姿态调整平台电液伺服系统控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境试验在航空及航天工程领域具有非常重要的地位,同时随着工业空气动力学的发展,其应用领域已延伸到了交通运输、房屋建筑、风能利用等行业。然而作为环境试验重要组成部分的攻角机构,即环境中模型姿态调整平台,其控制系统性能在很大程度上决定了整个平台运行稳定性、带负载能力及模型运动精度等性能指标。
     本课题来源于某环境改造项目,首先,针对模型姿态调整平台电液伺服阀控制液压马达系统的相关技术展开研究。在详细分析了平台机械和液压系统原理后,充分考虑影响系统控制精度的各个因素,建立系统各环节传递函数,并结合系统实际参数值确定系统整体数学模型,进行基本的稳定性和系统响应分析。
     由于电液伺服系统是典型的未知不确定非线性系统[16],因此为加快系统响应速度,提高控制精度,在多种控制算法中考虑到算法可行性与适应性,提出经典PID控制和模糊PID控制两种控制算法,并进行控制器设计与Matlab仿真分析。
     在进行了系统建模和PID及模糊PID两种智能控制算法仿真分析后,结合模型姿态调整平台的功能需求,分析并对比当下可行的控制方法,确定合适的控制方案,并从硬件设计、软件编程、人机界面等方面进行介绍。最后通过整机性能试验,证明控制算法能够满足平台控制需求,同时验证了控制方案和控制方法的可行性与可操作性。实现了模型在环境中预期的姿态调整目标。
     试验表明,该姿态调整平台已经实现了环境中模型的多种姿态调整,动作运行稳定、控制效果良好,为该环境的完善和模型环境实验提供了很好的硬件平台。
Wind tunnel test has a very important role in the aviation field and aerospace engineering. With the development of industry aerodynamic, the application field of wind tunnel has extended to industry like Transportation Building construction、 Wind energy utilization, etc. As the important part of wind tunnel, Control performance of attack angle mechanism also know as attitude adjustment platform, determines operation stability、loading capacity and motion precision.
     This topic is based on a wind tunnel reformation project, related researches are carried out on the technology of electro-hydraulic servo valve controlled motor system of the model attitude adjusting platform. Based on detailed analysis of the principle of platform of mechanical and hydraulic system, via fully consideration of the various factors affecting the control system precision, the transfer function of each component of the system are set up. Combined with the actual parameter values to determine the overall system mathematical model, the basic stability and system response analysis is carried out.
     For the electro-hydraulic servo system is a typical unknown uncertain nonlinear systems, To accelerate the speed of response and improve the control precision, classical PID control and fuzzy PID control intelligent algorithms are used, also controller design and Matlab simulation analysis are developed.
     After system modeling and simulation analysis of the PID and fuzzy PID intelligent control algorithms, Combined with the model attitude adjustment platform functional requirements, by analysis of the current feasible control method, the appropriate control scheme is determined, and give a brief description of hardware design, interface, software program, etc. Via overall performance test, the system control scheme is put forward to meet the needs of the platform control, the control scheme and control methods feasibility and operability is verified. The expected attitude adjustment target is implemented.
     Currently, the attitude adjustment platform has realized many kinds of model attitude adjustment action in wind tunnel, and is working in a good condition, also has a good control effect, provides a good hardware platform for improvement of wind tunnel and wind tunnel experiments.
引文
[1]辛华.超燃风洞六自由度攻角系统的关键技术研究[D].国防科技大学,2011
    [2]中国人民解放据总装备部军事训练教材编辑工作委员会.低速风洞试验[M].北京:国防工业出版社,2003
    [3]张斌.脉动风洞试验模型姿态调整系统设计与研究[D].国防科技大学,2009
    [4]张正刚等.世界航空工业展览[M].北京:航空工业出版社,1988
    [5]Lucking, J. M. An Overview of National Transonic Facility Investigation for High Performance Military Aerodynmaic. AIAA-2001-0906
    [6]马彬,王辉,陈红.4米×3米低速风洞模型姿态角控制系统[J].气动实验与测量控制,1991
    [7]孙海生,张晖,汤更生,王超棋.8m×6m风洞特大迎角试验设备研制[J].实验流体力学,2009.
    [8]陈振民.低速风洞测控自动化应用技术[J].数据采集与处理,1997.
