增大和突然降低。我们推断在火山喷发之前地壳应力长期的积累和突然地释放,使得地壳中微裂隙的几何形态发生变化。Eyjafjallajokull火山喷发之后,位于邻区的Katla火山周围地震活动性增强,但是慢波延迟时间的结果表明地壳中并没有积累足够的应力引起下一次可能的喷发。然而,我们也并不能排除慢波延迟时间突然增大这一可能性。
     最后,基于剪切波分裂方法在玉树震源区、青藏高原东部及冰岛南部火山地区开展的研究,本论文讨论并总结了剪切波分裂在地壳和地幔各向异性研究中的意义以及在火山地区地壳应力变化监测的应用。通过以上的分析讨论,一方面使得我们对研究区域的各向异性特征有了更为全面、深刻的认识,另一方面我们的结果也为之前的各向异性结果进行补充,同时为后续的各向异性研究提供相关的参考。
Seismic anisotropy reflects the internal structure of Earth, tectonic deformation, stress status and other information, and plays a significant role in the evolution of the lithosphere, crust-mantle coupling deformation and mantle convection and other research. Shear-wave splitting is the most direct manifestation of seismic anisotropy, and plays an important role in the anisotropic study. This thesis reviews the research progress and significance of seismic anisotropy, especially introduces the principles, methods, and the recent studies of the shear-wave splitting.
     Seismic anisotropic spatial distribution characteristics of the crust and mantle can be obtained by using shear-wave splitting analysis method, which can be used to discuss the relationship between anisotropy and tectonic background, crust-mantle deformation mechanism, mantle flow and other geodynamic processes. In addition, the change of the stress and micro-cracks in the crust before and after the earthquakes, volcanoes and other natural disasters can be obtained by analysis on the parameters changes of shear-wave splitting. In this thesis, we carry out the following work around the applications of the shear-wave splitting in the seismic anisotropic research.
     Firstly, we use the seismic data from the dense seismic stations array in Yushu, and analyze the crustal anisotropic distribution. The results show that the polarization direction of the fast shear-wave in the crust is southeast, which is consistent with the direction of the horizontal principal compressive stress and the strike of the faults. The patterns of the polarization directions of fast shear-wave reveal this fault on which the earthquake happened is a strike-slip fault. The average value of the delay time of slow shear-wave is5.68ms/km. By comparing the delay times of slow shear-wave in other study areas, the anisotropic strength in Yushu area is bigger than that in northwestern capital area and Sichuan Zipingpu reservoir region. The spatial distribution of the delay time of slow shear-wave shows the value is high around the YUS station, and also reveals the characteristics of the spatial distribution of the anisotropic strength in the study area.
     Secondly, on account of the scarcity of anisotropic results in eastern Tibetan Plateau, we study the upper mantle anisotropic characteristics in the eastern Tibean Plateau using the data recorded by the permenant seismic staions, temporary staions and the staions of scientific investigation. The results show the polarization direction of fast shear-wave is southeast in Jinshajiang Suture zone and Qiangtang block. However, in Bayan Har block, there are two directions which are northeast, southeast, respectively. Consolidating the crustal and mantle anisotropic results, we conclude that the crust and upper mantle in this area have vertically coherent deformation. The delay time of slow shear-wave in the upper mantle is generally high, and varies greatly. We infer the lithospheric mantle melting and the melt pocket preferred orientation strengthen and change the anisotropic characteristics in our study area, which suggests the mantle flow activity is strong in eastern Tibetan Plateau.
     Thirdly, Iceland, as a natural geophysical laborary, provides the prerequisite for the shear-wave splitting of volcanic eruptions. We obtain the change of the shear-wave splitting parameters, and discuss the stress change in the crust before and after the eruptions of Eyjafjallajokull volcano from the anisotropic perspective based on the micro-earthquakes data around Eyjafjallajokull volcano. The polarization direction of the fast shear-wave is northeast in our study area, which matches well the strike of the surface faults and the regional principal stress direction. There is no obvious change in the polarization direction before and after eruptions. The delay time of the slow shear-wave increases before the eruption until there is an abrupt change to decreasing delay time which terminates when the eruption begins. This is due to the stress-accumulation increases, and stress-relaxation decreases as microcracks coalesce onto the eventual fault-plane, which causes the changes on the parameters of shear-wave splitting. After Eyjafjallajokull volcanic eruptions, the seismic activity increases around the adjacent Katla volcano. But the results of shear-wave splitting indicate that Katla is not preparing for enough stress to cause the next possible immediate eruption. However, we cannot exclude the possibility of the delay time of slow-wave increasing abruptly.
     Finally, based on the applications of shear-wave splitting in the source area of Yushu earthquake, eastern Tibet Plateau and volcanic area in southern Iceland, we dicusse and summarize the research significance of the shear-wave splitting method on the dynamics research of the crustal and mantle structure, and the applications prospects of the stress monitoring before and after earthquakes or volcanoes. Through the above analysis and discussion, on the one hand, we have more comprehensive and profound understanding on the anisotropic characteristics in the study area. On the other hand, our results supplement the previous anisotropic results, and also provide the relevant reference for the successive anisotropic study.
