小鼠4细胞胚胎密闭培养体系的建立及胚胎密闭培养条件筛选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为空间生命科学重要研究内容之一,胚胎的空间发育研究一直受到国内外研究者的高度关注。但是目前所普遍采用的开放式胚胎培养体系无法在真空、失重的环境中支持早期胚胎的体外发育,因此必须选用密闭培养的方式(包括气密和液密)进行胚胎空间密闭培养。胚胎密闭培养就是在胚胎培养前预先向胚胎培养液中充入含有一定比例O_2,CO_2和N_2的标准气以提供胚胎发育的气相支持。同时,由于密闭培养的特殊性,在胚胎发育的过程中无法向体系中补充更新营养与气相成分,因此适宜的胚胎培养密度对体系能否更长时间支持胚胎体外发育至关重要。本研究通过对胚胎培养液充气标准气,胚胎培养液以及胚胎培养密度的筛选,以建立一种可支持早期胚胎体外发育的密闭培养体系,并应用于空间环境条件对胚胎发育影响的研究。
     1.本研究选择了两种O_2比例不同的标准气(5% O_2,5% CO_2,90% N_2和10% O_2,5% CO_2,85% N_2)、两种营养条件和缓冲体系不同的胚胎培养液(添加10%胎牛血清的mDPBS和CZB液),并在培养液体积为200μL的前提下,选用三种培养密度(胚胎数/n∶培养液体积/μL为1:1, 1:2和1:4),进行小鼠4细胞胚胎的密闭培养,同时设置不充气培养组和常规微滴培养对照组。通过观察和分析各组胚胎在密闭培养84 h时的囊胚发育率和胚胎孵化率,判定各培养组的胚胎培养效果。
     结果表明,利用5% O_2比例的标准气进行胚胎培养液充气时,mDPBS和CZB液表现出类似的胚胎培养结果。1:1培养组的囊胚发育率与对照组无显著差异(P>0.05),但胚胎孵化率显著低于相同培养密度的对照组(P<0.05);1:2培养组的囊胚发育率与胚胎孵化率与相同培养密度的对照组无显著差异(P>0.05);1:4培养组无论是囊胚发育率还是胚胎孵化率皆显著低于相同培养密度的对照组(P<0.05)。
     利用10% O_2比例的标准气进行胚胎培养液充气时,mDPBS和CZB液表现出类似的胚胎培养结果。1:1培养组的囊胚发育率和胚胎孵化率与相同培养密度的对照组无显著差异(P>0.05);1:2培养组和1:4培养组的囊胚发育率和胚胎孵化率皆显著低于相同培养密度的对照组(P<0.05)。
     培养液不充气密闭培养时,1:1培养组,1:2培养组和1:4培养组的囊胚发育率与胚胎孵化率皆显著低于相同培养密度的对照组。
     证明,在密闭培养体系中,胚胎培养密度过低会导致胚胎发育率和胚胎孵化率下降;培养液不充气密闭培养不能支持小鼠4细胞胚胎体外发育。
     2.在上述研究结果的基础上,在5% O_2比例的标准气进行胚胎培养液充气时,利用mDPBS和CZB对小鼠4细胞胚胎进行密闭培养,以筛选小鼠胚胎密闭培养的适宜培养液。结果表明,相同培养密度下在mDPBS培养液中发育的胚胎,囊胚总细胞数显著低于在CZB培养液中发育的胚胎(P<0.05),mDPBS组囊胚细胞的凋亡率显著高于CZB组(P<0.05),而且在mDPBS中发育的胚胎形态学质量较差。证明CZB培养液支持密闭培养小鼠胚胎发育的能力优于mDPBS培养液。
     3.在上述研究结果的基础上,以CZB培养液为胚胎培养液,分别利用5% O_2比例和10% O_2比例的标准气进行胚胎培养液充气,比较不同培养密度下囊胚细胞总数以及囊胚细胞凋亡率的差异,并检测胚胎发育早期过氧化物产生情况和密闭培养过程中胚胎缺氧诱导因子1 alpha(HIF-1α)蛋白质表达情况。
     结果显示,利用5% O_2比例的标准气进行胚胎培养液充气时,1:1培养组的囊胚细胞总数显著低于相同密度的对照组胚胎(P<0.05),凋亡率显著高于对照组(P<0.05);1:2培养组的囊胚细胞总数以及胚胎细胞凋亡率皆与相同密度对照组胚胎无显著差异(P>0.05)。利用10% O_2比例的标准气进行胚胎培养液充气时,1:1培养组的囊胚细胞总数以及胚胎细胞凋亡率皆与相同密度对照组胚胎无显著差异(P>0.05);1:2培养组的囊胚细胞总数皆显著低于相同密度的对照组胚胎(P<0.05),凋亡率显著高于对照组(P<0.05)。
     在胚胎发育早期过氧化物产生情况检测时发现,利用10% O_2比例的标准气进行胚胎培养液充气,密闭培养12 h时1:1培养组和1:2培养组胚胎过氧化物产生量高于对照组,而在利用5% O_2比例的标准气进行胚胎培养液充气的密闭培养组中未见此现象。提示当标准气中O_2比例为10%时,密闭培养的胚胎在发育早期可能出现氧化损伤。
     利用5% O_2比例的标准气进行胚胎培养液充气时,1:1培养组在密闭培养60 h时胚胎中可检出HIF-1α表达;1:2培养组在密闭培养84 h时胚胎中可检出HIF-1α表达。利用10% O_2比例的标准气进行胚胎培养液充气时,1:1培养组在密闭培养84 h时胚胎中可检出HIF-1α表达;1:2培养组在密闭培养84 h时胚胎中未检出HIF-1α表达。综上所述,小鼠胚胎密闭培养的适宜培养液为CZB液,将胚胎密度为1:2的小鼠4细胞胚胎密闭培养于经5% O_2标准气充气处理的培养液中,胚胎可较好地发育至囊胚和孵化胚阶段。
As one of the most important parts of the research for life in space, the study of embryo development in space has received particular attention. But the general culture system couldn’t support the embryo development in a vacuum and weightless situation. So we must choose a sealed-culture method (include gas-tight and liquid-tight) to support embryos’development in space. Sealed-culture means culture medium was treated by definite proportion reference gas with O_2, CO_2 and N_2 before embryo culture. One of the most important factors in sealed-culture system is the density of embryo in the medium because we can’t refresh gas and nutrition during the culture. This study mainly concern on the screening of reference gas, culture medium and embryo density to build a system that can support embryo development in vitro and for the research of the influence on embryo develop in space.
