磷对东北粳稻耐冷性及产量和品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温冷害是我国东北地区水稻减产的最主要气候因素之一,在各时期低温影响中,尤以移栽期低温造成的生育延迟和孕穗期低温引起的结实率下降对生产危害更大。目前,生产上普遍采用减氮增磷技术来防御低温冷害,但有关磷素提高水稻耐冷机理的研究报道较少。本研究以强耐冷水稻品种吉粳81和弱耐冷品种长白9为供试材料,通过人工气候模拟低温胁迫,设计移栽期延迟性冷害和孕穗期障碍性冷害,并设计相应的磷肥施用梯度,研究低温胁迫下磷肥施用水平对东北粳稻耐冷生理特性及产量和品质的影响。主要结果如下:
     1.移栽期低温影响吉粳81和长白9秧苗的生长,导致最高分蘖时间延迟,分蘖数减少,新叶出叶速度减缓。低温下床土适当增施磷肥,两品种最高分蘖数分别提高19.7%和27.4%,新叶出叶速度分别提高8.55%和10.7%,最高分蘖发生时间分别缩短至2.7天和3.9天,成熟期秆长伸缩率缩短9.15%和10.40%。强耐冷性品种吉粳81赤枯率的变化幅度较小,弱耐冷性品种长白9的赤枯率变化明显,耐低温级数从3级上升到1级。表明床土适当增施磷肥可提高东北粳稻抵御延迟性冷害的能力。
     2.孕穗期低温使吉粳81和长白9结实率、成熟期株高以及穗抽出度下降。低温下基肥中适当增施磷肥,两品种成熟期株高分别提高12.4%和15.4%,穗抽出度分别增加0.77倍和6.63倍,减轻了低温伤害的影响。结实率吉强耐冷性品种粳81的变化范围为72.3-88.0%,耐冷级数由3级上升到1级,而弱耐冷性品种长白9变化范围为52.3-78.3%,耐冷级数由5级上升到3级。说明基肥适当增施磷肥可提高东北粳稻抵御障碍性冷害的能力。
     3.低温胁迫下,两品种移栽期净光合速率(Pn)分别下降79.5%和69.8%,孕穗期分别下降12.8%和19.4%。荧光动力学分析显示,随着施磷量的提高,两品种的Fv/Fm降幅不断减少,其中强耐冷品种吉粳81qP升高,NPQ下降,在施磷量120kg/hm~2时分别达到最大值0.70和最小值0.37,弱耐冷性品种长白9,qP升高,NPQ也升高,分别在施磷量120kg/hm~2和160kg/hm~2时达到最大值0.68和0.46,表明施磷提高了PSII反应中心对激发能的捕获能力和光合电子的传递能力,也增强了弱耐冷品种光保护能力,通过较高的热耗散减轻过剩激发能对反映中心的伤害。
     4.低温胁迫下,适当增施磷肥可使水稻电解质外渗率和MDA下降,提高水稻叶片可溶性糖、脯氨酸含量、过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)的活性。相比强耐冷品种吉粳81,增磷使长白9叶片抗氧化酶活性提高幅度更大,其中POD活性增加38.2%、CAT活性增加39.7%,SOD活性增加98.9%,表明适当增施磷肥可明显降低叶片质膜透性,提高抗氧化酶活性,从而有利于提高东北粳稻抵御障碍性冷害的能力。
     5.受移栽期低温影响,吉粳81和长白9二次枝梗数、穗长、每穴穗数、每穗实粒数和千粒重下降,其对产量构成因素影响大小依次为每穗实粒数>每穴穗数>千粒重,在床土中增施磷肥可增加二次枝梗数数、穗长、每穴穗数、每穗实粒数和千粒重。受孕穗期低温的影响,也可使吉两品种二次枝梗数、穗长、每穴穗数、每穗实粒数和千粒重下降。其对产量构成因素的影响依次为每穗实粒数>千粒重>每穴穗数。基肥中增施磷肥可提高两品种穗长、二次枝梗数数、每穴穗数、每穗实粒数和千粒重,且对弱耐冷品种影响尤为明显。
     6.低温下,施磷可提高两品种糙米率、精米率、整精米率、垩白度、脂肪酸含量和直链淀粉含量,降低垩白米率和蛋白质含量。相关分析表明,常温下各品质指标与施磷量相关性均未达到显著水平。而低温下吉粳81整精米率与施磷量呈极显著正相关,长白9糙米率、精米率和整精米率呈显著正相关。两品种的蛋白质含量与施磷量呈负相关,脂肪酸含量呈极显著正相关,其他各品质指标相关不显著。
     7.综合考虑产量及各因素状况,强耐冷品种和弱耐冷品种床土最适施磷范围分别为61.69g/m~2-71.18g/m~2和60.35g/m~2-68.02g/m~2,可消减延迟性冷害对水稻生育进程的影响;基肥最适施磷范围分别为103.65kg/hm~2-120.44kg/hm~2和91.85kg/hm~2-114.73kg/hm~2,可提高东北粳稻抵御障碍性冷害的能力。尤其在低温易发生地区生产上应尽量接近施磷范围上限,可在一定程度上减轻低温对产量的影响。
Low temperature stress frequent occurred in Jilin province which has resulted insubstantial drop in rice production for seven times in our history. At present, famers generallyuse less nitrogen but more phosphate and spray water and phosphate in production to defenselow temperature, but the inner mechanism concerning the process has rarely been reported.Therefore, the study takes cold tolerance rice varieties Japonica81and Changbai9as studyobjects; simulates low temperature condition in rice transplanting and booting periods anddesigns corresponding phosphate fertilizer gradient through artificial climate facilities;analyzes the physiology and yield of the two rice varieties under different degrees of lowtemperature and phosphate ranges, determines optimal phosphate range in different growthperiods under low temperature. The main results are as follows:
     I.Low temperature in transplanting period will affect the growth of Japonica81andChangbai9seedlings and lead to the reduction of the maximum number of tillers, delay of themaximum tiller time and slower speed of new leaves growth. However, if adding appropriateamount of phosphate fertilizer in the bed soil under low temperature, the maximum number oftillers improve19.7%and27.4%, new leaves improve8.55%and10.7%, the maximumtillering time reduce2.7d and3.9d, expansion rate of stalk in maturity shorten9.15and10.40%. Seedling mortality of Jijing81change less than Changbai9, low temperatureresistance level of Changbai9is from3level to1level. The result show that soil increasedphosphate fertilizer can improve cold tolerance ability in northeast japonica rice.
     II.Low temperature in booting stage results in decline in seed setting rate, mature plantheight and headings of Jijing81and Changbai9. However, adding phosphate fertilizer in thebasal, mature plant heigh of two varieties increase12.4%and15.4%, headings increase0.77times and6.63times, seed setting rate of Jijing81is range from72.3~88.0%, low temperatureresistance level is from3level to1level, but seed setting rate of Changbai9is range from52.3~78.3%, low temperature resistance level of is from5level to3level, The result showthat increased phosphate fertilizer can improve cold tolerance ability in northeast japonicarice.
     Ⅲ. Net photosynthetic rate of two varieties decrease79.5%and69.8%in transplantstage under low temperature, and in booting stage they decrease12.8%and19.4%.Fluorescence dynamic analysis shows that Fv/Fm decrease by adding phosphate fertilizer. ForJijing81, qP in crease and NPQ decrease, when phosphate fertilizer application is120kg/hm~2,qP reach maximum(0.70)and NPQ reach minimum(0.37). the reasults show that cold resistantvarieties of Jijing81can use higher NPQ to dissipate. For Changbai9,qP and NPQ increase,when phosphate fertilizer application is120kg/hm~2, it reach maximum. The reasults showthat Changbai9can use higher qP to reduce reflect the center of damag.but NPQ is increase,so increaseing phosphate fertilizer application can increase the radiation heat dissipation ofenergy, reduce the damage of low temperature stress, improve the northeast japonica rice coldtolerance ability.
     Ⅳ. Under the low temperature, increasing phosphate fertilizer application,membranepermeability and MDA decreased,but soluble sugar content,proline, peroxidase(POD),catalase(CAT) and superoxide dismutase (SOD) increased. Compared with Jijing81, PODactivity in Changbai9is increased higher when applying more P. The activity of POD, CATand SOD are increased38.2%,39.7%and98.9%accordingly. The results indicate thatappropriate increase the amount of fertilizer P will enhance membrane permeability of leavesand the activity of POD, so that increase the cold disaster resistance of Japonica rice innortheast China.