引文
常利军,丁志峰,王椿镛.2010.2010年玉树7.1级地震震源区横波分裂的变化特征.地球物理学报,53(11):2613-2619
    常利军,王椿镛,丁志峰等.2008.青藏高原东北缘上地幔各向异性研究.地球物理学报.51(2):431-438
    陈立春,王虎,冉勇康等.2010.玉树Ms7.1级地震地表破裂与历史大地震.科学通报,55(13):1200-1205
    陈立华,宋仲和,安昌强等.1992.中国南北带上地幔三维面波速度结构和各向异性.地球物理学报,35:574-583.
    丁志峰,曾融生.1996.青藏高原横波分裂的观测研究.地球物理学报,39(2):211-220.
    丁志峰,武岩,王辉,周晓峰,李贵银.2008.2008年汶川地震震源区横波分裂的变化特征,中国科学D辑:地球科学,39(12):1600-1604.
    董英君,薛光琦,马开义等.1999.阿尔金断裂系及邻区剪切波各向异性研究.地球物理学进展,14(4):58-65.
    高原,郑斯华.1994.唐山地区剪切波分裂研究(Ⅱ)--相关函数分析法,中国地震.10(增刊):11-21.
    高原,郑斯华,孙勇.1995.唐山地区地壳裂隙各向异性.地震学报,17(3):283-293
    高原,郑斯华,冯德益.1993.剪切波的多级分裂概念的提出与初步分析.东北地震研究.9(4):1-10
    高原,郑斯华,王培德.1996.海南省东方地区1992年小震群剪切波分裂研究.地球物理学报,39(2):221-232
    高原,郑斯华,周蕙兰,1999.唐山地区快剪切波偏振图像及其变化.地球物理学报,42(2):228-232.
    高原,梁维,丁香等.2004.云南2001年施甸地震的剪切波分裂参数变化特征.地震学报,26(6):576-582
    姜枚,许志琴,Him A等.2001.青藏高原及其部分邻区地震各向异性和上地幔特征.地球学报,22(2):111-116.
    姜枚,王有学,钱辉等.2009.造山的高原—青藏高原及其邻区的宽频地震探测与地壳上地幔结构.北京:地质出版社,58-96.
    赖院根,刘启元,陈九辉等.2006.首都圈地区横波分裂与地壳应力场特征.地球物理学报,49(1):189-196
    雷军,王培德,姚陈等.1997.云南剑川近场横波特征及其与构造的关系.地球物理学报,40(6):791-801
    李白基.1996.云南禄劝地震余震分裂S波.地震学报,18(2):224-230.
    李志伟,胥颐,Steven W R等.2007.中天山地区的Pn波速度结构与各向异性.地球物理学报,50:1066-1072.
    刘超,许力生,陈运泰.2010.2010年4月14日青海玉树地震快速矩张量解.地震学报,32:366-368
    刘莎,杨建思,田宝峰等.2012.玉树地区地壳介质的各向异性特征.地球物理学报,55(10):3327-3337.
    刘希强,周慧兰等.1998.剪切波在双层多维各向异性介质传播中分裂参数的变化特征.地球物理学报,41(5):680-690.
    刘堃,张中杰,胡家富等.2001.中国陆区S波分裂与上地幔地震各向异性.地球物理学进展,16:81-87.
    罗省贤,李录明.2003.基于横波分裂的地层裂缝预测方法与应用.成都理工大学学报(自然科学版),30(1):52-59.
    罗艳,黄忠贤,彭艳菊等.2004.中国大陆及邻区SKS波分裂研究.地球物理学报,47(5):812-821.
    吕庆田,马开义,姜枚,Him A, Nercessian A.1996.青藏高原南部下的横波各向异性.地震学报,18(2):215-223.
    卢明辉,唐建侯,杨慧珠等.2005.正交各向异性介质P波走时分析及Thomsen参数反演.地球物理学报,48:1167-1171.
    彭华,马秀敏,白嘉启等.2006.甘孜-玉树断裂带第四纪活动特征.地质力学学报,12(3):295-304.
    裴顺平,许忠淮,汪素云.2002.新疆及邻区Pn速度层析成像.地球物理学报,45:119-126.
    阮爱国,王椿镛.2006.云南地区上地幔各向异性.地震学报,25:260-267.
    史大年,董君英,姜枚,赵红,Poupinet G, Him A, Nercessian A.1996.西藏定日-青海格尔木上地幔各向异性研究.地质学报,70(4):291-297.
    石玉涛,高原,赵翠萍等.2009.汶川地震余震序列的地震各向异性.地球物理学报,52(2):398-407
    石玉涛,高原,吴晶等.2006.云南地区地壳介质各向异性-快剪切波偏振特性的初步研究.地震学报,28(6):574-585
    孙勇,郑斯华.1993.唐山地区剪切波分裂研究.中国地震,9(1):60-67.
    唐荣昌,韩渭宾.1993.四川活动断裂与地震.北京:地震出版社,10-39.
    汤吉,陈小斌,董泽义等.2011.青藏高原东北部青海兴海-囊谦岩石圈电性结构初步结果,中国地球物理年会,湖南,长沙.
    滕吉文,张中杰,王爱武等.1992.弹性介质各向异性研究沿革现状与问题.地球物理学进展,7:14-28.
    滕吉文,张中杰,王光杰等.2000.地球内部各圈层介质的地震各向异性与地球动力学.地球物理学进展.15:1-35.
    田宝峰,李娟,王卫民等.2008a.华北太行山区地壳各向异性的接收函数证据.地球物理学报.51(5):1459-1467.