     1. On the condition of sealed-culture set in the study, two kinds of medium (mDPBS and CZB) were chose to be culture medium and two kinds of reference gas composed of 5% O_2, 5% CO_2, 90% N_2 or 10% O_2, 5% CO_2, 85% N_2 to culture mouse 4 cell stage embryos under the liquid volume of 200μL. Through the analysis of development rates of the embryos under 3 different densities that embryo numbers : culture medium volumes were 1:1, 1:2 and 1:4 to judge the culture effect in different sealed-culture group.
     When culture medium treated by the reference gas with 5% O_2 proportion, the result indicates that embryo development in mDPBS and CZB were similar. The blastosphere growth rate in 1:1 culture group has no significant difference from the control group (P>0.05). But the hatching rate has significant lower than the control group (P<0.05). The blastosphere growth rate and the hatching rate in 1:2 culture group have no significant difference from the control group (P>0.05). The blastosphere growth rate and the hatching rate in 1:4 culture group are significant lower than the control group (P<0.05).
     When culture medium treated by the reference gas with 10% O_2 proportion, the result indicates that embryo development in mDPBS and CZB were similar. The blastosphere growth rate and the hatching rate in 1:1 culture group have no significant difference from the control group (P>0.05). The blastosphere growth rate and the hatching rate in 1:2 and 1:4 culture groups are significant lower than the control groups (P<0.05).
     When culture medium not treated by the reference gas, the blastosphere growth rate and the hatching rate in 1:1, 1:2 and 1:4 culture groups are significant lower than the control group (P<0.05).
     This result proves that embryo couldn’t develop well in sealed-culture system with low density, and embryo couldn’t develop well in the medium which not treated by the reference gas.
     2. According to the result above, culture mouse 4 cell stage embryo by mDPBS and CZB when the culture medium treated by the reference gas with 5% O_2 proportion to screening suitable culture medium for sealed-culture. The result indicates that the total blastomere numbers of embryo cultured in mDPBS was significant lower than embryo cultured in CZB. Embryos The morphology of embryos cultured in mDPBS had worse than in CZB. It proves that embryos could develop better in CZB than in mDPBS.
