用户名: 密码: 验证码:
快速响应性PNIPA智能水凝胶的合成、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚N-异丙基丙烯酰胺(PNIPA)智能水凝胶作为一种温度敏感性材料,近年来在应用中取得了初步进展,并越来越受到人们的重视。目前,一部分工作集中在凝胶响应机制的理论解释及实验验证;另一部分工作通过NIPA与其它单体的共聚,以期实现对材料的改性,从而获得多重敏感性的凝胶,以实现在各个领域中的应用。
     PNIPA智能水凝胶的智能性主要体现在两个方面:(1)PNIPA在相转变温度(LCST)附近,随温度的微小变化,凝胶的溶胀度具有很大的突变性;(2)PNIPA在LCST附近的溶胀度变化速率很快(快速响应性)。目前制备的PNIPA水凝胶大都具有响应速度慢的缺点,往往不能从以上两方面同时体现出其智能性;而PNIPA水凝胶的响应速率是一个极为重要的参数,在很多情况下都要求其对外界温度刺激具有较快的响应速率,这就大大限制了温敏性PNIPA智能水凝胶的使用范围。因此,提高快速响应性一直是智能水凝胶研究的一个重要课题。
     目前,对提高PNIPA智能水凝胶快速响应性的基础研究相对较少。这是由于影响因素较多,而研究手段却较少。文献中已报道的提高其响应速率的方法有以下几种:(1)合成小尺寸的PNIPA微凝胶。由于研究手段的限制,此类研究在理论方面发展较慢,在实际应用中也没有获得突破性进展,应用范围极为有限。(2)合成含孔的PNIPA水凝胶。在PNIPA智能凝胶结构中引入孔洞的方法提高了凝胶的响应速率,但是凝胶的强度相对降低了很多;同时由于其结构上的特点,降低了其适用的范围。例如,在凝胶的浓缩分离过程中,由于孔洞结构吸附了大量的生物大分子,从而降低了浓缩效率。(3)利用相分离技术合成PNIPA水凝胶。此法得到的PNIPA水凝胶具有较快的响应速率,但对反应时间和温度的控制非常关键。由于对凝胶化时间难以作出精确的判断,合成的PNIPA水凝胶重现性较差,且呈乳白色;与常规方法合成的PNIPA水凝胶相比,其机械强度也下降很多;此法合成的PNIPA水凝胶难以在实际中使用。(4)接枝共聚合成PNIPA水凝胶。将NIPA单体接枝到其它基体上,合成具有特定结构的PNIPA水凝胶。一方面,上述特定结构单体的合成过程复杂,很难在实际中得到应用;另一方面,所合成的共聚物由于PNIPA含量的限制,水凝胶在LCST前后的溶胀性能有所减弱,智能性有所降低。
     本工作以N-异丙基丙烯酰胺为单体,N,N’—亚甲基双丙烯酰胺为交联剂制备了一系列智能性水凝胶。从理论和应用的角度出发,以提高PNIPA水凝胶的智能性为目的,首先以宏观PNIPA智能水凝胶为对象,重点研究凝胶的尺寸对凝胶响应速率的影响,并将由此得到的理论应用到微观凝胶的研究中去,克服了微观凝胶研究手段的限制;然后将得到的凝胶进行应用试验。同时,还对PNIPA智能水凝胶的响应机理进行探讨。
     (1)采用传统的化学引发法,用溶液聚合制备了一系列不同直径(湿凝胶,3.12~2.8mm)、不同厚度(湿凝胶,3~12mm)的PNIPA宏观智能水凝胶;将一部分凝胶粉碎制得不同尺寸的(干凝胶,0.154~0.9mm)粒状凝胶。
     首先研究了聚合条件对PNIPA智能水凝胶性能的影响,在最佳制备条件(T≤10℃,7%≤C_(NIPA)≤12%,2%≤C_(MBA)≤4%)时可以得到透明、溶胀度较高、性能均一的PNIPA智能水凝胶。
    
     然后研究了水凝胶的溶胀一消溶胀、脱水一吸水过程与凝胶尺寸的关系。结果表明,在
    凝胶处于消溶胀和干燥状态下时,凝胶块容易形成一种壳—核结构。在核中是被包裹的水
    分子,由于外面的壳层比较致密,其内部的水很难扩散出。且随着凝胶直径和厚度的增大,
    其内部包括的水的含量也急剧增加;而对于尺寸更小的粉状凝胶,其形成的壳层和核层的比
    例相差不大,其溶胀性能受尺寸的影响很小。
     凝胶达平衡溶胀所需的时间与凝胶尺寸之间的关系可以用式:刀功。=K(肠。)。x(MT),
    作为普适方程来应用。对于尺寸较小的凝胶,由于表征手段的限制,可以由此方程进行外推,
    取得了较好的效果。由此可作为制备和使用快速响应性智能水凝胶的理论依据。
     (2)分别采用无皂乳液聚合和反相乳液聚合的方法制备了一系列不同尺寸的微凝胶,
    分析制备条件对微凝胶的影响。结果表明,采用反相悬浮聚合可以制得粒径较大的智能水凝
    胶(D:ll pm),采用无皂乳液聚合在不同条件下合成一系列不同尺寸的微凝胶(D扣.12“m~
    4.5协m);分别采用激光光散射和偏光显微镜对微凝胶的大小、形态进行表征,也得到了一
    致结果;采用紫外一可见分光光度计可以定性地研究微凝胶的相转变现象。
     将由宏观凝胶得到的理论公式应用到微观凝胶的溶胀动力学中,可以初步估计微凝胶达
    平衡溶胀所需的时间,定量的体现快速响应性智能水凝胶的智能性。
     (3)将不同尺寸的宏观凝胶和微观凝胶分别对牛血红蛋白进行固定化,研究凝胶尺寸
    对牛血红蛋白活性的影响,分析PNI以智能凝胶对牛血红蛋白活性的控制机理。结果表明,
    在PH=6 .0,C。=3 .5%时,PNIPA凝胶对酶的活性具有很好的可控性;尺寸较小的粉状凝胶和
    由悬浮聚合得到的微凝胶,由于其对温度的快速响应性,其对牛血红蛋白的活性的控制效果
    很好,充分体现了快速响应性智能水凝胶的智能性。
     (4)以褪黑素为模型药物,研究释放条件?
As a kind of temperature-sensitive material, the application of Poly(N-isopropylacrylamide) (PNIPA) intelligent hydrogels has been achieved primary development and got much intention in recent years. At the present time, studies are focused both on theoretic explanation and experimental verification for the stimuli-response mechanism, and on the copolymerization of NIPA with other monomers to modify their properties and obtain multi-sensitive hydrogels which are applied in wide fields.