    田宝峰,李娟,姚振兴.2008b.利用接收函数方位变化研究太行山区地壳各向异性.地震学报.30(4):355-366.
    闻学泽,黄圣睦,江在雄等.1985.甘孜-玉树断裂带新构造运动特征与地震危险性估计.地震地质,7(3):23-34.
    吴晶,高原,蔡晋安,石玉涛等.2007.华夏地块东南部地壳地震各向异性特征初步研究.地球物理学报.50(6):1748-1756.
    吴晶,高原,陈运泰等.2007.首都圈西北部地壳介质地震各向异性特征初步研究.地球物理学报,50(1):209-220
    汪一鹏.2001.青藏高原活动构造基本特征.见:马宗晋,王一鹏,张燕平,主编.青藏高原岩石圈现今变动与动力学,北京:地震出版社,251-262.
    王椿镛,常利军,吕智勇等.2007.青藏高原东部上地幔各向异性及相关的壳幔耦合型式.中国科学(D辑),37(4):495-503
    王良书,陈运平,米宁等.2005.从地震波各向异性到各向异性地震学:地震波各向异性研究综述.高校地质学报,11(4):544-551
    王培德,Klinge K, Kruger F, Plenefisch T.2000.波形极相似的地震丛集中剪切波分裂的变化.地震学报,22(5):501-508
    王琪,张培震,牛之俊等.2001.中国大陆现今地壳运动和构造变形.中国科学(D),31(7):529-536
    王新岭,刘杰,张国民,马宏生等.2006.2000年姚安地震余震序列的剪切波分裂研究.地震 学报,28(2):119-131.
    许志琴,姜枚,杨经绥.1996.青藏高原北部隆升的深部构造物理作用.地质学报,70(3):195-206.
    许忠淮.2001.东亚地区现今构造应力图的编制.地震学报,23(5):492-501.
    许忠淮,汪素云,裴顺平.2003.青藏高原东北缘地区Pn波速度的横向变化.地震学报,25:24-31.
    徐震,徐鸣洁,王良书等.2006.用接收函数Ps转化波研究地壳各向异性一以哀牢山—红河断裂带为例.地球物理学报,49:438-448.
    杨宝俊.1992.勘探地震学导论.长春:吉林科学技术出版社.
    杨晓松,金振民,马瑾等.2002.青藏高原北部异常SKS分裂成因的初步探讨—被熔体强化的岩石圈各向异性.地球物理学报.45(6):821-831
    姚陈,王培德,陈运泰.1992.卢龙地质S波偏振与上地桥裂隙各向异性.地球物理学报,35(3):305-315.
    叶正仁,王健.2004.中国大陆现今地壳运动的动力学机制.地球物理学报,47(3):456461.
    张永久,高原,石玉涛等.2010.四川紫坪铺水库库区地震剪切波分裂研究.地球物理学报,53(9):2091-2101
    张中杰,滕吉文.1995.三维各向异性介质上内界面上地震波的传播.科学通报,46(14):1992-1997.
    郑治真.1989.S波分裂的研究.地球物理学进展,5(1):8-13.
    郑斯华,高原.1994.中国大陆岩石层的方位各向异性.地震学报,16:131-140.
    周保,彭建兵,张骏.2009.青海省活动断裂带分布发育特征研究.工程地质学报,17(5):612-618
    周荣军,闻学泽,蔡长星等.1997.甘孜-玉树断裂带的近代地震与未来地震趋势估计.地震地质,19:115-124
    庄真,傅竹武,吕梓龄等.1992.青藏高原及邻近地区地壳与上地幔剪切波三维速度结构.地球物理学报,35(06):694-709
    Aki K, Kaminuma K.1963. Phase velocity in Japan. Part I. Love waves from the Aleutian shock of March 1957. Bull. Earthq. Res. Inst.41:243-259.
    Anderson D L.1961. Elastic wave propagation in layered anisotropic Media. J. Geophy. Res., 66:2953-2963.
    Anderson D L.1993. Theory of the earth. Guang Huaping, Yang Yurong, Liu Xiaowei, et al. Translate. Beijing:Seismological Press,403-440.
    Ando M, lshikawa Y, Yamazaki F.1983.Shear wave polarization anisotropy in the upper mantle beneath Honshu,Japan. J.Geophys.Res.,88:5850-5864
    Angelier, J., Slunga, R., Bergerat, F., et al.,2004. Perturbation of stress and oceanic rift extension across transform faults shown by earthquake focal mechanisms in Iceland, Earth. Planet. Sci. Lett,219,271-284.
    Aster, R., Shearer, P., Berger, J.,1990. Quantitative measurements of shear wave polarizations at Anza Seismic network Southern California:implications for shear wave splitting and earthquake prediction. J. Geophys. Res.95,12,449-12,473.
    Avouac J P, Tapponnier P.1993, Kinematic model of active deformation in central Asia. Geophys Res Lett,20:895-898.
    Babuska V, Plomerova J, Sileny J.1984. Spatial variations of P residuals and deep structure of the European lithosphere. Geophys. J. Royal Astr. Soc.,79:363-383.
    Bakulin A, Grechka V, Tsvankin I.2000. Estimation of fracture parameters from reflection seismic data-Part II:Fractured models with orthorhombic symmetry. Geophysics, 65:1803-1817.