     3. According to the result above, use CZB as the culture medium, which treated by the reference gas of 5% O_2 proportion or 10% O_2 proportion, to culture the 4 cell stage embryo in vitro. Comparing the total blastomere numbers and the apoptosis rate of the embryos, then detecting the peroxide production and the express of hypoxia-inducible factor 1 alpha (HIF-1α) protein in embryos cultured with1:1 and 1:2 density to screening suitable embryo density for sealed-culture.
     When culture medium treated by the reference gas with 5% O_2 proportion, the result indicates that the embryo has significant lower total blastomere numbers of 1:1 culture group than that in control group with same density (P<0.05), and apoptosis rate is significant higher than control group (P<0.05). The embryo cultured in 1:2 group have no significant difference of total blastomere numbers and apoptosis rate from control group with same density (P>0.05). When culture medium treated by the reference gas with 10% O_2 proportion, the embryo cultured in 1:1 group have no significant difference of total blastomere numbers and apoptosis rate from control group with same density (P>0.05). The embryo cultured in 1:2 group have significant difference of total blastomere numbers and apoptosis rate from control group with same density (P<0.05).
     When detecting the peroxide production in embryos during the early period of sealed-culture., we found out that 1:1 and 1:2 culture groups have a higher production of peroxide than control group when cultured in medium treated by the reference gas with 10% O_2 proportion in 12 h. But this situation has not been found in groups cultured in medium treated by the reference gas with 5% O_2 proportion. We can infer that when culture medium treated by the reference gas with 10% O_2 proportion, embryos developed in sealed-culture system may show peroxy-injury in the early culture period.
     When culture medium treated by the reference gas with 5% O_2 proportion, HIF-1αprotein express in embryos was detected in 60 h in 1:1 culture, and detected out in 84 h in1:2 culture group. When culture medium treated by the reference gas with 10% O_2 proportion, HIF-1αprotein express in embryo was detected in 60 h in 1:1 culture group, and HIF-1αprotein express was not detected in 1:2 culture group.
     In conclusion, in the study of the sealed culture of mouse 4 cell stage embryo, we have determined CZB as optimal culture medium, and 1:2 density of embryos cultured in 5% O_2 reference gas treated medium as the suitable culture condition.
引文
陈海燕. 2010.密闭培养条件对小鼠早期胚胎发育及胚胎中Igf2/H19印迹调控区甲基化影响的研究[硕士学位论文].杨凌:西北农林科技大学
    冯卫国,潘智芳,刘晓影,赵春玲,高志芹. 2010.一种胚胎体外培养的新方法:滴中孔培养法.生殖与避孕, 30(11): 721-725
    姜丁文,刘畅,王筠,梅晰凡,王欣燕. 2011.活性氧激活线粒体凋亡通路介导高糖诱导心肌细胞凋亡的研究.中国医学工程, 19(1): 21-25
    李辉,田文儒,张志宏,张启耀,高善颂. 2009.热应激对小鼠卵母细胞和附植前胚胎及其生长内环境氧化损伤的影响.中国农业科学, 42(6): 2244-2249
    雷晓华. 2008.小鼠2, 4细胞期胚胎冷冻及冻后发育的研究[硕士学位论文].杨凌:西北农林科技大学乐志培. 1989.表皮生长因子的受体功能与转化蛋白的关系.生命的化学, 2: 9-12
    孙国贵. 2011.活性氧与肿瘤.癌变·畸变·突变, 2011, 23(1): 78-80
    宋建瑞,卫立辛. 2009.低氧诱导因子-1与细胞凋亡关系的研究进展.中华肿瘤防治杂志, 16(8): 636-639
    王文英,马世援,仲跻峰,宋杰,刘云波. 1994.不同犊牛血清配制PBS培养液培养小白鼠胚胎的效果.山东农业科学, (2): 43-44
    袁源,钟竑. 2010.缺氧诱导因子-1结构及功能的研究进展.现代生物医学进展, 10(5): 961-963
    张嘉保,任文陟,宋德光,徐勇,母连志,高晓伟. 2002.小鼠体外受精、胚胎培养及胚胎快速冷冻的研究.中国实验动物学报, 10(2): 108-112
    周建华,丛国正,高闪电,常惠云. 2008.细胞凋亡研究进展.生物技术通讯, 19(2): 274-276
    Adams J M, Difazio L T, Rolandelli R H, Luján J J, HaskóG, Csóka B, Selmeczy Z, Németh Z H. 2009. HIF-1: a key mediator in hypoxia. Acta Physiologica Hungarica, 96(1): 19-28
    Alexandre T D de O, Rui F F L, Jose′L R. 2005. Gene expression and developmental competence of bovine embryos produced in vitro under varying embryo density conditions. Theriogenology, 64(7): 1559–1572
    Alvaro M H, Juan G P, Stephen R, Sara R E, Rafael M S. HIF-1 Modulates Energy Metabolism in Cancer Cells by Inducing Over-Expression of Specific Glycolytic Isoforms. Mini Reviews in Medicinal Chemistry, 2009, 9(9): 1084-1101