    Usually, the intelligent properties of hydrogels are shown into two aspects: (1) The hydrogels have discontinuous swelling ratios with little change of temperature near the LCST. (2) The hydrogels have rapid stimuli-response velocities. PNIPA hydrogels prepared by traditional methods have very slow stimuli-response velocities, which limits their application range.
    Furthermore, the stimuli-response of PNIPA hydrogels is a very important parameter in application. The rapid stimuli-response velocity is needed in many cases. Therefore, the preparation and application are important task in research of intelligent hydrogels with rapid response velocity.
    The reason of the limited research on theory and application for rapid response velocity is ascribed to the complicated influencing factors and little of characterization methods. There are several methods reported to increase the response speed in literature.
    (1) Preparation of microgels by emulsion polymerization or other methods. But there are less techniques and methods for their characterization and development in theory, accordingly, there is little breakthrough in the practical application. Therefore, the use of this method is very limited.
    (2) Synthesis of porous PNIPA hydrogels. Though the response speeds are enhanced, the reduced hydrogel intensity limits their application in much fields. For example, some bio-macromolecules can be absorbed into the hydrogel pores in separation, which reduces the separation efficiency.
    (3) Manufacture by Phase Separation Technique. The PNIPA hydrogels have rapid response velocities, but the control of reaction time and temperature in preparation is much critical. Sometimes, the same hydrogels could hardly be achieved with different reaction time, and the hydrogels are often opaque and fragile. Thus, the hydrogels prepared by this method cannot be used practically too.
    
    
    (4) Graft copolymerization. NIPA monomer is grafted onto the defined matrix to synthesize the functional material. Obviously, such hydrogels have rapid response velocities compared with the large bulk hydrogels, but there are also two shortcomings in this method. One is the complicated preparation of defined structure; the other is the seriously reduced swelling ratio near LCST due to the limited content of PNIPA.
    In this paper, more attention was paid to two respects-swelling ratio and stimuli-response velocity to improve intelligent properties of PNIPA hydrogels.
    (1) By traditional chemical initialing method, a series of macrogels with different diameter (3. 12~12. 8mm, wet state) and thickness (3~12mm, wet state) were obtained in solution polymerization. Some of these macrogels were smashed into particles with different diameter(0. 154~0. 9mm, dry state).