     Ⅴ. The low temperature in transplanting period causes output decrease of Japonica81and Changbai9in many aspects such as secondary branch number, ear length, panicles perhole, grains per panicle and grain weight, among which the influential order follows as grainsper panicle> panicles per hole>grain weight. However, after adding Phosphate fertilizer inthe bed soil, the above mentioned factors improve greatly for the two varieties. The lowtemperature in booting stage causes decrease of Japonica81and Changbai9in many aspectssuch as secondary branch number, ear length, panicles per hole, grains per panicle and grainweight. But different from the influential factors orders in transplanting period, the order inbooting stage follows as grains per panicle> grain weight> panicles per hole. However, afteradding phosphate fertilizer in the bed soil in booting stage, the above mentioned factors improve greatly for both varieties and phosphates exert more effects on non-chilling tolerantvarieties.
     Ⅵ. Under low temperature condition, phosphate can increase the brown rice rate, milledrice rate, chalkiness, the fatty acid content and the straight-chain starch content of the two ricevarieties. It can also lower chalky grain rate and protein content. According to related analysis,the quality indicators are not closely related to phosphate levels under normal temperaturecondition. However, under low temperature condition, the high milled rice rate of Japonica81reflects its significant positive correlation with phosphate level. As to Changbai9, its brownrice rate, milled rice rate and complete milled rice rate are all in high positive correlation tophosphate level. In contrast, the protein content of both rice varieties are negatively related tophosphate amount but the fatty acid content is significantly positively related to Phosphatefertilizer amount. Other quality indicators are not significantly related to phosphate.
     Ⅶ. Considering the yield and other influential factors, the optimal phosphates in bed soilranges for Japonica81and Changbai9are respectively61.69g/m~2~71.18g/m~2and60.35g/m~2~68.02g/m~2. It can reduce effect of the growing process in rice under lowtemperature stress. The optimal basic phosphate manure ranges respectively from103.65kg/hm~2~120.44kg/hm~2to91.85kg/hm~2~114.73kg/hm~2. It can improve cold toleranceability.
引文
1.敖雪.2009.磷素对不同磷效率基因型大豆的影响.沈阳农业大学博士论文.
    2.鲍思伟.2005.自然降温过程中云锦杜鹃抗寒适应性研究---水分、渗透调节物的动态变化与低温半致死温度的关系.福建林业科技,32(2):13-16.
    3.曹黎明,潘晓华.2002.水稻耐低磷机理的初步研究.作物学报,28(2):260-264.
    4.柴团耀,张玉秀.1999.菜豆富含脯氨酸、蛋白质基因在生物和非生物胁迫下的表达.植物学报,41(1):111-113.
    5.常二华,张耗,张慎凤等.2007.结实期氮磷营养水平对水稻根系分泌物的影响及其与稻米品质的关系.作物学报,33(12):1949-1959.
    6.陈翠莲,马平福.1998.抗冷性不同的小麦、水稻品种脯氨酸含量的比较试验.华中农业大学学报,(2):176-179.
    7.陈富忠等.2001.低温对水稻结实率的影响.垦殖与稻作(增刊),21-22.
    8.陈钢,周谟兵,谭斯坦等.2007.低温下磷硼营养对西瓜幼苗生理生化特性的影响.果树学报,24(6):815-819.
    9.陈钢.2007.磷水平对西瓜产量、品质、养分吸收及幼苗耐冷性影响的研究.华中农业大学博士论文.
    10.陈建勋,王晓峰.2002.植物生理学实验指导.广州:华南理工大学出版社.70-110.
    11.陈杰中,徐春香.1998.植物冷害及其抗冷生理.福建果树,(2):21-23.
    12.陈山,李维秀,董文胜.2004.阶段性低温冷害对水稻生长的影响.垦殖与稻作(增刊):18-19.
    13.陈贻竹,李晓萍,夏丽,等.1995.叶绿素荧光技术在植物环境胁迫研究中的应用.热带亚热带植物学报,3(4):79-86.
    14.陈竹贻, B.帕特森.1988.低温对植物叶片中超氧化物歧化酶、过氧化氢酶和过氧化氢水平的影响.植物生理学报,14:323-328.
    15.戴陆园,叶昌荣,熊建华等.1999.水稻耐冷性鉴定评价方法.中国水稻科学,12(1):62.
    16.邓令毅,王洪春.1982.葡萄的膜脂和脂肪酸组分与抗寒性关系的研究.植物生理学报,8(3):273.