    Akagi S, Hosoe M, Matsukawa K, Ichikawa A, Tanikawa T, Takahashi S. 2010. Culture of Bovine Embryos on a Polydimethylsiloxane (PDMS) Microwell Plate. Journal of Reproduction and Development, 56(4): 475-479
    Ashkenazi A. 2002. Targeting death and decoy receptors of the tumournecrosis factor superfamily. Nature Reviews Cancer, 2: 420-430
    Bavister B. 2004. Oxygen concentration and preimplantation development. Reproductive BioMedicine Online, 9(2): 484-486
    Bavister B D and Rose-Hellekant T A. 1992. Development of in vitro matured/in vitro fertilized bovine embryos into morulae and blastocysts in defined culture media. Theriogenology, 37(1): 127-146
    Beckmann L S and Day B N. 1993. Effects of media NaCl concentration and osmolarity on the culture of early-stage porcine embryos and the viability of embryos cultured in a selected superior medium.Theriogenology, 39(3): 611-622
    Biggers J D and Summers M C. 2008. Choosing a culture medium: making informed choices. Fertility Sterility, 90(3): 473–483
    Biggers J D, McGinnis L K, Lawitts J A. 2005. One-step versus two-step culture of mouse preimplantation embryos: is there a difference. Human Reproduction, 20(12): 3376–3384
    Biggers J D, McGinnis L, Raffin M. 2000. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimised medium. Biology of reproduction, 63: 281-293
    Booth P J, Holm P, Callesen H. 2004. The effect of oxygen tension on porcine embryonic development is dependent on embryo type. Theriogenology, 63(7): 2040-2052
    Brinster R L. 1963. A method for in vitro cultivation of mouse ova from two-cell to blastocyst. Experimental Cell Research, 32: 205-208
    Brison D R. 1997. Apoptosis during mouse blastocyst formation: evidence for a role for survival factors including transforming growth factor alpha. Biology of reproduction, 56(5): 1088-1096
    Bunch T D, Fooce W C, Call J W, et al. 1984. In Vitro Culture and Maintenance of Ovine Embryos Transforted in Dulbecco’s Rnriched Phosphate-Buffered Saline. Theriogenology, 21(6):980-987
    Buonocore G, Perrone S, Tataranno M L. 2010. Oxygen toxicity: chemistry and biology of reactive oxygen species. Seminars in Fetal & Neonatal Medicine, 15: 186-190
    Cao Y J, Fan X J, Shen Z, Ma B H, Duan E K. 2007. Nitric oxide affects preimplantation embryonic development in a rotating wall vessel bioreactor simulating microgravity. Cell Biology International, 31(1): 24-29
    Carpenter G and Zendegui JG. 1986. Epidermal growth factor, its receptor and related proteins. Experimental Cell Research, 1986, 164(1):1-10
    Catt J W and Henman M. 2000. Toxic effects of oxygen on human embryo development. Human Reproduction, 15 (2): 199-206
    Chatot C L, Ziomek C A, Bavister B D, Lewis J L, Torres I. 1989. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. Journal of Reproduction and Fertility, 86(2): 679-688
    Ciray H N, Aksoy T, Yaramanci K, Karayaka I, Bahceci M. 2009. In vitro culture under physiologic oxygen concentration improves blastocyst yield and quality: a prospective randomized survey on sibling oocytes. Fertility and Sterility, 91(4): 1459-1461
    Contramaestre A P, Sifontes F, Marin R, Camejo M I. 2008. Secretion of stem cell factor and granulocyte-macrophage colony-stimulating factor by mouse embryos in culture: influence of group culture. Zygote, 16: 297–301
    Cueto L D and Gerton G L. 2001. The Influence of Growth Factors on the Development of Preimplantation Mammalian Embryos. Archives of Medical Research, 32(6): 619-626
    Dumoulin J C, Meijers C J, Bras M, Coonen E. 1999. Effect of oxygen concentration on human in-vitro fertilization and embryo culture. Human Reproduction, 14(2): 465-469
    Dumoulin J C, Vanvuchelen R C, Land J A, Pieters M H, Geraedts J P, Evers J L. 1995. Effect of oxygen concentration on in vitro fertilization and embryo culture in the human and the mouse. Fertility and Sterility, 63(1): 115-119