    Bamford D, Crampin S.1977. Seismic anisotropy the state of the art. Geophys. J. R. Astron. Soc, 49:1-8.
    Bamford D, Jentsch M, Prodehl C.1979. Pn anisotropy studies in northern Britain and eastern and western United States. Geophys. J. Royal Astr. Soc.,57:397-430.
    Bianco, F., Scarfi, L., Del Pezzo, E. & Patane, D.,2006. Shear wave splitting changes associated with the 2001 volcanic eruption on Mt Etna,Geophys. J. Int.,167,959-967.
    Bianco, F., Castellano, M. & Ventura, G.,1998. Structural and seismological features of the 1989 syn-eruptive NNW-SSE fracture system at Mt. Etna, Geophys. Res. Lett.,25,1545-1548.
    Booth, D.C. & Crampin, S.,1985, Shear-wave polarisations on a curved wavefront at an isotropic free-surface,Geophys. J. R. Astron. Soc.,83,31-45.
    Bergerat, F., Gudmundsson, A., Angelier, J. & Rognvaldsson, S.T.,1998. Seismotectonics of the central part of the South Iceland Seismic Zone, Tectonophysics,298,319-335.
    Bowman JR, Ando M.1987. Shear-wave splitting in the upper mantle wedge above the Tonga subduction zone. Geophys J Int,88(1):25-41.
    Buchbinder, G.G.R.,1985. Shear-wave splitting and anisotropy in the Charlevoix Seismic Zone Quebec. Geophys. Res. Lett. 12,425-428.
    Buchbinder, G.G.R.,1989. Azimuthal variations in P-wave travel times and shear-wave splitting in the Charlevoix Seismic Zone. Tectonophysics,165,293-302.
    Chen W P, Ozalaybey S.1998. Correlation between seismic anisotropy and Bouger gravity anomalies in Tibet and its implications for lithospheric structure. Geophys. J. Int., 135:93-101.
    Chen W P, Martin M, Tseng T L, et al.2010. Shear-wave birefringence and current configuration of converging lithosphere under Tibet. Earth Planet. Sci. Lett.,295:297-304.
    Chesnokov Y M, Nevskig M V.1977. Seismic anostropy investigations in the USSR. Geophys. J. Royal Astr. Soc.,49:115-121.
    Christensen N I, Lundquist S.1982. Pyroxene Orientation within the Upper Mantle. Bull. Geol.Soc.Am.,93:279-288
    Crampin, S., Evans, R., Miller, A. & Kafadir, N.,1985. Turkish Dilatancy Project TDP3, March to November,1984, Bull. Int. Inst. Seism. Earthq. Eng.,21,93-114.
    Crampin, S.,1987. The basis for earthquake prediction, Geophy. J R. Astro. Soc.91,331-347.
    Crampin S, Booth D C.1985. Shear-wave polarization near the North Anatolian Fault, Ⅱ. Interpretation in terms of crack-induced anisotropy. Geophys J R Astron Soc,83:75-92
    Crampin S.1981. A review of wave motion in an isotropic and cracked elastic-media. Wave Motion,3:343-391
    Crampin, S.,1998. Stress-forecasting:a viable alternative to earthquake prediction in a dynamic Earth, Trans. R. Soc. Edin., Earth Sci.,89,121-133.
    Crampin S, Volti T, Chastin S, et al.2002. Indication of high pore-fluid pressures in a seismically-active fault zone. Geophys. J. Int.,151:F1-F2.
    Crampin S, Peacock S.2005. A review of shear-wave splitting in the compliant crack-critical anisotropic earth. Wave Motion,41:59-77.
    Crampin, S., Booth, D.C., Evans, R., Peacock, S., Fletcher, J.B.,1990. Changes in shear wave splitting at Anza near the time of the North Palm Springs Earthquake. J. Geophys. Res.95, 11,197-11,212.
    Crampin S.1994. The fracture criticality of crustal rocks. Geophys. J. Int.,118:428-438
    Crampin, S. & Peacock, S.,2005. A review of shear-wave splitting in the compliant crack-critical anisotropic Earth, Wave Motion,41,59-77.
    Crampin, S. & Peacock, S.,2008. A review of the current understanding of seismic shear-wave splitting in the Earth's crust and common fallacies in interpretation, Wave Motion,45, 675-722.
    Crampin S.1975. Distinctive particle motion of surface waves as a diagnostic of anisotropic layering. Geophys. J. R.,40:177-186
    Crampin, S., Booth, D.C.,1985. Shear-wave polarisations near the North Anatolian Fault:Ⅱ, interpretation in terms of crack-induced anisotropy, Geophys. J. R. Astron. Soc.,83,75-92.
    Crampin, S.,1994. The fracture criticality of crustal rocks, Geophys. J. Int.,118,428-438.
    Crampin, S., Zatsepin, S.V.,1997a. Changes of strain before earthquakes:the possibility of routine monitoring of both long-term and short-term precursors, J. Phys. Earth,45,1-26.
    Crampin, S., Zatsepin, S.V.,1997b. Modelling the compliance of the crustal rock -Ⅱ. Response to temporal changes before earthquakes. Geophys. J. Int.,129:495-506.
    Crampin, S.,1999a. Calculable fluid-rock interactions, J.Geol. Soc.,156,501-514.
    Crampin, S.,1999b. Stress-forecasting earthquakes, Seism, Res. Lett.,70,291-293.
