人参皂苷Re对糖尿病早期抗氧化和抗细胞凋亡作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DCM是糖尿病的主要慢性并发症之一,与糖尿病患者高发病率和死亡率密切相关。大量的研究结果表明,高血糖引起的氧化应激在DCM的众多发病机制中起重要作用,是DCM发生、发展的重要因素。而氧化应激通过调控细胞凋亡,促进心肌、血管损伤。目前人们对人参皂苷Re发挥心肌保护作用的认识,主要集中在抗缺血性心肌病的动物模型中,而对于糖尿病患者心肌是否也具有保护作用,目前还未见报道。本实验主要从人参皂苷Re对糖尿病大鼠心肌组织的抗氧化和抗细胞凋亡的作用入手,研究人参皂苷Re对糖尿病心肌病的心肌的保护作用。
     实验选用健康雄性Wistar大鼠50只,体重(160±20)g,随机分为四组,空白组(C组)10只,其余40只大鼠腹腔注射链脲佐菌素(STZ)35mg/kg制造糖尿病大鼠模型,以72h后随机血糖≥16.7mmol/L为造模成功,造模成功后将大鼠随机分为糖尿病模型组(DM组),人参皂苷Re组(Re组),吡格列酮组(P组),分别给予相应量的纯净水,人参皂苷Re25mg/(kg d),吡格列酮10mg/(kg d)灌胃,连续给药4周。4周后处死大鼠,分别检测血糖、血脂,血清和心肌组织中SOD活性和MDA含量以及心肌组织中Bcl-xl,caspase9表达,观察心肌结构改变。
     结果表明,Re组和P组均能够明显改善糖尿病大鼠多食、多饮、多尿症状,增加体重,改善大鼠生存质量,Re组和P组比较无统计学差异(P>0.05)。与DM组比较,Re组和P组均能降低空腹血糖和血清总胆固醇,差异有统计学意义(P<0.01),但两组空腹血糖和血清总胆固醇水平较C组高(P<0.01),Re组和P组之间无统计学差异(P>0.05)。与DM组比较,Re组和P组均能提高血清和心肌组织中SOD活性,降低MDA含量,差异有统计学意义(P<0.01或P<0.05),两组SOD活性较C组低,MDA含量较C组高(P<0.05),但Re组和P组之间无统计学差异(P>0.05)。心肌组织病理学观察显示:与DM组比较,Re组和P组都能够减轻心肌组织损伤程度,降低心肌胶原纤维及毛细血管周围胶原纤维含量,减少心肌细胞间质炎细胞浸润和心肌坏死程度;心肌凋亡相关蛋白表达结果显示,与DM组比较,Re组和P组均能明显减少凋亡蛋白caspase-9的表达,提高抗凋亡蛋白Bcl-xl的表达,差异有统计学意义(P<0.01),但Re组和P组之间无统计学差异(P>0.05)。
     人参皂苷Re能降低空腹血糖和血清总胆固醇;能显著提高血清和心肌组织中SOD活性,降低MDA含量;能改善心肌组织结构的损伤,减少心肌胶原纤维及毛细血管周围胶原纤维含量;能抑制caspase-9蛋白,提高Bcl-xl蛋白的表达,抑制心肌细胞凋亡,提高心肌细胞存活率,发挥心肌保护作用。
Diabetic cardiomyopathy (DCM) is one of the major chroniccomplications of diabetes. It is closely related to the high morbidity andmortality of diabetic patients. Many studies show that, hyperglycemia inducedoxidative stress plays an important role in the pathogenesis of DCM. It is animportant factor in the progress of DCM. And oxidative stress promotes cardiacand vascular injury through the regulation of apoptosis. Until now, therecognization of ginsenoside Re on myocardial protection are mailyconcentrated in the animal model of ischemic cardiomyopathy. There have notbeen reported that whether ginsenoside Re has a protective effect in DCM. Inthis study, we will focus on the effect of ginsenoside Re on anti-oxidation andanti-apoptotic and show that ginsenoside Re has myocardial protective effectson diabetic cardiomyopathy in rats.