    Ebner T, Shebl O, Moser M, Mayer R B, Arzt W, Tews G. 2010. Group culture of human zygotes issuperior to individual culture in terms of blastulation, implantation and life birth. Reproductive BioMedicine Online, 21(6): 762-768
    Feil D, Lane M, Roberts C T, Kelley R, Edwards L J, Thompson J G, Kind K L. 2006. Effect of culturing mouse embryos under different oxygen concentrations on subsequent fetal and placental development. The Journal of Physiology, 572(4): 87-96
    Ferrington D A, Tran T N, Kathleen L. 2006. Different death stimuli evoke apoptosis iva multiple pathways in retinal pigment epithelial cell. Experimental Eye Research, 83(3):638- 650
    Fischer B and Bavister B D. 1993. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. Journals of Reproduction and Fertility, 99: 673–679
    Fleury C, Mignotte B,Vayssiere J L. 2002. Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84(2-3): 131-141
    Fouladi-Nashta A A, Alberio R, Kafi M. 2005. Differential staining combined with TUNEL labelling to detect apoptosis in preimplantation bovine embryos. Reproductive Biomedicine Online, 10(4): 497-502
    Fraga A, Ribeiro R, Medeiros R. 2009. Tumor hypoxia: the role of HIF. Actas Urológicas Espa?olas, 33(9): 941-951
    Fujita T, Umeki H, Shimura H, Kugumiya K, Shiga K. 2006. Effect of group culture and embryo-culture conditioned medium on development of bovine embryos. The Journal of Reproduction and Development, 52(1): 137-142
    Gardner D K and Lane M. 1993. Amino-acids and ammonium regulate mouse embryo development in culture. Biology of Reproduction, 48(2): 377-385
    Gardner D K, Lane M, Spitzer A, Batt A. 1994. Enhanced rates of cleavage and development fou sheep zygotes cultured to the blastocyst stage in bitro in the absence of serum and somatic cells. Biology of reproduction, 50: 390-400
    Gardner D K and Lane M. 1996. Alleviation of the‘2-cell block’and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Humman Reprodution, 11(12): 2703-2712
    Gardner D K, Lane M W, Lane M. 2000. EDTA stimulates cleavage stage bovine embryo development in culture but inhibits blastocyst development and differentiation. Molecular Reproduction and Development, 57(3): 256-261
    Gardner D K and Schoolcraft W B. 1999. Culture and transfer of human blastocysts. Current Opinion in Obstetrics and Gynecology, 11(3): 307-311
    Hang X M, Ma W W, Liu C, Sun Y Q. 2010. Proteomic analysis of Zebrafish embryo exposed to simulated-microgravity. In: 38th COSPAR Scientific Assembly. Bremen: The Smithsonian/NASA Astrophysics Data System: 6
    Harvey A J, Kind K L, Pantaleon M, Armstrong D T, Thompson J G. 2004. Oxygen- regulated gene expression in bovine blastocysts. Biology of Reproduction, 71(4): 1108-1119 Hentemann M, Bertheussen K. 2009. New media for culture to blastocyst. Fertility and Sterility, 91(3): 878-883
    Heo Y S, Shah C T, Bormann C L, Shah C T, Takayama S. 2010. Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates. Human Reproduction, 25(3): 613-622
    Hoelker M, Rings F, Ghanem N, Phatsara C, Griese J, Schellander K, Tesfaye D. 2008. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro. The Society for Reproduction and Fertility, 137(3): 415-418
    Hoelker M, Rings F, Lund Q, Ghanem N, Phatsara C, Griese J, Schellander K, Tesfaye D. 2009. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro. Reproduction, 417: 415-425
    Hoelker M, Schmoll F, Schneider H, Rings F, Gilles M, Tesfaye D, Jennen D, Tholen E, Griese J, Schellander K. 2006. Bovine blastocyst diameter as a morphological tool to predict embryo cell counts, embryo sex, hatching ability and developmental characteristics after transfer to recipients. Reproduction Fertility and Development, 18(5): 551-557
    Inoue M, Sato E F, Nishikawa M, Park A M, Kira Y, Imada I, Utsumi K. 2003. Mitochondrial Generation of Reactive Oxygen Species and its Role in Aerobic life. Current Medicinal Chemistry, 10(23): 2495-2505