    [9]欧阳建波.风洞试验飞行器模拟运动平台设计之平动机构设计[D].国防科技大学,2007
    [10]战培国.风洞发展现状及趋势研究[J].航空科学技术,2010
    [11]Eitelbery,G. Some Developments in Experimental Techniques of the German-Dutch Wind Tunnels(DNW). AIAA-2000-2643
    [12]张永双.基于BP神经网络参数自学习的PID控制技术在NF-6风洞模型姿态控制中的应用[D].国防科技大学,2002
    [13]阎成.1.2m大攻角控制系统研制[D].国防科技大学,2003
    [14]姚非.航天器姿态控制系统仿真平台的研究[D].哈尔滨工业大学,2010
    [15]杜雨轩.风洞攻角系统的设计与研究[D].西南交通大学,2012
    [16]杨征瑞,花克勤,徐轶.电液比例与伺服控制[M].冶金工业出版社,2009
    [17]赵敬伟.伺服阀控液压马达速度控制系统性能研究[D].山东大学,2005
    [18]付长安,朱治国.对未来飞机液压系统的展望[J].液压与气动,1999,(6):11-12
    [19]于刚.伺服阀控液压马达系统的辨识与控制研究[D].山东大学,2007
    [20]成大先.机械设计手册-液压控制[M].化学工业出版社
    [21]张吉军.车载发电液压传动系统的建模与仿真研究[D].北京交通大学,2006
    [22]张勤华.连续回转电液伺服马达的结构分析和性能研究[D].哈尔滨工业大学,2007
    [23]Zhongwen Wang,Junpeng Shao,Jianying Lin and Guihua Han Research on Controller Design and Simulation of Electro-hydraulic Servo System[J]. International Conference onMechatronics and Automation
    [24]胡静波.装载机容错线控转向系统研究[D].吉林大学博士学位论文,2008
    [25]王同建.装载机线控转向技术研究[D].吉林大学博士论文,2006
    [26]刘金琨.先进PID控制及其Matlab仿真[M].电子工业出版社,2004
    [27]张捷.高压共轨式柴油机硬件在环仿真系统研究[D].华中科技大学博士学位论文,2007
    [28]王佳.基于模糊PID的矫正直机液压控制系统研究[D].武汉科技大学,2009
    [29]诸静.模糊控制理论与系统原理[M].机械工业出版社,2005
    [30]Shao Juanyu, Xu Ding, Lin Li, Feng Pan. Fuzzy PID-type Iterative learning control For Electro-hydraulic servo system[J] 2010 International Conference on Computational Aspects of Social Networks.
    [31]周淼磊.基于模糊PID控制的新型压电型电液伺服阀研究[J].压电与声光,2006
    [32]Wang Hongying, Ma Jianjun. The Design Based on Fuzzy PID Electro-hydraulic. Advances in Mechanical and Electronic Engineering, LNEE 177, pp. 511-516.
    [33]Yang Xiaole, Zhang Yuanliang, Zhao Wenlong. Electro-hydraulic Servo System Control Technology Based on Fuzzy-multi-PID[J] 978-1-4244-3894-5/09/ (?)2009 IEEE
    [34]王洪杰,王福生,王丽智.基于模糊PID控制的直驱式电液伺服系统研究[J].机床与液压,2007
    [35]Kwanchai Sinthipsomboon, Watcharin Pongaen and Pornjit Pratumsuwan. A Hybrid of Fuzzy and Fuzzy self-tuning PID Controller for Servo Electro-hydraulic System[J].978-1-4244-8756-1/11_2011 IEEE
    [36]Norlela Ishak, Mazidah Tajjudin,Ramli Adnan, Hashimah Ismail, Yahaya Md. Sam Real-time Application of Self-tuning PID in Electro-hydraulic Actuator.2011 IEEE International Conference on Control System, Computing and Engineering.
    [37]夏昌江.旋转式救生梯的电液比例控制研究[D].吉林大学,2012
    [38]WangHui, YangYongbo.Fuzzy-PID Control in the Application ofMulti-purpose Vehicles ofthe Road Snow Plowing[J] 978-0-7695-3817-4/09(?) 2009 IEEE
    [39]柯明纯.液压马达和电液比例节流阀性能分析与测试的研究[D].浙江大学,2007
    [40]Hui Wang,Yuanyuan Bao. Fuzzy-PID Dual Mode Fuzzy Control Of The Electro -hydraulic Deviation Control System. 978-1-4244-7739-5/10(?)2010 IEEE.
    [41]Yu Lin-ke, Zheng Jian-ming, Yuan Qi-long, Xiao Ji-ming, Li Yan. Fuzzy PID Control for Direct Drive Electro-hydraulic Position Servo System. 978- 1-612 84 -459-6/11(?)2011 IEEE
    [42]王蓉.双液压马达同步驱动控制与系统辨识研究[D].哈尔滨工业大学,2007
    [43]Jian-ming Zheng, Sheng-dunZhao, Shu-guoWei. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press[J]. Control Engineering Practice.2009
    [44]Zheng Jian-ming, Zhao Sheng-dun, Wei Shu-guo, Zheng Jian-ming.Adaptive Fuzzy PID Control for Switched Reluctance Motor Direct Drive Servo Hydraulic Press[J] 2009 International Conference on Measuring Technology and Mechatro-nics Automation. 978-0-7695-3583-8/09(?)2009 IEEE
    [45]张伟.电磁感应加热造纸烘缸及PLC控制系统的实现[D].浙江大学,2006
    [46]武朝.基于PLC与WINCC的转运小车及其控制系统设计与实现[D].武汉理工大学,2011
    [47]王欢.基于PROFIBUS现场总线的PLC控制系统研究与设计[D].北方工业大学,2007
    [48]李德英.基于PLC的液压试验台监控系统的开发与研制[D].中南大学,201 0.
    [49]崔坚,李佳.西门子工业网络通信指南[M].北京:机械工业出版社,2007
    [50]Zhou Gongbo, Zhu Zhencai, Chen Guangzhu, et al. Technique of WINCC long -distance accessing exterior SQL server database[C].2009,First Interna-tional workshop on education Technology and Computer Science,2009:153-158
    [51]李剑.西门子PLC与监控计算机通信问题的研究[D].天津大学,2007
    [52]张晓杰,刘海昌.基于WINCC的数据采集和监控系统设计[J].工业仪表与自动化装置,2007,(4):53-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700