    Firstly, the effects of polymerization conditions on the macrogels properties were conducted. The experiment results showed that the transparent, high swelling ratio and uniform macrogels could be manufactured at the optimized conditions (T^IO'C, Secondly, the relationship between the macrogels dimension and the swelling-deswelling, dehydration-soakage process was studied by different method. The results showed that the macrogels could form a shell-core structure easily under the deswelling or dry state. In this structure, some water was packed into the macrogels which could not diffuse out of the shell due to the outer compact shell. With the increase of diameter and thickness, the water content packed in the macrogels increased sharply. However, the swelling ratio was hardly affected by dimension for the smaller macrog
引文
[1] 马如璋,蒋民华,徐祖雄.功能材料学概论.第一版.北京:冶金工业出版社,1999.647.
    [2] 姚康德.许美萱等.智能材料(21世纪的新材料).第一版.天津:天津大学出版社.1996.351.
    [3] Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Biosensors and Bioelectronics, 1998, 13(2):ⅲ.
    [4] Holtz J H, Holtz J S W, Munro C H, Asher S A. Intelligent polymerized crystalline colloidal arrays: novel chemical sensor materials. Analytical Chemistry, 1998, 70(4):780-791.
    [5] Tahahashi K, Nozaki S. Intelligent materials in future electronics. Microelectronics and Reliability,1997,37(3):537-538.
    [6] Obaidat M S, Suhail M A, Sadoun B. An intelligent simulation methodology to characterize defects in materials. Information Sciences, 2002, 127(1-4):33-41.
    [7] Yanagida H. Intelligent materials for environment and people. Materials and Design, 2000, 21(6):507-509.
    [8] http://www.scitom, com.cn/discovery/imaterial/ima101.html
    [9] 陈旭东,沈家瑞,夏成林.未来属于智能材料.化工新型材料,1995,(5):39~41.
    [10] 张建合.智能型水凝胶的合成及其刺激响应性.信阳师范学院学报(自然科学版),1998,11(2):190-195.
    [11] New hydrogel. Smart Materials Bulletin, 2002,2002(7):6.
    [12] Promising hydrogels. Materials Today. 2002.5(8):18.
    [13] 张胜兰,沈新元,杨庆.张汉喜.热敏水凝胶的研究进展.河南师范大学学报(自然科学版),2000,28(1):42-46.
    [14] 房喻,胡道道,崔亚丽.智能型高分子水凝胶的应用研究现状.高技术通迅,2001,(3):107-110.
    [15] 刘晓华.王晓工,刘德山,智能型水凝胶结构及响应机理的研究进展.化学通报,2000,(10):1-6.
    [16] Ilmain F, Tanaka T, Kokufuta E. Volume transition in a gel driven by hydrogen bonding. Nature, 1991.340(6308):400-401.
    [17] 余锡胜.孙以实.敏感性水凝胶及其应用研究进展.高分子通报.1988.(2):46.
    [18] Akashi M, Nakano S, Kishida A. Synthesis of poly(N-vinylisobutyramide) from poly(N-vinyl acet-amide) and its thermosensitive property. Journal of Polymer Science, Part A:Polymer Chemistry, 1996,34(2):301-303.
    [19] 王永成,李元宗,常文保.慈云祥.NIPA系温度敏感水凝胶及分析应用.分析科学学报,1999,15(6):510-515.
    [20] Otake K, Karaki R, Ebina T, Yokoyama C, Takahashi S. Pressure effects on the aggregation of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid) in aqueous solutions. Macromolecules, 1993,26(9):2194-2197.
    [21] 王平.钟兴,王宇新.王世昌.用图象处理方法研究凝胶溶胀特性.高分子材料科学与工程,1996,12(3):1-5.
    [22] Park T G,Hoffman A S. Estimation of temperature-dependent pore size in poly(N-isopropyl acrvlamide) hydrogel beads. Biotechnology Progress,1994,10(1):82-86.
    [23] 翟茂林,张九宏,伊敏,哈鸿飞.温度敏感性聚N-异丙基丙烯酰胺水凝胶的辐射合成及其性质研究.同位素,1994,7(4):198-204.
    [24] Nagaoka N, Safrani A, Yoshida M, Omichi H, Kubota H, Katakai R. Synthesis of poly(N-isopropylacrylamide ) hydrogels by radiation polymerization and cross-linking. Macromolecules,1993, 26(26):7386-7388.