    Crampin, S.,1978. Seismic wave propagation through a cracked solid:polarisation as a possible dilatancy diagnostic, Geophys.J. R.. Astron. Soc.,53,467-496.
    Crampin S, Chesnokov E M, Hipkin RA.1984. Seismic anisotropy:the state of the art. First Break, 2(3):9-18
    Crampin, S.,1984. Effective anisotropic elastic-constants for wave propagation through cracked solids, Geophys. J. R. Astron. Soc.,76,135-145.
    Crampin, S., Booth, D.C., Evans, R., et al.,1990. Changes in shear wave splitting at Anza near the time of the North Palm Springs earthquakes, J. Geophys. Res.,95,11197-11212.
    Crampin, S.,2003. The New Geophysics:shear-wave splitting provides a window into the crack-critical rock mass, Leading Edge,22,536-549.
    Crampin, S., Gao, Y.,2005. Comment of on'Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-chi earthquake:shallow crustal anisotropy and lack of precursory variations', by Liu, Y,. Teng, T.-L., & Ben Zion, Y., Bull. Seism. Soc. Am.,95, 354-360, doi:10.1785/0120040092.
    Crampin, S., Gao, Y.,2006. A review of techniques for measuring shear-wave splitting above small earthquakes, Phys. Earth. Planet. Inter.,159,1-14.
    Crampin, S.2011. Shear-wave splitting, the New Geophysics, and earthquake stress-forecasting, in Encycl. Solid Earth Geophys., ed. Gupta, H., Springer, Heidelberg,2,1355-1362.
    Crampin, S. & Gao, Y.,2012a. Plate-wide deformation before the Sumatra-Andaman Earthquake, J. Asian Earth Sci.46,61-69.
    Del Pezzo, E., Bianco, F., Petrosino, S. et al.,2004. Changes in the coda decay rate and shear wave splitting parameters associated to seismic swarms at Mt. Vesuvius, Italy, Bull. Seism. Soc. Am.,94,439-452.
    Evans, R., Beamish, D., Crampin, S. & Ucer, S.B.,1987. The Turkish Dilatancy Project (TDP3): multidisciplinary studies of a potential earthquake source region, in Proc.2nd Int. Workshop on Seismic Anisotropy, Moscow,1986, eds. D.C. Booth, S. Crampin & E.M. Chesnokov, Geophys. J. R. Astron. Soc.,91,265-286.
    Flesch L M, Holt W E, Silver P G, et al.2005. Constraining the extent of crust-mantle coupling in central Asia using GPS, geologic, and shear wave splitting data [J]. Earth Planet. Sci. Lett., 238:248-268, doi:10.1016/j.epsl.2005.06.023. Einarsson, P., S(?)mundsson, K.,1987. Earthquake epicenters 1982-1985 and volcanic systems in Iceland (map), in i Hlutarsins Eoli: Festschrift for Thorbjorn Sigurgeirsson, edited by Th. Sigfusson. Menningarsjoour, Reykjavik.
    Forsyth D W.1975. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. Royal Astr. Soc.,43:103-162,
    Frederiksen A W, Folsom H, Zandt G.2003. Modelling teleseismic waves in dipping anisotropic structures. Geophys. J. Int.,141:401-412.
    Fryer G J, Frazer L N.1987. Seismic waves in stratified anisotropic media -Ⅱ. Elastodynamic eigensolutions for some anisotropic systems. Geophys. J. Royal Astron. Soc.,91:73-101.
    Fukao, Y.,1984. Evidence from core-reflected shear waves for anisotropy in the Earth's mantle. Nature.309,695-698.
    Gao, Y, Wang, P., Zheng, S., et al.,1998. Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, southern China, Geophys. J. Int.,135,102-112.
    Gao, Y, Crampin, S.,2004. Observations of stress relaxation before earthquakes, Geophys. J. Int., 157,578-582.
    Gao, Y., Crampin, S.,2003. Temporal variation of shear-wave splitting in field and laboratory in China, in Proc.10th Int. Workshop on Seismic Anisotropy, Tutzing,2002, eds. Gajewski, D., Vanelle, C. & Psencik, I., Spec. Issue, J. Appl. Geophys.,54,279-287.
    Gerst, A. & Savage, M.,2004. Seismic anisotropy beneath Ruapehu volcano:a possible eruption forecasting tool, Science,306,1543-1547.
    Grechka V, Theophanis S, Tsvankin I.1999. Joint inversion of P- and PS-waves in orthorhombic media:theory and a physical- modelling study. Geophysics,64:146-161.
    Gudmundsson, M.T., Hoskuldsson, A., Larsen, G., et al.,1989. Eyjafjallajokull April-June 2010: An explosive-mixed eruption of unusually long duration, EGU Gen. Assemb.[[[Major, J.J. & Newhall, C.G. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods, Bull. Volcanol.,52,1-27.
    Gao S S, Liu K H.2009. Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem. Geophys. Geosyst.,10,Q02008, doi:10.1029/2008GC002227.
    Gao Y, Wu J, Yoshio Fukao, et al.2011. Shear wave splitting in the crust in North China:stress, faults and tectonic implications. Geophys. J. Int,187:642-654
    Gao Y and Crampin S.,2003. Temporal variation of shear-wave splitting in field and laboratory in China. Proc.10th Int. Workshop on Seismic Anisotropy, Tutzing,2002, J.Appl. Geophys.