    17.邓雪柯,乔代荣,李良等.2005.低温胁迫对紫花苜蓿生理特性影响的影响.四川大学学报,42(1).190-194
    18.邓应德,肖层林.2004.水稻生长后期耐冷性研究综述.作物研究,(5):343-345.
    19.范月仙,李生泉.1995.棉苗抗冷性与可溶性糖含量变化关系的研究.棉花学报.7(2):126-127.
    20.高辉,马群,李国业等.2010.氮肥水平对不同生育类型粳稻稻米蒸煮食味品质的影响.中国农业科学,43(21):4543-4552.
    21.宫攀,陈仲新,唐华俊等.2006.土地覆盖分类系统研究进展.中国农业资源与区划,27(2):35-40.
    22.龚金龙,张洪程,李杰等.2011.施磷量对超级稻南粳44产量和品质的影响.中国水稻科学,25(4):447-451.
    23.郭春芳,孙云.2006.叶绿素荧光动力学在植物抗性生理研究中的应用.福建教育学院学报,7:120-123.
    24.郭延平,陈屏昭,张良诚等.2002.不同供磷水平对温州蜜柑叶片光合作用的影响.植物营养与肥料学报,8(2):186-191.
    25.韩龙植,张三元.2004.水稻耐冷性鉴定评价方法.植物遗传资源学报,5(2):75-80.
    26.韩龙植,魏兴华等.2006.水稻种质资源描述规范和数据标准.北京:中国农业出版社.51-84
    27.韩胜芳,邓若磊,徐海荣等.2007.缺磷条件下不同磷效率水稻品种光合特性和细胞保护酶活性.应用生态学报,18(11):2462-2467.
    28.郝虎林,杨肖娥,冯英等.2009.供磷水平对铁锰铜锌在稻株中分布和糙米品质的影响.植物营养与肥料学报,15(6):1350-1356.
    29.何洁,刘鸿先,王以柔等.1986.低温与植物的光合作用.植物生理学通讯,(2):1-6.
    30.何开跃,李晓储,黄利斌等.2004.3种含笑耐寒生理机制研究.南京林业大学学报,28(4):62-64.
    31.何若韫.1995.植物低温逆境生理.北京:中国农业出版社,47-89
    32.胡曙鋆,陈云明,方兆伟等.2005.氮磷钾肥施用量和运筹对稻米加工品质和外观品质的影响.江苏农业科学,(3):26-28.
    33.湖南省优质稻生产技术体系及其应用理论研究协作组.1989.施肥对稻米品质和产量影响的研究湖南农学院学报,15(3):1-5.
    34.黄丽群,李志辉.2004.园林植物抗寒性研究进展.湖南林业科技,31(5):19-21.
    35.简令成,王洪.2009.逆境植物细胞生物学.北京:科学出版社.69-94.
    36.简令成,吴素萱.1973.植物抗寒性的细胞学研究——小麦越冬过程中细胞结构的变化.植物学报,13:1-15.
    37.简令成.1992.植物抗冷机理研究进展.植物学通报,9(3):17-22.
    38.简令成.1983.生物膜与植物寒害和抗冷性的关系.植物学通报,1:17-23.
    39.江福英,李延,翁伯琦.2002.植物低温胁迫及其抗性生理.福建农业学报,17(3):190-195.
    40.江华,师生波,许大全.2000.冬季小麦叶片光合作用对温度响应方式的变化.植物生理与分子生物学报,26(1):69-74.
    41.姜丽霞,李帅,闫平等.2009.黑龙江水稻孕穗期障碍型冷害及其对产量的影响.中国农业气象,30(3):463-468.
    42.蒋明义,郭绍川,张学明.1997.氧化胁迫下稻苗特内积累的脯氨酸的抗氧化作用.植物生理学报,23:347-352.
    43.李熹.2007.低温胁迫下磷肥对日光温室番茄苗期生长及生理活性的影响.华北农学报,22(5):142-146.
    44.李霞,戴传超,程睿等.2006.不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制.作物学报,32(1):76-83.
    45.李合生,孙群,赵世杰等.2000.植物生理生化实验原理和技术.北京:高等教育出版社,59-88.
    46.李继云,刘秀娣,周伟.1995.有效利用土壤养分元素的作物育种新技术研究.中国科学(B辑),25(1):41-48.
    47.李平,陈贻竹,李晓萍等.1994.籼稻的耐冷性与亲本的关系.植物学报,37(7):544-551.