     50healthy male Wistar rats [(160±20) g] were prepared in the study. Therats were divided into four groups at random and control group (c group) had10rats. The rest40rats were made diabetic model be given streptozotocin(STZ)35mg/kg by intraperitoneal injection.72hours later, the rats whose bloodglucose was above16.7mmol/L three consecutive days were regarded as thesuccess of diabetes mellitus rat model. After the model was successful, the ratswere divided into diabetic model (DM group), ginsenoside Re group (Re group)and pioglitazone group (P group) at random and were given correspondingamount of pure water, ginsenoside Re25mg/(kg·d) and pioglitazone10mg/(kg·d) by intragastric administration. All four groups were four weeks byintragastric administration in a row. All rats were killed after4weeks. Glucoseand lipids were tested. The SOD activities and content of MDA in serum and cardiac tissue were tested respectively. The expression of Bcl-xl and caspase-9in cardiac tissue were detected. Observe the change of myocardial sructure.
     The results show that Re and P groups can significantly improve thesymptoms, such as polyphagia, polydipsia and polyuria, increase weight andimprove the quality of life of rats. But the weight of Re and P groups was nosignificant difference (P>0.05). Compared with DM group, Re and P groupscan all lower the level of fasting blood glucose and serum total cholesterol andthe difference was significant (P<0.01). But compared with C group, the levelof fasting blood glucose and serum total cholesterol were all higher (P<0.01),and there is no significant difference between Re and P groups (P>0.05).Compared with DM group, Re and P groups could increase the activity of SODand decrease the content of MDA in serum and myocardial tissue, and thedifference was significant (P<0.05or P<0.01). But compared with C group,the activity of SOD were lower and the content of MDA were higher(P<0.05),and there is no significant difference between Re and P groups (P>0.05).Histopathological examination shows that compared with DM group, Re and Pgroups could decrease myocaidial injury, reduce myocardial collagen fibers andcollagen fiber content around capillaries, and reduce the infiltration ofinflammatory cells in the interstitial myocardial cells and the size of necrosis.The expression of myocardial apoptosis related proteins show that comparedwith DM group, Re and P groups could significantly reduce the expression ofthe apoptotic protein caspase-9, and improve the expression of theanti-apoptotic protein Bcl-xl and the difference was significant (P<0.01). Butthere is no significant difference between Re and P groups (P>0.05).
     Ginsenoside Re can reduce the level of fasting blood glucose and serumtotal cholesterol, increase the activity of SOD and decrease the level of MDA inserum and cardiac tissue in rats. Ginsenoside Re can also improve the damage of cardiac tissue structure and reduce the content of myocardial collagen fibersand collagen fiber around capillaries. Ginsenoside Re can inhibitcardiomyocyte apoptosis and increase myocardial cell survival to protectmyocardial cells by reducing the expression of caspase-9protein, andimproving the expression of the Bcl-xl protein.
引文
[1] Sowers JR, Epstein M, Frohich ED. Diabetes, hypertension, and cardio-vascular disease: an update. Hypertension.2001,37:1053-1059.
    [2] Jouven X, Lemaitre RN, Rea TD, et al. Diabetes, glucose level, and risk ofsudden cardiac death. Eur Heart J.2005,26(20):2142-2147.
    [3] Yeung EH, Pankow JS, Astor BC et al. Increased risk of type2diabetesfrom a family history of coronary heart disease and type2diabetes.Diabetes Care.2007,30(1):154-156.
    [4] Yang W,Lu J,Weng J,et al. Prevalence of diabetes among men andwomen in China [J]. N Engl J Med.2010,362(12):1090-1101.
    [5] Hayat SA, Patel B, Khattar RS, et al. Diabetic cardiomyopathy: mechan-isms, diagnosis and treatment. Clin Sci (Lond).2004,107(6):539-557.
    [6] Bell DS. Diabetic cardiomyopathy. Diabetes Care.2003,26(10):2949-2951.
    [7] Yeung EH, Pankow JS, Astor BC, et al. Increased risk of type2diabetesfrom a family history of coronary heart disease and type2diabetes.Diabetes Care.2007,30(1):154-156.
    [8] Asghar O, Al-Sunni A, Khavandi K, et al. Diabetic cardiomyopathy. ClinSci (Lond).2009,116(10):741-760.