    Gao Y, Crampin.2003. Temporal variation of shear-wave splitting in field and laboratory in China. Proc.10th Int. Workshop on Seismic Anisotropy, Tutzing,2002, J. Appl. Geophys.
    Gao Y, Crampin S.2004. Observations of stress relaxation before earthquakes. Geophy. J. Int, 157(2):578-582.
    Gan W J, Zhang P Z, Shen Z K, et al.2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res,112:B08416.
    Gerst, A., Savage, M.,2004. Seismic anisotropy beneath Ruapehu volcano:a possible eruption forecasting tool. Science,306,1543-1547.
    Hearn T M, Beghoul N, Barazangi M.1991. Tomography of the Western United States from regional arrival times. J. Geophys. Res.,96:16369-16381.
    Hearn T M.1996. Anisotropic Pn tomography in the western United States. J. Geophys. Res., 101:8403-8414.
    Hess H H.1964. Seismic anisotropy of the uppermost mantle under oceans. Nature, 203:629-631.
    Him A, Jiang M, Sapin M, et al.1995. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature,375:571-574, doi:10.1038/375571a0.
    Holt W.2000. Correlated crust and mantle strain fields in Tibet. Geology,28:67-70.
    Holt W E, Chamot-Rooke N, Pichon X L, et al. Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J. Geophys. Res.,2000, 105:19185-19210.
    Huang W C, Ni J F, Tilmann F, et al.2000. Seismic polarization anisotropy beneath the central Tibetan Plateau. J Geophys. Res.,105:27,979-27989, doi:10.1029/2000JB900339.
    Hudson J A.1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. astr. Soc.,64:133-150.
    Jiang M, Wang Y X, Qian H, et al.2009. Orogenic plateau-Broadband seismic survey and crust and upper mantle structure from Qinghai-Tibet Plateau. Geological Publishing House,58-85.
    Jin Shuyan.1993. Rock fabric and anisotropy of the upper mantle. Geological Science and Technology Information.12(3):32-38.
    Karato S.1988. The role of recrystallization in the preferred orientation in olivine. Phys. Earth planet. Inter.,51:107-122.
    Karato S, Wu P.1993. Rheology of the upper mantle:a synthesis. Science,260:771-778.
    Karato S I.1998. Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection. Pure Appl. Geophys.,151:565-587.
    Kawasaki I, Konno F.1984. Azimuthal anisotropy of surface waves and the possible type of seismic anisotropy due to preferred orientation of olivine in the uppermost mantle beneath the Pacific Ocean. J. Phys. Earth,32:229-244.
    Keen C E, Tramontini C.1969. A seismic refraction survey on the mid-Atlantic ridge. Geophys. J. Royal Astr. Soc.,20:473-491.
    Keith, C.M., Crampin, S.,1977. Seismic body waves in anisotropic media:synthetic seismograms, Geophys. J. R.Astron. Soc.,49,225-243.
    Kern H, Burlini L, Ashchepkov V I.1996. Fabric-related seismic anisotropy in upper mantle xenoliths:Evidence from measurements and calculations. Physics of the Earth and Planetary Interiors,95:195-209.
    Klimentos T, Badri M, Sousa S.2000, Shear anisotropy applications in production optimization, Western Desert, Egypt. SEG Expanded Abstracts,19:1695-1698.
    Lev E, Long M D, Hilst R D.2006. Seismic anisotropy in eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet. Sci. Lett.,251:293-304, doi:10.1016/j.epsl.2006.09.018.
    LeOn Soto G, Sandvol E, Ni J F, et al.2012. Significant and vertically coherent seismic anisotropy beneath eastern Tibet. J. Geophys. Res.,117, B05308, doi:10.1029/2011JB008919.
    Levin V, Park J.1998. P-SH conversions in layered media with hexagonally symmetric anisotropy:a cookbook. Pure Appl. Geophys,151:669-697.
    Levin V, Park J.1997. P-SH conversions in a flat-layered medium with anisotropy of arbitrary orientation. Geophys. J. Int.,131:253-266.
    Li C, Hilst R D, Meltzer A S, et al.2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett.,274:157-168, doi:10.1016/j.epsl.2008.07.016.
    Li C, Hilst R D, Toksoz M N.2006. Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys. Earth Planet. Inter.,154:180-195.
    Li Y H, Wu Q J, Zhang F X et al.2011. Seismic anisotropy of the Northeastern Tibetan Plateau from shear wave splitting analysis. Earth and Planetary Science Letters,314:147-157
    Liu Y, Teng T L, Ben-Zion Y.2004. Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi earthquake:shallow crustal anisotropy and lack of precursory variation. Bull Seism Soc Am,94:2330-2347.
    Makeyeva L I, Vinnik L P, Roecker S W.1992. Shear-wave splitting and small-scale convection in the continental upper mantle. Nature,358:144-147.
    Maupin V.1994. On the possibility of anisotropy in the D" layer as inferred from the polarization od diffracted S waves. Phys. Earth Planet. Int.87:1-32.
    Menke W, Brandsdottir B, Jakobsdottir S, et al.1994. Seismic anisotropy in the crust at the mid-Atlantic plate boundary in south-west Iceland. Geophys J Int,119:783-790
    McNamara D E, Owens T J. Walter W R.1995. Observations of regional phase propagation across the Tibetan Plateau. J. Geophys. Res.,100:22215-22229.