    48.李绍长,胡昌浩,龚江等.2004.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响.作物学报,30(4):365-370.
    49.李书英.2004.钼磷配施对冬小麦生长发育和抗寒力的影响.华中农业大学硕士论文.
    50.李太贵.1981.在低温下筛选水稻不同生长期耐寒品种的室内方法.国外农业科技,(4):18-21.
    51.李卫国,任永玲.2001.氮、磷、钾、硅肥配施对水稻产量及其构成因素的影响.山西农业科学,29(1):53-58.
    52.李霞,戴传超,程睿等.2006.不同生育期水稻耐冷性的鉴定及耐冷性差异的生理机制.作物学报,32(1):76-83.
    53.李志刚,谢甫绨,张玉铃等.2004.磷胁迫对大豆不同磷素基因型光合作用的影响.内蒙古民族大学学报(自然科学版),19(3):297-299.
    54.梁书民.2006.中国农业种植结构及演化的空间分布和原因分析.中国农业资源与区划,27(2):29-34.
    55.梁秀兰,林英春,年海等.2005.低磷胁迫对不同基因型玉米主要生理生化的影响.作物学报,31(5):667-669.
    56.刘海峰等.1998.年低温冷害对水稻生育的影响.延边大学农学学报,1999,(3):209-211.
    57.刘鸿先,曾韵西,王以柔等.1985.低温对不同耐寒力的西瓜幼苗各细胞器中超氧化物歧化酶的影响.植物生理学报,11:48-57.
    58.刘厚诚,邝炎华,陈日远.2003.缺磷胁迫下长豇豆幼苗膜脂过氧化及保护酶活性的变化.园艺学报,30(2):215-217.
    59.刘慧英,王祯丽,王玉华.2002.不同品种辣椒种子发芽和苗期耐冷性差异的研究.石河子大学学报(自然科学版),6(1):23-26.
    60.刘建中,李玉京,李滨等.1999.不同生产时期小麦品种有效利用土壤潜在磷特性的鉴定.作物学报,25(5):560-564.
    61.刘民.2009.水稻低温冷害分析及研究进展.黑龙江农业科学,(4):154-157.
    62.刘萍,李明军.2009.植物生理学实验技术.北京:科学出版社,39-42.
    63.刘学庆.2007.蝴蝶兰抗冷特性研究.泰安:山东农业大学,425-430.
    64.陆定志,潘裕才,马跃芳等.1988.杂交水稻抽穗结实期间叶片衰老的生理生化研究.中国农业科学,21(3):21-26.
    65.罗明,霍中洋,张洪程等.2005.稻米品质及其影响因素的分析.吉林农业科学,30(1):18-20.
    66.马群,张洪程,戴其根等.2009.生育类型与施氮水平对粳稻加工品质的影响.作物学报,35(7):1282-1289.
    67.毛建辉等.1997.持续低温对稻瘟病的影响研究.西南农业大学学报,(3):228-230.
    68.莫惠栋.1993.我国稻米品质的改良.中国农业科学,26(4):8-14.
    69.潘瑞炽,董愚得.2000.植物生理学(第三版).北京:高等教育出版社:218-328.
    70.潘晓华,刘水英,李锋等.2003.低磷胁迫对不同水稻品种叶片膜质过氧化及保护酶活性的影响.中国水稻科学,17(1):57-60.
    71.彭建伟,刘强,荣湘民等.2004.氮磷钾配比及氮用量对水稻光合特性及产量的影响.湖北农业大学学报,30(2):123-127.
    72.坪井八十二,根本顺吉.1980.水稻冷害的生态与生理.作物冷害译丛,(10):1-8.
    73.商全玉,张文忠,韩亚东等.2009.硅肥对北方粳稻产量和品质的影响.中国水稻科学,23(6):661-664.
    74.沈漫,王明麻,黄敏仁.1997.植物抗寒机理研究进展.植物学通报,14(2):1-8.
    75.宋广树,孙忠富,王夏等.2011.不同生育时期低温处理对水稻品质的影响.中国农学通报,27(18):174-179.
    76.苏维埃,王洪春.1983.膜脂不饱和度在水稻抗冷性中的作用.科学通报,28:373-376.
    77.苏维埃.1998,植物对温度逆境的适应.植物生理与分子生物学.北京:科学出版社,721-727.
    78.孙杭生,徐芃.2009.影响我国农业生产的气象灾害分析.边疆经济与文化,(4):1-3.