    [9] Thandavarayan RA, Watanabe K, Ma M, et al. Dominant-negative P38alpha mitogen-activated protein kinase prevents cardiac apoptosis andremodeling after streptozotocin-induced diabetes mellitus.Am J PhysiolHeart Circ Physiol.2009,297(3): H911-919.
    [10] Khullar M, Al-Shudiefat AA, Ludke A, et al. Oxidative stress: a keycontributor to diabetic cardiomyopathy. Can J Physiol Pharmacol.2010,88(3):233-240.
    [11] An D, Rodrigues B. Role of changes in cardiac metabolism in develop-pment of diabetic cardiomyopathy.Am J Physiol Heart Circ Physiol.2006,291(4): H1489-1506.
    [12] Luiken JJ, Coort SL, Koonen DP, et al. Regulation of cardiac long-chainfatty acid and glucose uptake by translocation of substrate transporters.Pflugers Arch.2004,448(1):1-15.
    [13] Cho WC, Chung WS, Lee SK, et al. Ginsenoside Re of panax ginsengpossesses significant antioxidant and antihyperlipidemic efficacies instreptozotocin-induced diabetic rats. Eur J Pharmacol.2006,550(1-3):173-179.
    [14] Ghosh S, Qi D, An D, et al. Brief episode of STZ-induced hyperglycemiaproduces cardiac abnormalities in rats fed a diet rich in n-6PUFA. Am JPhysiol Heart CircPhysiol.2004,287:2518-2527.
    [15] Tsai YL, Hou CW, Liao YH, et al. Exercise training exacerbatestourniquet-induced decreases in Glut4expression and muscle atrophy inrats.[J].Life Sci.2006,78(25):2953-2959.m
    [16] Listenberger LL, Schaffer JE. Mechanisms of lipoapoptosis: implicationsfor human heart disease.Trends Cardiovasc Med.2002,12(3):134-138.
    [17] Herrero P, Peterson LR, McG ill JB, et al. Increased myocardial fatty acidmetabolism in patients with type1diabetes mellitus. J Am CollCardiol.2006,47:598-604.
    [18] Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans.2007,35(Pt5):1147-1150.
    [19] Srinivasa M. Srinivasula, Teresa Femandes-Alnemri, James Zangrilli, etal.The Ced-3/Interleukin lβ Converting Enzyme-like Homolog Mch6andthe Lamin-cleaving Enzyme Mch2a Are Substrates for the ApoptoticMediator CPP3[J] BiolChem.1996,271(28):27099-27106.
    [20]田亚强,苏旭东,赵家军等。吡格列酮对高脂饮食iSD大鼠心功能的影响。第三军医大学学报.2011,33(1):65-68.
    [21] Johansen JS, Harris AK, Rychly DJ, et al. Oxidative stress and the use ofantioxidants in diabetes: linking basic science to clinical practice. Cardio-vasc Diabetol.2005,4(1):5.
    [22]王月芬。吡格列酮对糖尿病降血糖之外的保护作用。国际病理科学与临床杂志.2011,31(3):248-252.
    [23] Davi G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus.Antioxid Redox Signal.2005,7(1-2):256-268.
    [24] Jay D, Hitomi H, Griendling KK. Oxidative stress and diabeticcardiovascular complications. Free Radic Biol Med.2006,40(2):183-192.
    [25] Camici GG, Schiavoni M, Francia P, et al. Genetic deletion of p66(Shc)adaptor protein prevents hyperglycemia-induced endothelial dysfunctionand oxidative stress. Proc Natl Acad Sci USA.2007,104(12):5217-5222.
    [26] Nishio Y, Kanazawa A, Nagai Y, et al. Regulation and role of themitochondrial transcription factor in the diabetic rat heart. Ann N Y AcadSci.2004,1011:78-85.
    [27] Aronson D. Hyperglycemia and the pathobiology of diabetic compli-cations. Adv Cardiol.2008,45:1-16.
    [28] Wold LE, Ceylan-Isik AF, Fang CX, et al. Metallothionein alleviatescardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase andmyosin heavy chain isozyme. Free Radic Biol Med.2006,40(8):1419-1429.