    McNamara D E, Owens T J, Silver P G, et al.1994. Shear wave anisotropy beneath the Tibetan Plateau. J. Geophys. Res.,99:13655-13665.
    Miller, V. & Savage, M.,2001. Change in seismic anisotropy after volcanic eruptions:evidence from mount Ruapehu, Science,293,2231-2233.
    Montager J P.1998. Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers. Pure Appl. Geophys.,151:223-256.
    Montager J P, Guillot L.2002. Seismic anisotropy and global geodynamics. In:Karato S I, Wenk H R eds. Plastic Deformation of Minerals and Rocks. American Mineralogical Society. Washington DC,353-380.
    Montager J P, Nataf H C.1986. On the inversion of the azimuthal anisotropy of surface waves. J. Geophys. Res.,91:511-520
    Munson C G, Thurber C H, Li Y et al.1995. Crustal shear wave anisotropy in southern Hawaii: spatial and temporal analysis. J. Geophys. Res.,100:367-377.
    Nataf T J, Zandt G, Taylor S R.1984. Seismic evidence for an ancident rift beneath the Cumberland Plateau Tennessee:A detailed analysis of broadband teleseismic P waveforms. J. Geophys. Res.,89:7783-7795.
    Nicolas A, Christensen N L.1987. Formation of anisotropy in upper mantle peridotites:A review, in composition structure and dynamics of the lithosphere asthenosphere system. Geodyn. Ser., 16:111-123.
    Niu F L, Li J.2011. Component azimuths of the CEArray stations estimated from P-wave particle motion. Earthquake Science,24:3-13
    Omnes G.1990. Experimental study of the coupled cord downhole seismic source. SEG Expanded Abstracts,9:148-152.
    Park J, Yuan H, Levin V.2004. Subduction-zone anisotropy under Corvallis Oregon: Aserpentinite skidmark of trench-parallel terrane migration? J. Geophys. Res.,109:B10306.
    Peacock S E.1996. Thermal petrologic structure of subduction zones. In subduction:top to bottom (eds. DeBout, G. E., Scholl, D W., Kirby, S. H., and Platt, J. P.), American Geophysical Union, Washingtom,119-133.
    Peng Z, Ben-Zion Y.2004. Systematic analysis of crustal anisotropy along the Karadere-Duzce branch of the North Anatolian fault. Geophys. J. Int.,159:253-274.
    Peselnick L, Nicolas A, Stevenson P R.1974. Velocity anisotropy in a mantle peridotite from Inrea zone:Application to upper mantle anisotropy. J. Geophys. Res.79:1175-1182.
    Rabbel W, Mooney W D.1996. Seismic anisotropy of the crystalline crust:What does it tell us? Terra Nova,8:16-21.
    Raitt R W, Shor G G, Francis T J G et. al.1969. Anisotropy of the Pacific upper mantle. J. Geophys. Res.,74:3095-3109.
    Raitt R W, Shor G G, Morris G M.1971. Mantle anisotropy in the Pacific Ocean. Tectonophysics, 12:173-186.
    Ribe N M.1989. Seismic anisotropy and mantle flow. J. Geophys. Res.94:4213-4223.
    Richard Y, Richard M A, Lithgow-Nertelloni C, et al.1993. A geodynamic model of mantle density heterogeneity. J Geophys Res,98:21895-21909.
    Richardson R M.1992. Ridge forces, absolute plate motions, and the intraplate stress field. J Geophys Res,97:11739-11748.
    Ringwood A E.1975. Composition and petrology of the Earth's mantle. Mc Graw-Hill, New York,618.
    Rumpker G, Silver P G.1998. Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy. Geophys. J. Int.135:790-800.
    Shearer P, Orcutt J.1985. Anisotropy in the oceanic lithosphere-theory and observations from the Ngendei seismic refraction experiment in the south-west Pacific. Geophys. J. Royal Astr. Soc.,80:493-526.
    Shieh, C.F.,1997. Estimation of shear-wave splitting time using orthogonal transformations. Geophysics.62,657-661.
    Shih, X.R., Meyer, R.P., Schneider, J.F.,1989. An automated, analytical method to determine shear-wave splitting. Tectonophysics.165,271-278.
    Shih, X.R., Meyer, R.P., Schneider, J.F.,1990. An automated, analytical method to determine shear-wave splitting. Tectonophysics.165,271-278.
    Shor G G, Pollard D D.1964. Mohole site selection studies north of Maui. J. Geophys. Res., 69:1627-1637.
    Shor G G, Raitt R W, Henry M et al.1973. Anisotropy and crustal structure of the Cocos Plate. Geofisica International.13:337-362.
    Siegesmund S, Kern H.1990. Velocity anisotropy and shear-wave splitting in rocks from the mylonite belt along the Insubric Line (Ivrea Zone, Italy). Earth Planet. Sci. Let.,99:29-47.
    Simons F J, Van der Hilst R D, Montagner J P et al.2002. Multimodel Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle. Geophus. J. Int.,151(3):738-754
    Silver, P.G., Chan, W.W.,1988. Implications for continental structure and evolution from seismic anisotropy. Nature.335,34-39.
    Silver P G, Chan W W.1991. Shear wave splitting and subcontinental mantle deformation. Journal of geophysical research,96(10):16429-16545
    Silver P G.1996. Seismic anisotropy beneath the continents:probing the depth of geology. Annu.Rev.Earth Planet.Sci.,24:385-432
    Simons F J, Hilst R D, Montagner J P, et al.2001.Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle. Geophys. J. Int., 738-754.