    79.利容千,王建波.2002.植物逆境细胞及生理学.武汉:武汉大学出版社,60-98.
    80.孙清鹏,许煌灿,张方秋等.2002.低温胁迫对大叶相思和马相思某些生理特性的影响.林业科学研究,15(1):34-40.
    81.孙晓辉.2002.作物栽培学各论.成都:四川科学技术出版社.55-69.
    82.孙中海,章文才.1990.柑橘抗冷性与膜脂肪酸组分的关系研究.武汉植物学研究,8(1):79-85.
    83.汪邓民,周骥衡,朱显灵等.1999.磷钙锌对烟草生长及抗逆性影响的研究.中国烟草学报,5(3):23-27.
    84.王成瑷,张文香,赵磊等.2010.氮磷钾肥料用量对水稻产量与品质的影响.吉林农业科学,35(1):28-33.
    85.王春乙.2008.东北地区农作物低温冷害研究.北京:气象出版社.36-57.
    86.王国莉,郭振飞.2005.低温对水稻不同耐冷品种幼苗光合速率和叶绿素荧光参数的影响.中国水稻科学,19(4):381-383.
    87.王国莉,郭振飞.2007.磷营养对水稻不同耐冷性品种光合特性的影响.作物学报,33(8):1385-1389.
    88.王红星,杨光宇.2000.寒胁迫对小麦幼苗生理生化特性的影响.周口师范高等专科学校学报,17(2):4-5.
    89.王洪春,汤章城,苏维埃等.1980.水稻干胚膜脂脂肪酸组分差异性分析.植物生理学报,6:227-236.
    90.王华,王飞,李嘉瑞.1999.低温对杏品种花及幼果的伤害和若干生理指标的影响.江苏农业学报,15(4):237-240.
    91.王连敏,王立志,李忠杰等.2005.灌浆阶段低温对寒地水稻碾米及外观品质的影响.黑龙江农业科学,,(6):1-4.
    92.王连敏.1992.磷对甜菜光合作用及碳分配的影响.中国甜菜,1:44-46.
    93.王琪.2000.水稻孕穗期阶段性低温对结实及植株糖氮含量的影响.吉林气象,(4):30-32.
    94.王荣富.1987.植物抗寒指标的种类及应用.植物生理学通讯,23(3):49-55.
    95.王瑞.2007.春玉米苗期抗冷性鉴定及其生理生化基础研究.哈尔滨:东北农业大学.
    96.王书裕.1995.农作物冷害的研究.北京:气象出版社,48-59
    97.王伟妮,鲁剑巍,鲁明星等.2011.湖南省早、中、晚稻施磷增产效应及磷肥利用率研究.植物营养与肥料学报,17(4):795:802.
    98.王孝宣,李树德,东惠茹等.1997.低温胁迫对番茄苗期和开花期脂肪酸的影响.园艺学报,24(2):161-164.
    99.王艳春,王士强,赵海红.2009.寒地水稻冷害减产原因与生理机制的研究进展.现代化农业,9:7-8.
    100.韦翔华,李华兴,陆申年.2005.应用最优混合设计研究氮磷钾不同配比对甘蔗产量和产糖量的效应.土壤肥料,4:6-10.
    101.吴楚,孙政权.2000.膜脂变化与植物抗寒性及HⅡ相位形成的关系.湖南农业大学学报.20(1):84-89.
    102.武维华,张蜀秋.2003.植物生理学.北京:科学出版社,57-69
    103.夏士健,郑克武,吕川根.2008.氮磷钾用量及配比对两系杂交稻两优108灌浆期剑叶光合特性的影响.江苏农业学报,24(4):431-435.
    104.徐成怀,程筱华.2007.低温对水稻的影响及防御措施.13(10):159.
    105.徐福荣,戴陆园,叶昌荣.2000.水稻耐冷性研究的概况与展望.作物杂志,(1):4-5.
    106.徐杰中,徐春香.1998.植物冷害及其抗冷生理.福建果树,(2):21-23.
    107.徐淑萍,穆鼎,刘春.2005.百合鳞茎低温解除休眠过程中的生理生化变化研究.江西农业大学学报,27(3):404-407.
    108.杨华庚,林位夫.2009.低温胁迫对油棕幼苗光合作用及叶绿素荧光特性的影响.中国农学通报,25(24):506-509.