    [29] Liang Q, Carlson EC, Donthi RV, et al. Overexpression of metallothioneinreduces diabetic cardiomyopathy. Diabetes.2002,51(1):174-181.
    [30] Cai L, Wang Y, Zhou G, et al. Attenuation by metallothionein of earlycardiac cell death via suppression of mitochondrial oxidative stress resultsin a prevention of diabetic cardiomyopathy. J Am Coll Cardiol.2006,48(8):1688-1697.
    [31] Ye G, Metreveli NS, Donthi RV, et al. Catalase protects cardiomyocytefunction in models of type1and type2diabetes. Diabetes.2004,53(5):1336-1343.
    [32] Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation andoxidative stress as a major cause of age-related diseases and cancer.Recent Pat Inflamm Allergy Drug Discov.2009,3(1):73-80.
    [33] Basta G, Schmidt AM, De Caterina R. Advanced glycation end productsand vascular inflammation: implications for accelerated atherosclerosis indiabetes. Cardiovasc Res.2004,63(4):582-592.
    [34] Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role ofhyperglycemia and oxidative stress. Toxicol Appl Pharmacol.2006,212(2):167-178.
    [35] Westermann D, Van Linthout S, Dhayat S, et al.. Tumor necrosisfactor-alpha antagonism protects from myocardial inflammation andfibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol.2007,102(6):500-507.
    [36] El-Menyar AA. Cytokines and myocardial dysfunction: state of the art. JCard Fail.2008,14(1):61-74.
    [37] Cai L, Kang YJ. Cell death and diabetic cardiomyopathy. CardiovascToxicol.2003,3(3):219-228.
    [38] Dyntar D, Sergeev P, Klisic J, et al. High glucose alters cardiomyocytecontacts and inhibits myofibrillar formation. J Clin Endocrinol Metab.2006,91(5):1961-1967.
    [39] Ghosh S, Rodrigues B. Cardiac cell death in early diabetes and itsmodulation by dietary fatty acids. Biochim Biophys Acta.2006,1761(10):1148-1162.
    [40] Fiordaliso F, Bianchi R, Staszewsky L, et al. Antioxidant treatmentattenuates hyperglycemia-induced cardiomyocyte death in rats. J Mol CellCardiol.2004,37(5):959-968.
    [41] Fiordaliso F, Li B, Latini R, et al. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II-dependent. Lab Invest.2000,80(4):513-527.
    [42] Cai L, Li W, Wang G, etal. Hyperglycemia-induced apoptosis in mousemyocardium: mitochondrial cytochrome C-mediated caspase-3activationpathway. Diabetes.2002,51(6):1938-1948.
    [43] Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways.Nat Cell Biol.2001,3(11): E255-263.
    [44] Bhimji S, Godin DV, McNeill JH. Myocardial ultrastructural changes inalloxan-induced diabetes in rabbits. Acta Anat (Basel).1986,125(3):195-200.
    [45] Kanda Y, Shimoda M, Hamamoto S, et al. Molecular mechanism by whichpioglitazone preserves pancreatic beta-cells in obese diabetic mice:evidence for acute and chronic actions as a PPAR gammaagonist.[J]. AmJ Physiol Endocrinol Metab.2010,298(2):E278-286.
    [46] Okada K, Minamino T, Tsukamoto Y, et al. Prolonged endoplasmicreticulum stress in hypertrophic and failing heart after aortic constriction:possible contribution of endoplasmic reticulum stress to cardiac myocyteapoptosis. Circulation.2004,110(6):705-712.
    [47]周国平,刘树森。Bcl-2蛋白质家族一定位与转位。生物化学与生物物理进展.2001,28:650-653.
    [48]王雨秾,孙家犄,刘毓敏。人参皂苷对胰岛素抵抗大鼠模型中GLUT4和PI3K表达的影响。辽宁中医药大学学报.2009,6(11):234-237.
    [49]姜秀萍,陈还珍,祖玉刚等。吡格列酮对缺血再灌注大鼠心肌细胞内质网应激致凋亡途径的影响。中西医结合心脑血管病杂志.2012,10(1):69-71.
    [50] Xin M, Deng X. Nicotine inactivation of the proapoptotic function of Baxthrough phosphorylation. J Biol Chem.2005,280(11):10781-10789.