    Sigmundsson, F., Hreinsdottir S., Hooper A., et al.2010. Intrusion triggering of the Eyjafjallajokull explosive eruption, Nature,468,426-430.
    Song X, Richards P G.1996. Seismological evidence for differential rotational of the Earth's inner core. Nature,382:221-224.
    Stevenson, J.A., Loughlin, S., Thordarson, T.C., et al.,2012. Distal deposition of tephra from the Eyjafjallajokull 2010 summit eruption, J. Geophys. Res.,117, B00C10, doi:10.1029/2011JB008904.
    Sturkell, E., Sigmundsson, F., Einarsson, P.,2003. Recent unrest and magma movements at Eyjafjallajokull and Katla volcanoes, Iceland, J. Geophys. Res.,108,2369, doi:10.1029/2001JB000917.
    Sturkell, E., Einarsson, P., Robert, M. J., et al.,2008. Seismic and geodetic insights into magma accumulation at Katla subglacial volcano, Iceland:1999 to 2005, J. Geophys. Res.,113, B03212,doi:10.1029/2006JB004851.
    Tanimoto T, Anderson D L.1984. Mapping convection in the mantle. Geophys. Res. Lestt., 11:287-290.
    Tanimoto T, Anderson D L.1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle:Love and Rayleigh waves 100-250s. J. Geophys. Res.90:1842-1858.
    Tarasewicz, J. Brandsddttir, B. White, R.S. Hensch, M. & Thorbjarnardottir, B.2012. Using microearthquakes to track repeated magma intrusions beneath the Eyjafjallajokull stratovolcano, Iceland. J. Geophys. Res.,117, B00C06, doi:10.1029/2011JB008751.
    Teanby N A, Kendall J M, Jones R H, et al.2004. Stress-induced temporal variation in seismic anisotropy observed in microseismic data. Geophys J Int,156:459-466.
    Thomsen L.1986. Weak elastic anisotropy. Geophysics,51:1954-1966.
    Timann F, Ni J, the INDEPTH Ⅲ Seismic Team.2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet Plateau. Science,300:1424-1427.
    Tommasi A, Tikoff B, Vauchez A.1999. Upper mantle tectonics:three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth Planet. Sci. Lett.,168:173-186.
    Tsvankin I.1997. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics,62:1292-1309.
    Vidale, J.E.,1986. Complex polarization analysis of particle motion. Bull. Seismol. Soc. Am.76, 1393-1405.
    Vinnik L P, Kind R, Kosarev G L et al.1989. Azimuthal anisotropy in the lithosphere from observations of long-period S-waves. Geophys. J. Int.,99:549-559.
    Vinnik L P, Makeyeva L I, Milev A et al.1992. Global patterns of azimuthal anisotropy and deformation in the continental mantle. Geophys. J. Int.,111:433-447.
    Vinnik L P, Kind R.1993. Ellipticity of teleseismic S-particle motion, Geophys. J. Int., 113:165-174
    Volti, T. & Crampin, S.,2003a. A four-year study of shear-wave splitting in Iceland:1. Background and preliminary analysis, in New insights into structural interpretation and modeling, ed. Nieuwland, D.A., Geol. Soc. Lond., Spec. Publ.,212,117-133.
    Volti, T. & Crampin, S.,2003b. A four-year study of shear-wave splitting in Iceland:2. Temporal changes before earthquakes and volcanic eruptions, in New insights into structural interpretation and modeling, ed. Nieuwland, D.A., Geol. Soc. Lond., Spec. Publ., 212,135-149.
    Yu Y, Park J, Wu F.1995, Mantle anisotropy beneath the Tibetan Plateau:evidence from long-period surface waves. Phys Earth Planet. Interior.,87:231-246.
    Wang C Y, Flesch L M, Silver P G, et al.2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology,36,363-366, doi:10.1130/G24450A.I.
    Wang Q, Zhang P Z, Freymueller J T, et al.2001. Present-day crustal deformation in China constrained by global positioning system measurements, Science,294:574-577.
    Zatsepin S V, Crampin S.1997. Modeling the compliance of crustal rock:Response of shear-wave splitting to differential stress. Geophys. J. Int.,129:477-497.
    Zhang H S, Teng J W, Tian X B, Zhang Z J, Gao R, Liu J Q. Lithospheric thickness and upper-mantle deformation beneath the NE Tibetan Plateau inferred from S receiver functions and SKS splitting measurements. Geophys. J. Int.,2012,191:1285-1294.
    Zhang Z, Schwartz S Y.1994. Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas fault system. J. Geophys. Res.,99:9651-9661.
    Zhao B, Shi Y T, Gao Y.2012. Seismic relocation, focal mechanism and crustal seismic anisotropy associated with the 2010 Yushu Ms7.1 earthquake and its aftershocks. Earthq Sci., 25:111-119.
    Zhao L, Zheng T Y.2005. Using shear wave splitting measurements to investigatethe upper mantle anisotropy beneath the North China Craton:distinct variation from east to west. Geophys. Res. Lett.,32:L10309.
    Zhao L, Zheng T Y, Lu G, Ai Y S.2011. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision:constraints from new SKS wave splitting measurements. Geophys. J. Int.,187:1027-1037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700