    [25] Wu X S, Hoffman A S, Yager P. Synthesis and characterization of thermally reversible macro-
    
    porous poly(N-isopropylacrylamide) hydrogels. Journal of Polymer Science, Part A:Polymer Chemistry, 1992, 30(10):2121-2129.
    [26] Yi Y D, Oh K S, Bae Y C. Phase transition of submicron sized N-alkylacrylamide-derivative copolymer particles: Applicability of photon correlation spectroscopy. Polymer, 1997,38 (14):3471-3476.
    [27] Suzuki A, Tanaka T. Phase transition in polymer gels induced by visible light. Nature, 1990, 346(6282):345-347.
    [28] Zhang X M, Li Y, Hu Z B, Littler C L. Bending of N-isopropylacrylamide gel under the influence of infrared light. Journal of Chemical Physics, 1995, 102(1):551.
    [29] Li Y, Hu Z B, Chen Y Y. Shape memory gels made by the modulated gel technology. Journal of Applied Polymer Science, 1997, 63(9):1173-1178.
    [30] Kaneko Y, Nakamura S, Sakai K, Kikuchi A, Aoyagi T, Sakurai Y, Okano T. Deswelling mechanism for comb-type grafted poly (N-isopropylacry lamide) hydrogels with rapid temperature responses. Polymar Gels and Networks, 1998, 6(5):333-345.
    [31] Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T. Comb-type grafted hydrogels with rapid de-swelling response to temperature changes. Nature, 1995, 374(6519) :240-242.
    [32] Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T. Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules, 1998,31(18):6099-6105.
    [33] Mukae K, Bae Y H, Okano T, Kim S W. New thermo-sensitive hydrogel. Poly(ethylene oxide -dimethyl siloxane-ethylene oxide)/poly (N-isopropyl acrylamide) interpenetrating polymer networks I. Synthesis and characterization. Polymer Journal, 1990, 22(3):206-217.
    [34] Mukae K, Bar Y H, Okano T, Kim S W. Thermo-sensitive hydroge 1. Poly(ethylene oxide-dimethy1 siloxane-ethylene oxide)/poly(N-isopropyl acrylamide) interpenetrating polymer networks Ⅱ. On-off regulation of solute release from thermo-sensitive hydrogel. Polymer Journal, 1990, 22(3):250-265.
    [35] Hu Z B, Chen Y Y, Wang C J,Zheng Y D, Li Y. Polymer gels with engineered environmentally responsive surface patterns. Nature, 1998, 393 (6681):149-152.
    [36] Afrassiabi A L, Hoffman A S, Cadwell L A. Effect of temperature on the release rate of biomolecules from thermally reversible hydrogels. Journal of Membrane Science, 1986,33(2):191-200.
    [37] 李雄伟,严昌虹,廖奇.接枝聚合物PAA—g—PIPA微球的制备及其温控释药研究.高分子学报,1994,(2):156-161.
    [38] 王昌华.曹维孝.温敏水凝胶.化学通报,1996.(1):33-37.
    [39] 何庆,盛京.响应性凝胶及其在药物控释上的应用.功能高分子学报,1997,10(1):118-127.
    [40] Cammas S, Suzuki K, Sone C, Sakurai Y. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. Journal of Controlled Release, 1997,48(2-3):157.
    [41] Fritas R F S, Cussler E L. Temperature sensitive gel as extraction solvents. Chem Eng Sci. 1987, 42:97-103.
    [42] 余锡胜,佟水心,孙以实.温敏性水凝胶的合成及其性能研究.高分子学报,1989,(4):488~492.
    [43] 王锦堂,仲慧,朱红军,张维.光温敏性水凝胶对蛋白质和酶浓缩分离性能.南京化工大学学报(自然科学版),1998,20(2):75-77.
    [44] Hoshino K, Taniguchi M, Katagiri M, Fujii M. Properties of amylase immobilized on a new reversibly soluble-insoluble polymer and its application to repeated hydrolysis of soluble
    
    starch. Journal of Chemical Engineering of Japan, 1992,25(5):569-574.
    [45] Tatsuma T, Takada K, Matsui H, Oyama N. Redox gel. Electrochemically controllable phase transition and thermally controllable electrochemistry, Macromolecules, 1994, 27,(22):6687.
    [46] 张明,陈明清.刘晓亚,杨成.聚合物凝胶的研究与应用.化学世界,2002,(9):498-501.
    [47] Zeng F, Tong Z, Feng H Q. N.m.r. investigation of phase separation in poly(N-isopropyl acrylamide)/water solutions. Polymer, 1997,38(22):5539-5544.