    [51] Maddika S, Ande SR, Panigrahi S et al. Cell survival, cell death and cellcycle Pathways are interconneeted: implications for cancer thelapy. DrugResist Updat.2007,10:13-29.
    [52] DAnglemont de Tassiqny A, Berdeaux A, Souktani R, et al. Thevolume-sensitive chloride channel inhibitors prevent both contractiledysfunction and apoptosis induced by doxorubicin through PI3kinase, Aktand Erk1/2. Eur J Heart Fail.2008,10:39-46.
    [53] Coffey JC, Wang JH, Smith MJ, et al. Phosphoinositide3-kinaseaccelerates postoperative tumor growth by inhibiting apoptosis andenhancing resistance to chemotherapy-induced apoptosis.Novel role for anold enemy. J Biol Chem.2005,280(22):20968-20977.
    [54]刘畅,刘国良,齐志敏等。心肌缺血预处理对不同病程糖尿病大鼠心肌再灌注性损伤及磷酸化Akt的影响。解放军医学杂志.2009,(04):448-451.
    [55] Acehan D, Jiang X, Morgan DG, et al. Three-dimensional structure of theapoptosome: implications for assembly, procaspase-9binding, andactivation[J]. MolCell.2002,9(2):423-432.
    [56]李晓红。氧化应激与糖尿病血管病变的相关性研究进展。检验医学与临床.2009,6(5):373-375。
    [57] Hotta H, Miura T, Miki T, et al. Angiotensin II type1receptor-mediatedupregulation of calcineurin activity underlies impairment of cardioprot-ective signaling in diabetic hearts. Circ Res.2010,106(1):129-132.
    [58] Zhang Y, Wei L, Sun D, et al. Tanshinone IIA pretreatment protectsmyocardium against ischaemia/reperfusion injury through the phosphate-dylinositol3-kinase/Akt-dependent pathway in diabetic rats. DiabetesObes Metab.2010,12(4):316-322.
    [59] Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecularmechanisms and medical applications. Curr Vasc Pharmacol.2009,7(3):293-302.
    [60]窦德强,陈英杰。人参的化学成分及药理活性的研究进展与展望。沈阳药科大学学报.1999,(02):76-81.
    [61]张焕峰,赵洪友。吡格列酮抑制体外高糖培养乳鼠心肌细胞凋亡作用的研究。泰山医学院院报.2010,31(5):345-347.
    [62]曾和松,刘正湘。人参皂苷Re对急性缺血再灌注心肌细胞凋亡及fas基因表达的影响。华中科技大学学报.2004,3(33):286-288.
    [63] Bai CX, Takahashi K, Masumiya H, et al. Nitric oxide-dependentmodulation of the delayed rectifier K+current and the L-type Ca2+current by ginsenoside Re, an ingredient of Panax ginseng, in guinea-pigcardiomyocytes. Br J Pharmacol.2004,142(3):567-575.
    [64] Bai CX, Sunami A, Namiki T, et al. Electrophysiological effects ofginseng and ginsenoside Re in guinea pig ventricular myocytes. Eur JPharmacol.2003,476(1-2):35-44.
    [65]高莹,杨积武,王艳春等。人参皂甙Re对大鼠心肌缺血再灌注细胞凋亡及caspase-3的影响。辽宁中医药大学学报.2011,(2):123-124.
    [66]曾和松,刘晓春。人参皂甙Rb_1与Re抗大鼠实验性缺血再灌注心肌细胞凋亡及相关基因蛋白表达。中华物理医学与康复杂志.2003,(07):20-23.
    [67]蒋杰,李沙,龚培力等。单剂量口服“生脉饮”人体药代动力学的研究。华中科技大学学报(医学版).2007,(02):272-274.
    [68] Jin ZQ, Liu CM. Effect of ginsenoside Re on the electrophysiologicalactivity of the heart. Planta Med.1994,60(2):192-193.
    [69] Scott GI, Colligan PB, Ren BH, et al. Ginsenosides Rb1and Re decreasecardiac contraction in adult rat ventricular myocytes: role of nitric oxide.Br J Pharmacol.2001,134(6):1159-1165.