    Jiang B H, Rue E, Wang G L, Roe L, Semenza G L. 1996a. Dimerization , DNA binding , and t ransactivation properties of hypoxia-inducible factor 1. The Journal of Biological Chemistry, 271(30): 17771-17778
    Jiang B H, Semenza G L, Bauer C, Marti H H. 1996b. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. American Journal of Physiology, 271(4): 1172-1180
    Jung, Song Y, M S. 2008. Effects of culture methods and simulated microgravity conditions on development of bovine embryos produced in vitro. In: Willard, Scott T. Mississippi State University. The Mississippi State: ProQuest? Dissertations & Theses: 111
    Karagenc L, Sertkaya Z, Ciray H N. 2004. t of oxygen concentration on embryonic development of mouse zygotes. Reproductive BioMedicine Online, 9: 409-417
    Kawamura K, Fukuda J, Kumagai J, Shimizu Y, Kodama H, Nakamura A, Tanaka T. 2005. Gonadotropin-releasing hormone I analog acts as an antiapoptotic factor in mouse blastocysts. Endocrinology, 146(9): 4105-4116
    Kim M S, Bae C Y, Wee G, Han Y M, Park J K. 2009. A microfluidic in vitro cultivation system for mechanical stimulation of bovine embryos. Electrophoresis, 30(18): 3276-3282
    Kitagawa Y, Suzuki K, Yoneda A, Watanbe T. 2004. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology, 62(7): 1186-1197
    Khurana N K and Niemann H. 2000. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology, 54(5): 741-756
    Krick S, Eul BG, Hanze J, Savai R, Grimminger F, Seeqer W, Rose F. 2005. Role of hypoxia-inducible factor-1alpha in hypoxia-induced apoptosis of primary alveolar epithelial typeⅡcells. American Journal of Respiratory Cell and Molecular Biology, 32(5): 395-403
    
    Krisher R L, Wheeler M B. 2010. Towards the use of microfluidics for individual embryo culture. Reproduction, Fertility and Development, 22(1): 32-39
    Lane M and Gardner D K. 1992. Effect of incubation volume and embryo density on the development and viability of mouse embryos in vitro. Human Reproduction, 7(4):558-562
    Laura D C and George L G. 2001. The influence of growth factors on the debelopment of preimplantation mammalian embryos. Archives of Medical Research, 32(6): 619-626
    Lee E S, Yutaka F, Lee B C, Lim J M, Hwang W S. 2004. Promoting effect of amino acids added to a chemically defined medium on blastocyst formation and blastomere proliferation of bovine embryos cultured in vitro. Animal Reproduction Science, 84(3-4): 257-267
    Lee J W, Bae S H ,Jeong J W, Kim S H, Kim K W. 2004. Hypoxiainducible factor alpha (HIF-1): its protein stability and biological functions. Experimental and Molecular Medicine, 36 (1):1-12
    Leonarduzzi G, Arkan M C, Basaga H, Chiarpotto E, Sevanian A, Poli G. 2000. Lipid oxidation products in cell signaling. Free Radical Biology and Medicine , 28(9): 1370-1378
    Liam J. Murphy, Graeme I, Bell, Henry G. Friesen. 1987. Tissue distribution of Insulin-Like growth factor I and II messenger ribonucleic acid in the adult rat. Endocrinology, 120(4): 1279-1282
    Lopes A S, Larsen L H, Ramsing N, Levendahl P, Raty M, Peippo J, Greve T, Callesen. 2005. Respiration rates of individual bovine in vitro-produced embryos measured with a novel, non-invasive and highly sensitive microsensor system. Reproduction, 130(5): 669-679
    Lopes A S, Madsen S E, Ramsing N B, Lovendahl P, Greve T, Callesen H. 2007. Investigation of respiration of individual bovine embryos produced in vivo and in vitro and correlation with viability following transfer. Human Reproduction, 22(2): 558-566
    Ly J D, Grubb D R, Lawen A. 2003. The mitochondrial membrane potential in apoptosis: an update. Apoptosis, 8(2):115-128
    Ma B H, Cao Y J, Zheng W B, Lu J R, Lei X H, Lv Y H, Zhang T, Duan E K. 2008. Real-Time Micrography of Mouse Preimplantation Embryos in an Orbit Module on SJ-8 Satellite. Microgravity Science and Technology, 20(2): 127–136