    [48] 翟茂林,哈鸿飞.功能性PolyNIPAAm系高聚物.高分子通报,1999,(2):38-45.
    [49] Kara S, Pekcan O. Phase transition of N-isopropylacrylamide gels prepared with various cross-linker contents. Materials Chemistry and Physics, 2003,80(2):555.
    [50] Suzuki A, Kobiki Y,Yamazaki M. Effects of network inhomogeneity in poly-(N-isopropylacrylamide) gel on its surface structure. Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers),2003,42(5A):2810-2817.
    [51] Suzuki A, Xi R W,Kuroda M,Ishiyama E, Kanama D. Swelling properties of thin-plate hydrogels under mechanical constraint. Japanese Journal of Applied Physics, Part 1 (Regular Papers, Short Notes & Review Papers),2003,42(2A):564-569.
    [52] 刘晓华,王晓工,刘德山.一种多孔温敏性聚(N—异丙基丙烯酰胺)水凝胶的制备方法.中国专利:01129696.8,2001.12.26.
    [53] Gotoh T, Nakatani Y, Sakohara S. Novel synthesis of thermosensitive porous hydrogels. Journal of Applied Polymer Science, 1998,69(5):895-906.
    [54] Bhalerao V S, Varghese S, Lele A K,Badiger M V. Thermoreversible hydrogel based on radiation induced copolymerisation of poly(N-isopropyl acrylamide) and poly(ethylene oxide). Polymer, 1998,39(11):2255-2260.
    [55] 叶白忠[译].N-异丙基丙烯酰胺.精细与专用化学品,2003.(3/4):23.
    [56] 陈文明,于振宁,阎立峰.N-异丙基丙烯酰胺与N-异丙基甲基丙烯酰胺的酸催化合成改进.精细化工,1998,15(6):46-48
    [57] http://www.sigmaaldrich.com/
    [58] 刘郁杨.范晓东.邵颖惠.N-异丙基丙烯酰胺/N-乙烯基吡咯烷酮水凝胶的研究.功能高分子学报,2000,13(4):380-384.
    [59] 刘郁杨.范晓东,张双存.温度及pH敏感N-异丙基丙烯酰胺/β-环糊精水凝胶的合成与性能研究.功能高分子学报,2002,(2):618-622.
    [60] 杨华.庄银凤,朱仲祺.宋伟强.赵惠东.聚(N-异丙基丙烯酰胺)N-乙烯基吡咯烷酮水凝胶的辐射合成及其药物控释性研究.河南大学学报(自然科学版),2001,31(1):67-70.
    [61] 贾剑飞,刘琼,范晓东,胡晖.温敏性聚(N-异丙基丙烯酰胺)/聚氨酯-β-环糊精互穿网络水凝胶的溶胀特性.功能高分子学报,2002,15(3):284-285.
    [62] 朱健,朱秀林,路建美.郭卫华,袁永坤.pH敏感性和温敏性聚丙烯酸钠与聚N-异丙基丙烯酰胺互穿网络材料的合成及其溶胀行为的研究.高校化学工程学报,2002,16(3):302-305.
    [63] 吉静.黄明智.明胶-聚异丙基丙烯酰胺水凝胶的溶胀动力学.功能高分子学报,2002,15(2):177-180.
    [64] 吉静,黄明智.明胶-异丙基丙烯酰胺水凝胶的溶胀性.石油化工,2002,31(7):523-526.
    [65] 郑静,王俊卿,苏致兴.壳聚糖与N-异丙基丙烯酰胺接枝共聚.应用化学,2003.20(12):1204-1207.
    [66] 张先正,卓仁禧.快速温度敏感聚(N-异丙基丙烯酰胺-co-丙烯酰胺)水凝胶的制备及性能研究.高等学校化学学报,2000,21(8):1309~1311.
    [67] 梁长海.维持凝胶织构的干燥理论、技术及应用.功能材料,1997,28(1):10-14.
    [68] 陈应飚,叶钊,李炬城,潘宏庆,林松,赖东升.凝胶的干燥.福建化工.2002,(2):20-23.
    
    
    [69] 奚红霞,黄仲涛.凝胶的干燥.膜科学与技术,1997,17(1):1-8.
    [70] Melekaslan D, Gundogan N, Okay O. Elasticity of poly(acrylamide) gel beads. Polymer Bulletin, 2003,50(4):287-294.
    [71] Tuncel A, Unsal E, Cicek H. pH-sensitive uniform gel beads for DNA adsorption. Journal of Applied Polymer Science, 2000,77(14):3154-3161.