    [70] Liu Z, Li Z, Liu X. Effect of ginsenoside Re on cardiomyocyte apoptosisand expression of Bcl-2/Bax gene after ischemia and reperfusion in rats. JHuazhong Univ Sci Technolog Med Sci.2002,22(4):305-309.
    [71] Furukawa T, Bai CX, Kaihara A, et al. Ginsenoside Re, a main phytosterolof Panax ginseng, activates cardiac potassium channels via a nongenomicpathway of sex hormones. Mol Pharmacol.2006,70(6):1916-1924.
    [72] Wang YG, Zima AV, Ji X, et al. Ginsenoside Re suppresses electrom-echanical alternans in cat and human cardiomyocytes. Am J Physiol HeartCirc Physiol.2008,295(2): H851-859.
    [73]陈彩霞,张宏艳。人参皂苷Re对异丙肾上腺素致家兔室性心律失常的保护作用。中国当代儿科杂志.2009,11(5):384-388。
    [74]Huang YC, Chen CT, Chen SC, et al. A natural compound (ginsenoside Re)isolated from Panax ginseng as a novel angiogenic agent for tissueregeneration. Pharm Res.2005,22(4):636-646.
    [75] Xie JT, Shao ZH, Vanden HTL, et al. Antioxidant effects of ginsenosideRe in cardiomyocytes. Eur J Pharmacol.2006,532(3):201-207.
    [76]王筠,刘畅,姜丁文等。氧化应激和内质网应激在高糖诱导大鼠心肌细胞凋亡中的关系。中国医学工程.2011,19(1):37-38.
    [77] Meerson FZ. The role of lipid peroxidation in pathogenesis of ischemicdamageand antioxidant protection of the heart.[J]. Basic Res Cardiol.1982,77(5):465-485.
    [78] Fischer M, Baessler A, Hense HW, et al. Prevalence of left ventriculardiastolic dysfunction in the community. Results from a Doppler echocardi-ographic-based survey of a population sample. Eur Heart J.2003,24(4):320-328.
    [79] Giles TD,Ouyang J,Kenat EK,et al.Changes in protein kinase C in earlycardiomyopathy and in gracilis muscle in the BB/W or diabetic rat.Am JPhysiol Heart and Circ.1998,274(1):H295-307.
    [80] van Herpen NA, Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav.2008,94:231-241.
    [81] Wei W, Liu Q, Tan Y, etal. Oxidative stress, diabetes and diabeticcomplications.[J]. Hemoqlobin.2009,33:370-377.
    [82] Alkhenizan AH, Alswes MA. The role of renin blockers in the preventionof diabetes. Saudi Med J.2007,28(1):91-95.
    [83] Song Y, Du Y, Prabhu SD, et al. Diabetic cardiomyopathy in OVE26miceshows mitochondrial ROS production and divergence between in vivo andin vitro contractility. Rev Diabe Stud.2007,4:159-168.
    [84] Wu T, Dong Z, Geng J, et al. Valsartan protects against ER stress-inducedmyocardial apoptosis via chop/puma signaling pathway in streptozotocin-induced diabetic rats[J]. Eur J Pharm Sci.2011,42(5):496-502.
    [85] Singal PK, Bello-Klein A, Farahmand F, et al. Oxidative stress andfunctional deficit in diabetic cardiomyopathy [J]. Adv Exp Med Biol.2001,498(2):213.
    [86] Brownlee M. The pathobiology of diabetic complications: a unifyingmechanism [J]. Diabetes.2005,54:1615-1618.
    [87]高钧,卢守四,张蕾等。人参皂苷Re促进胰高血糖素样肽-1分泌的研究。中国药物与临床.2011,11(12):1383-1385.
    [88] Attele AS, Zhou YP, Xie ZJ, etal. Antidiabetic effects of panax ginsengberry extract and the identification of an effective component. Diabetes.2002,51(6):1851-1858.
    [89] Quan HY, Yuan HD, Jung MS, et al. Ginsenoside Re lowers blood glucoseand lipid levels via activation of AMP-activated protein kinase in HepG2cells and high-fat diet fed mice. Int J Mol Med.2012,29(1):73-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700