    109.姚明华,徐跃进,李晓丽等.2001.茄子耐冷性生理生化指标的研究.园艺学报.28(6):527-531.
    110.于秀晶,刘玉瑛,胡靖彪.2003.吉林省近50年气候变化研究.吉林气象,(2):27-30.
    111.俞红国,苏维埃.1996. PSⅡ膜脂肪酸的脱饱和与黄瓜低温光抑制关系的研究.生物物理学报,11(2):227-233.
    112.袁新民,同延安,杨学锁等.2000.施用磷肥对土壤NO3-N积累的影响.植物营养与肥料学报,6(4):397-403.
    113.曾乃燕,何军贤,赵文等.2000.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,20(1):8-14.
    114.曾韶西,王以柔,刘鸿先.1987.低温胁迫对水稻幼苗抗坏血酸含量的影响.植物生理学报,13(4):365-370.
    115.张国良,戴其根,王建武等.2007.施硅量对粳稻品种武育粳3号产量和品质的影响.中国水稻科学,21(3):299-303.
    116.张国民,王连敏,王立志等.2000.苗期低温对玉米叶绿素含量及生长发育的影响.黑龙江农业科学,(1):10-12.
    117.张三元,李彻,石玉海等.1996.吉林省水稻品种耐冷特性研究.吉林农业科学,1:16-19.
    118.张圣平,顾兴芳,王烨等.2005.低温胁迫对以野生黄瓜(棘瓜)为砧木的黄瓜嫁接苗生理生化指标的影响.西北植物学报,25(7):1428-1432.
    119.张矢,徐一戎主编.1990.寒地稻作.哈尔滨:黑龙江科学技术出版社,112-117.
    120.张文香,王成瑷,王伯伦等.2006.寒地地区温度、光照对水稻产量及品质的影响.吉林农业科学,31(1):16-20.
    121.张旭.1991.水稻育种.北京:农业出版社.49-67
    122.张延.2007.水稻低温生理及抗冷性.延吉:延边大学,59-72
    123.张毅,戴俊英,苏正淑.1995.灌浆期低温对玉米籽粒的伤害作用.作物学报,21(1):71-75.
    124.张毅,戴俊英.1994.低温胁迫对玉米生育中后期物质代谢的影响.沈阳农业大学学报,25(3):352-353.
    125.赵会杰,邹琦,于振文.2000.叶绿素荧光分析技术及其在植物光合机理研究中的应用.河南农业大学学报,34(3):248-251.
    126.郑国华,张贺英,钟秀荣.2009.低温胁迫下枇杷叶片细胞超微结构及膜透性和保护酶活性的变化.中国生态农业学报,17(4):739-745.
    127.郑艳玲,赵丽琴,金立军.2009.寒地水稻磷素施用量的研究.现代农业科学,16(3):75-76,78.
    128.郑玉生,张秋明,刘昆玉.1998.温州蜜柑枳高砧的抗寒生理.上海农业学报,14(1):51-54.
    129.中国农业大学编.1984.农业气象学.北京:科学出版社,69-92.
    130.钟鹏,朱占林,李志刚等.2005.干旱和低磷胁迫对大豆叶保护酶活性的影响.中国农业通报,2(21):153-154.
    131.佐竹彻夫.1978.水稻障碍型冷害.国外农业技术资料,(4):41-50.
    132.江立庚,甘秀芹,韦善清等.2004.水稻物质生产与氮、磷、钾、硅素积累特点及其相互关系.应用生态学报,15(2):226-230.
    133. Chu T M, Jusaitis M, Aspinall D.1978. Accumulation of free praline at low temperature. PhysiologiaPlantarum,43:254-260.
    134. Dobermann A, Cassman K G, Mamaril C P.1998. Management of phosphorus, potassium, and sulfurin intensive, irrigated lowland rice. Field Crops Res,56:113-138.
    135. Falk S,Maxwell D P,Laudenbach D E,Huner N P A.1996. Photosynthetic adjustment totemperature.In: Baker N R ed.Photosynthesis and the Environment.Dordrecht,the Netherlands:KluwerAcademic Publishers,367-385.
    136. Farquhar D G, Sharkey T D.1982. Stomatal conductance and photosynthesis.Annual Review of PlantPhysiology,33:317-355.
    137. Genty B E, Briantais M J, Baker N R.1989. The relationship between the quantum yield ofphotosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica andBiophysica Acta,990:87-92.