    [72] 乔向利,侯征迟,盛康龙,姚恩德.光聚合法对聚异丙基丙烯酰胺纳米凝胶粒径及形状的控制.微纳电子技术,2003,(7/8):523-525.
    [73] Yoshiharu H, Takayuki A, Yoshitsugu H, Toyoichi T. Phase Transition of Submicron Gel Beads. Macromolecules. 1987,20(6):1342-1344.
    [74] 庄严,张复盛.无皂乳液聚合技术及其应用.专论与综述,1998,(4):35-38.
    [75] 孙亦周,王颖.姚雄健.无皂乳液聚合原理及其制备.航天工艺,2001,(2):24-35.
    [76] Hansen F K, Ugelstad J. Particle nucleation in emulsion polymerization——1.A theory for homogeneous nucleation. Journal of Polymer Science, Polymer Chemistry Edition, 1978, 16 (8):1953-1979.
    [77] 朱再盛.吕广镛.无皂乳液聚合的研究进展.广州化工,2001,29(4):7-12.
    [78] Yang S C, Ge H X, Hu Y, Jiang X Q, Yang C Z. Doxorubicin-loaded poly(butylcyanoacrylate)nanoparticles produced by emulsifier-free emulsion polymerization. Journal of Applied Polymer Science, 2000,78(3):517-526.
    [79] 郭林晖.马承银,陈红梅.无皂乳液聚合的理论研究、制备方法及应用.化学世界,2003.(1):49-53.
    [80] 冯大春,尹家贵,鲁红.Au/AQ的反相悬浮共聚合.中国矿业大学学报,2001,30(6):624-626.
    [81] 樊世科,秦振平,郭红霞,曹庆生,付锋.丙烯酸(钠)—丙烯酰胺的反相悬浮聚合研究.延安大学学报(自然科学版),2001,20(4):42-44.
    [82] 王峰.生物医用聚丙烯酰胺微球的反相悬浮聚合与功能化.四川化工与腐蚀控制,2001,4(2):31-36.
    [83] 郭振良.微乳液聚合制备聚丙烯酰胺及聚.N-异丙基丙烯酰胺超细微粒.烟台师范学院学报(自然科学版),1999,15(1):39-43.
    [84] 郭振良.微乳液聚合聚 N-异丙基丙烯酰胺超细微粒的结构表征.烟台师范学院学报(自然科学版),1999,15(2):113-116.
    [85] 吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(上).高分子通报,1998,(3):9-16.
    [86] 吴奇,汪晓辉,高均.激光光散射研究聚(N-异丙基丙烯酰胺)单链及其智能凝胶微球在水中的相变(下).高分了通报,1998,(4):1-9.
    [87] 高均,吴奇.聚(N-异丙基丙烯酰胺)水凝胶微球体积相变的研究.高分子学报,1997,(3):324-330.
    [88] 陈騊声,居乃琥,陈石根.固定化酶理论与应用.1987年3月第1版.北京:轻工业出版社.SS号:10232782,页数:384.
    [89] Nikolic L, Skala D, Nikolic V, Stamenkovic J, Babic D, Ilic-Stojanovic S. Methyl methacrylate and acrylamide crosslinked macroporous copolymers. Journal of Applied Polymer Science, 2004, 91(1):387-395.
    [90] 蒋治良,莫琪,李森,贝伟浩,刘明登.酶的固定化及应用.广西化工,1994,23(3):18-23.
    [91] [英]N.麦克利恩(著):鲁子贤,徐玥(译).血红蛋白.第一版.北京:科学出版社,SS号:10233640,1983,79.
    [92] Vidal M M B, Gil M H, Delgadillo I, Alonso Chamarro J. Swelling and thermal properties of poly(vinyl alcohol) containing hemoglobin membranes, Journal of Bioactive and Compatible Polymers, 1999,14(3):243-257.
    [93] Chiancone E, Gattoni M, Boffi A. Immobilized human hemoglobin, a versatile matrix for analytical and biotechnological applications. Journal of Chromatography B.1998, 715(1): 81-84.
    
    
    [94] 秦文斌.血缃蛋白病.第一版,北京:人民卫生出版社.1984,317.
    [95] 黄应平.刘丰.陈百玲.罗光富.颜克美.李杨.血红蛋白作为过氧化物模拟酶催化测定过氧化氢.分析试验室,2003,22(1):12-15.
    [96] 黄应平,蔡汝秀.血红蛋白过氧化物模拟酶胶束催化显色体系.分析化学(研究简报),2003,31(1):99~102.