    Manser R C, Leese H J, Houghton F D. 2004. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biology of Reproduction, 71(2): 528-533 Marx J. 2004. How Cells Endure Low Oxygen. Science, 303(5563): 1454-1456
    Matob S, Fair T, Lonergan P. 2010. Maturation, fertilisation and culture of bovine oocytes and embryos in an individually identifiable manner: a tool for studying oocyte developmental competence. Reproduction, Fertility and Development, 22(5): 839–851
    Matsuura K, Hayashi n, Kuroda Y, Takiue C, Hirata R, Takenami M, Yoshioka N, Habara T, Mukaida T, Naruse K. 2010. Improved development of mouse and human embryos using a tilting embryo culture system. Reproductive Biomedicine, 20(3): 358-364
    Mitchell M, Cashman K, Gardner D K, Thompson J G, Lane M. 2009. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biology of Reproduction, 80(2): 295-301
    Mizokami K, Kakeji Y, Oda S, et al. Relationship of hypoxia-inducible factor 1 alpha and P21 WAF1/CIPI expression to cell apoptosis and clinical outcome in patients with gastric cancer. World Journal of Surgical Oncology, 2006,4(10):94-100
    Nagao Y, Iijima R, Saeki K. 2008. Interaction between embryos and culture conditions during in vitro development of bovine early embryos. Zygote, 16(2): 127-133
    Nishikawa M. Reactive oxygen species in tumor metastasis. 2008. Cancer Letters, 266(1): 53-59
    Orrenius S, Gogvadze V, Zhivotovsky B. 2007. Mitochondrial Oxidative Stress: Implications for Cell Death. Annu Review of Pharmacology and Toxicology, 47: 143-183
    Papandreou I, Cairns R A, Fontana L, Lim A L, Denko N C. 2006. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metabolism,3(3):150-151
    Parbon J E, Findley W E, Gibbons W E. 1989. The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertility and Sterility, 51(5): 896–900
    Paria B C and Dey S K. 1990. Preimplantation embryo development in vitro: cooperative interactions among embryos and role of growth factors. PNAS, 87(12): 4756-4760
    Perin P M, Maluf M, Januario D A, Saidiva N P H. 2008. Comparison of the efficacy of two commercially available media for culturing one-cell embryos in the in vitro fertilization mouse model. Fertility and Sterility, 90(4): 1503–1510
    Quinn P and Harlow G M. 2005. The effect of oxygen on the development of preimplantation mouse embryos in vitro. Journal of Experimental Zoology, 206(1): 73–80
    Raty S, Walters E M, Davis J, Zeringue H, Beede D J, Rodriguez-Zas S L, Wheeler M B. 2004. Embryonic development in the mouse is enhanced via microchannel culture. The Royal Society of Chemistry, 4(2): 186–190
    Riddle RC, Khatri R, Schipani E, et al. 2009. Role of hypoxia-inducible factor-1 alpha in angiogenic osteogenic coupling. Journal of Molecular Medicine. 87(6): 583-590
    Rieger D. 1992. Relationship between energy metabolism and development of early mammalian embryos. Theriogenology, 37(1): 75-93
    Rinaudo P F, Giritharan G, Talbi S, et al. 2006. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertility and Sterility, 86(4): 1252-1265
    Sayaka W, Yumi K, Chong L, Kazuo Y, Louis Y, Teruhiko W. 2009. Detrimental Effects of Microgravity on Mouse Preimplantation Development In Vitro. Plos one, 4(8): e6753
    Schofield C J and Ratcliffe P J. 2004. Oxygen sensing by HIF hydroxylases. Nature Reviews Molecular Cell Biology, 2004, 5(5): 343-354
    Semenza G L. 1998. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Current Opinion in Genetics & Development, 8(5): 588-594
    Semenza G L. 2004. O2 regulated gene expression: transcriptional control of ardiorespiratory physiology by HIF-1. Journal of Applied Physiology, 96(3):1173-1177
    Semenza G L and Wang G L. 1992. A nuclear factor induced by hypoxia via de novo protein synt hesis binds to t he human eryt hropoietin gene enhancer at a site required for t ranscriptional activation. Molecular and cellular biology, 12 (12): 5447-5454