    138. Hare P D, Cress W A, Staden J V.1999. Proline synthesis and degradation:a model system forelucidating stress-related signal transduction.J Exp Bot,50:413-434.
    139. Hurry V, Huner N, Selstam E, Gardenstorm P. Oquist G.1998. Photosynthesis at low temperature.In:Raghavendra A S. Photosynthesis, a Comprehensive Treatise. Cambridge: Cambridge University Press,87-101.
    140. Jacob J, Lawlor D W.1993. In vivo photosynthetic electron transport does not limit photosyntheticcapacity in phosphate deficient sunflower and maize leaves.Plant Cell Envron,16:785-195.
    141. Jian L H, Sun L H, Dong H Z.1982. Adaptive changes in ATPase activity in the cells of winter wheatseedling during cold hardening.Plant Physiol,70:127-131.
    142. Kanazawa S, Sano S, Koshiba T, et al.2000. Changes in antioxidative in cucumber cotyledons duringnatural senescence comparison with those during dark-induced senescence.Plant Physiology,109:211-216.
    143. Kaniuga Z, Zabek J, Sochanoeicz B.1979. Photo synthet ic apparatus in Chilling-sensitive plantsⅢ.Contribution of loosely bound managese to the mechanism of reversible inactivation of H ill react ionactivity following cold and dark storage and illuminat ion of leaves. Planta,144:49.
    144. Kratsch H A, Wise R R.2000. The ultrastructure of chilling stress.Plant Cell and Environment,23:337-350.
    145. Levitt J.1980. Responses of Plant to Environmental Stress.New York: Academic press,365-488.
    146. Lynch D V.1990. Chilling injury in plants: The relevance of membrane lipids//Katterman F, ed.Environmental Injury to Plants San Diego: Academic Press,17-34.
    147. Lyons J M, Raison J K.1970. Oxidative activity of mitochondria isolated from plant tissues sensitiveand resistant to chilling injury.Plant Physiol,45:386-389.
    148. Mahajan S, Tuteja N.2005. Cold, salinity and drought stresses: An overview.Archives ofBiochemisitry and Biophysics,444:139-158.
    149. Prasad T K, Anderson M D, Stewart C R.1994. Acclimation, hydrogen peroxide and abscisic acidprotect mitochondria against irreversible chilling injury in maize seedlings.Plant Physiol,105:619-627.
    150. Scandalios J G.1993. Oxygen stress and superoxide dismutases.Plant Physiol,101:7-12.
    151. Siminovitch D, Rheaume B, Pomeroy K, lepage M.1968. Phodpholipid, protein, and nucleic acidincreases in protoplasm and membrane structures associated with development of extreme freezingresistance in black locust tree cells.Cryobiology,5:202-225.
    152. Somerville C, Browse J.1991. Plant lipids: Metabolism mutants and membranes.Science,252:80-87.
    153. Nishida I, Murata N.1996. Chilling sensitity in plants and cyanobacteria: the crucial contribution ofmembrane lipids.Annu Rev Plant Physiol Plant Mol Biol,47:541-568.
    154. Steponkus P L, Uemura M, Webb M S.1993. A contrast of the cryostability of the plasma membraneof winter rye and spring oat, two species that widely differ in their freezing tolerance and plasmamembrane lipid composition//Advances in Low-Temperature Biology, vol2, London: JA I Press.
    155. Steponkus P L.1984. Role of the plasmamembrane in freezing injury and cold acclimation.AnnualReview of Plant Physiology,5:543-548.
    156. Sthapit B.R. Witcombe J.R.1998. Inheritance of tolerance to chilling stress in riceduring germinationand plumule greening.Crop Sci,38(3):660~665.
    157. Thomashow M.F.1999. Plant cold acclimation, freezing tolerance genes and regulatory mechanisms.Annu Rev Plant Physiol. Plant Mol Biol,50:571-599.
    158. Weeden N F, Buchanan BB.1983. Leaf cytosolic fructose-1,6-bisphosphatase-A potential targets inlow temperature stress. Plant Physiol,72:259-261.
    159. Yadav R L.2003. Assessing on-farm efficiency and economics of fertilizer N, P and K in rice wheatsystems of India. Field Crops Res,81:39-51.
    160.Yoshida S, SakaiA.1974. Phospholipid degradation in frozen plant cells associated with freezing injury.Plant Physiol,53:509-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700