    [97] 毛陆原,张珂,蔡汝秀,刘志宏,曹启花.动态光谱法研究血红蛋白在反向胶束中的类酶催化作用.武汉大学学报(自然科学版),2000.46(2):227~230.
    [98] 王全林,刘志洪,蔡汝秀,吕功煊.血红蛋白的过氧化物酶催化特性研究.化学学报,2003,61(1):34~39.
    [99] Kato N, Samejima S, Takahashi F. Isomaltose synthesis in the reversed hydrolysis catalyzed by amyloglucosidase immobilized in the thermosensitive gel. Materials Science and Engineering C, 2001,17(1-2):155-160.
    [100] Kato N, Oishi A, Takahashi F. Peptide synthesis catalyzed by a -chymotrypsin immobilized in the poly(N-isopropylacrylamide/acrylamide) gel. Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 2000,13(1):109-116.
    [101] Chen J P, Hsu M S. Preparations and properties of temperature-sensitive poly(N-isopropylacrylamide)-chymotrypsin conjugates. Journal of Molecular Catalysis B: Enzymatic,1997,2 (4-5):233-241.
    [102] 彭玉荪,朱婉华,陈钧辉.生物化学实验.第一版.北京:人民教育出版社.SS号:10090751,1979,156.
    [103] [德]B·施特尔马赫.酶的测定方法.第一版.北京:中国轻工业出版社,SS号:10034678,1992,336.
    [104] http://www.yy2000.com/xinyaodongtai/gaofenziyuyaowu.htm
    [105] 唐明义.耿奎士.高分子药物缓释材料.化工新型材料,1998,26(9):26-28.
    [106] Andreopoulos A G, Tarantili P A. Study of biopolymers as carriers for controlled release. Journal of Macromolecular Science-Physics,2002,41B(3):559-578.
    [107] 杨亚楠,尹静波,刘芳.高分子材料在药物控制释放方面的应用.吉林工学院学报,2001,22(3):38-40.
    [108] 邓先模,李孝红.生物医用高分子在癌症药物治疗中的应用.高分子通报,1999,(3):94-98.
    [109] 冯文来,赵平.控制释放技术发展及展望.化学工业与工程,1996,13(1):49-53.
    [110] Fix J A. Controlled-release oral delivery systems, American Chemical Society, Polymer Priprints, Division of Polymer Chemistry, 1999,40(1):252.
    [111] Fix J A, Sako K, Sawada T. Controlled-release oral delivery systems. ACS Symposium Series, 2000,752:14-24.
    [112] 孙勇,叶蕾,张理星,张健翔.药物控制释放体系的应用进展.山东医药工业,2002,21(6):19-21.
    [113] 田广孚,贾万忠,田方.药物缓慢释放和控制释放系统研究和应用概况(一).中国兽医寄生虫病,2000,8(3):49-52.
    [114] 田广孚,贾万忠,田方.药物缓慢释放和控制释放系统研究和应用概况(二).中国兽医寄生虫病,2000,8(4):46-48.
    [115] Mellott, Michael B. Ph.D. Release ofbiomolecules from hydrogel matrices of photo polymerized poly(ethylene glycol). Pissertation Abstracts International, Volume:62-07, Section:B, page: 3298. Chair:Michael V. Pishko. AAI3020089.
    [116] Huang G, Gao J, Hu Z B, John S, John V, Ponder B C, Moro D. Controlled drug release from hydrogel nanoparticle networks. Journal of Controlled Ralease, 2004,94(2-3):303-311.
    
    
    [117] 朱兴年.药物缓释、控释制剂的研究进展.药学实践杂志,2002,20(3):155-157.
    [118] Huang S J, Kitchen O, DiBenedetto L J. Swellable biodegradable polymers as controlled release systems. Polymeric Materials Science and Fngineering Proceedings of the ACS Division of Polymeric Materials Science and Engineering, 1990, 62:804-807.
    [119] 吴礼光,刘荣娥,朱长乐,潘祖仁.控制释放技术.应用化学,1994.11(3):1-10.
    [120] Sutani K, Kaetsu I, Uchida K, Matsubara Y. Stimulus responsive drug release from polymer gel.: Controlled release of ionic drug from polyampholyte gel. Radiation Physics and Chemistry, 2002, 64(4):331-336.
    [121] http://fm365.39.net. cn/Professional/Drug/Research/200012/3165620001227.htm
    [122] Dinarvand R, Emanuele A D. The use of thermoresponsive hydrogels for on-off release of molecules. Journal of controlled release, 1995, 36:221-227.