    Shi H. 2009. Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke. Current Medicinal Chemistry, 16(34):4593-4600
    Summers M C and Biggers J D. 2003. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Human Reproduction Update, 9(6): 557–582
    Swain I E and Smith G D. 2011. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. HumanReproduction Update, on line
    Swain J E, Smith G D. 2011. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Human Reproduction Update, 0(0): 1-17
    Takahashi M, Keicho K, Takahashi H, Ogawa H, Schulte R M, Okano A. 2000. Effect of oxidative stress on development and DNA damage in in-vitro cultured bovine embryos by Comet assay. Theriogenology, 54(1): 137-145
    Taka M, Iwayama H, Fukui Y. 2005. Effect of the well of the well (WOW) system on in vitro culture for porcine embryos after intracytoplasmic sperm injection. The Journal of Reproduction and Development, 51(4): 533-537
    Tervit H R and Goold P G. 1978. The culture of sheep embryos in either a bicarbonate buffered medium or a phosphate-buffered medium enriched with serum. Theriogenolocy, 9(3):251-257
    Thompson J G, Simpson A C, Pugh P A, Donnelly P E, Tervit H R. 1990. Effect of oxygen concentration on in vitro-development of preimplantation sheep and cattle embryos. Reproduction Fertility, 89(3): 573-578
    Thouas G A, Jones G M, Trounson A O. 2003. The‘GO’system—a novel method of microculture for in vitro development of mouse zygotes to the blastocyst stage. Reproduction, 126: 161-169
    Trachootham D, Lu W, Ogasawara M A, Valle N R D, Huang P. 2008. Redox Regulation of Cell Survival. 10(8): 1343-1374
    Trimarchi J R, Liu L, Porterfield D M, Smith P J S, Keefe D L. 2000. Oxidative Phosphorylation dependent and independent oxygen consumption by individual preimplantation mouse embryos. Biology of Reproduction, 62(6): 1866-1874
    Umaoka Y, Noda Y, Narimoto K, Mori T. 1992. Effects of oxygen toxicity on early development of mouse embryos. Molecular Reproduction and Development, 31(1): 28–33
    Vajta G, Kor?si T, Du Y, Nakata K. 2008. The Well-of the-Well system: an efficient approach to improve embryo development. Reproductive BioMedicine Online, 17(2): 73-81
    Vajta G, Peura T T, Holm P, Paldi A, Trounson A O, Callesen H. 2000. New method for culture of zona-included or zona-free embryos: the Well of the Well (WOW) system. Molecular Reproduction and Development, 55(3): 256-264
    Van S A, Mahmoudzadeh A R, Christophe A, Ysebaert M T, Kruif A. 2001. Silicone oil used in microdrop culture can affect bovine embryonic development and freezability. Reproduction in Domestic Animals, 36(3-4): 169-76
    Walker S K, Heard T M, Seamark R F. 1992. In vitro culture of sheep embryos without co-culture: Successes and perspectives. Theriogenology, 37(1): 111-126
    Waldenstrom U, Engstrom A B, Hellberg D, Nilsson S N. 2008. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertility and Sterility, 91(6): 2461-2465
    Waterhouse N J, Riccl J E, Green D R. 2002. And all of a sudden it' s over: mitochondrial outer- membrane permeabilization in apoptosis. Biochime, 84(2-3):113-121
    Whitten W K. 1956. Culture of tubal mouse ova. Nature, 177(4498): 96
    Whitten W K. 1957. Culture of tubal ova. Nature, 179: 1081-1082
    Winterbourn C C. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology, 4: 278-286
    Young L E, Fernandes K, McEvoy T G. 2001. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Natutre Genetics, 27:153-154
    Zheng X, Zhang XP, Wang J J, Li Y H. 2003. Effects of simulated weightlessness on reproduction in male rats. Space Medicine & Medical Engineering, 16(5): 379-381
    Zhou Z M, Li Z D. 2011. Effect of microgravity on primordial germ cells (PGCs) in silk chicken offspring. Advances in Space Research, published by Elsevier Ltd

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700