    [123] Zhuang Y F, Yang H, Wang G W, Zhu Z Q, Song W Q, Zhao H D. Radiation Polymerization and Controlled Drug Release of Polymer Hydrogels with NIPA and NVP. Journal of Applied Polymer Science, 2003,88:724-729.
    [124] Aso Y, Yoshioka S, Nakai Y, Kojima S. Thermally controlled protein release from gelatindextran hydrogels. Radiation Physics and Chemistry, 1999, 55(2):179-183.
    [125] Wu M H, Borong B, Jie C, Xu Y J, Zhou S R, Ma Z T. Preparation of thermosensitive hydrogel(PP-gNIPAAm) with on-off switching for controlled release of drugs. Radiation Physics and Chemistry. 1999, 56:341-346.
    [126] Kim J C, Kim J D. Release property of temperature-sensitive liposome containing poly (N-isopropylacrylamide). Colloids and Surfaces B: Biointerfasces, 2002, 24:45-52.
    [127] 李建蓉,公瑞煜.以亲水凝胶为载体的药物控制释放体系.大理医学院学报,1998,7(1):42-45.
    [128] 崔小兵,茅力,赵晓莉,练鸿振.褪黑素胶囊紫外分光光度法测定.南京中医药大学学报,1999.15(3):175.
    [129] 普考,龚明涛,张钧寿,胡林森.褪黑素缓释片的研制及释药特性的研究.中国药科大学学报,2003,34(3):232~235.
    [130] 黄月文,罗宜干,卓仁禧.温度及PH值敏感水凝胶的合成和应用.广州化学,1996,(2):58-63.
    [131] Zhong B X, Weng H B, Fang W H. Preparation of protein samples for gel electrophoresis by sequential extraction. Journal of Zhe jinag University, 2002,3(5):606-610.
    [132] Rifi E H, Leroy M J F, Brunette J P. Extraction of copper, cadmium and related metals with poly(sodium acrylate-acrylic acid)hydrogels. Solvent Extraction and Ion Exchange, 1994, 12(5):1103-1119.
    [133] Radi S, Ramdani A, Lekchiri Y, Morcellet M, Crini G, Janus L, Martel B. Extraction of metal ions from water with tetrapyrazolic macrocycles bound to Merrifield resin and silica gel. Journal of Applied Polymer Science, 2000, 78(14):2495-2499.
    [134] Takeshita K J,Tanaka M, Nakano Y. Extraction of Cd(Ⅱ) from aqueous nitrate solution by thermo-sensitive gel crosslinked with 2, 6-DI(3-vinylbenzyl-1, 2, 4-triazol-5-yl)pyridine (BTP). Solvent Extraction and Ion Exchange, 2002,20(1):139-150.
    [135] Kruchkov F A. Gel extraction. The main equations. Separation Science and Technology, 1996, 31(17):2351-2357.
    [136] Laguecir A, Frere Y, Danicher L, Loureiro J M, Ernst B, Burgard M. Polyacrylic gel beads
    
    reinforced by a polyamide membrane: Application to copper removal in aqueous media. Desalination, 2002, 146(1-3):311-317.
    [137] Mirza U A, Liu Y H, Tang J T, Porter F, 8ondoc L, Chen G, Pramanik B N, Nagabhushan T L. Extraction and characterization of adenovirus proteins from sodium dodecylsulfate polyacrylamide gel electrophoresis by matrix-assisted laser desorption/ionization mass spectrometry, Journal of the American Society for Mass Spectrometry, 2000, 11(4):356-361.
    [138] Chen X F, Shi Y J. Concentration and separation of macromolecular solution by gel extraction. Huadong Huagong Xueyuan Xuebao/Journal of East China Institute of Chemical Technology, 1991,17(4):379-383.
    [139] 张剑波.温敏性水凝胶对金属离子Y3+,U02+2的浓集分离.环境科学,1999,20(6):87-90.
    [140] 黄健,王晓琳,陈秀珍.智能型高分子凝胶及其在化工分离领域中的应用.南京化工大学学报,2000, 22(6):90-94.
    [141] Huang X, Unno H, Akehata T, Hirasa 0. Analysis of kinetic behavior of temperature sensitive rater-absorbing hydrogel. Journal of Chemical Engineering of Japan, 1987, 20(2):123-128.
    [142] 黄健,王晓琳,陈秀珍,余学海.聚(N-异丙基丙烯酰胺)的体积相转变及在分离领域中的应用研究.高分子材料科学与工程,2001,17(6):35-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700