沟垄集雨种植条件下农田土壤水温与产量效应的DNDC模型模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北方旱作农业区是中国21世纪粮食生产的重点开发地区,降水时空分布的不均衡以及季节性干旱严重制约了该区农业生产力的提高。沟垄集雨种植技术是一种通过在田间修筑沟垄,垄面覆膜,沟内种植作物,实现降水由垄面向沟内汇集的田间集水农业技术。该技术能有效改善作物水分供应状况,促进作物生长,提高产量和水分利用效率,已成为提高旱区作物生产力的重要措施之一。
     本研究于2007~2010年通过田间点位试验系统研究了旱作区沟垄集雨覆膜(FM)和传统平作(CK)种植下玉米田及垄覆膜沟内不覆(PF)和平作不覆膜(CK)冬小麦田的土壤水温动态变化以及作物产量,随后利用田间观测数据对DNDC模型改进、验证和敏感性分析,结合GIS技术,分别模拟2001-2010年沟垄集雨覆膜(RH)和传统平作(CK)种植下陕西省旱作玉米田土壤水分、玉米产量时空变化规律,以确定沟垄集雨覆膜模式在区域尺度上的农田水分调控效果及增产效应。
     1.沟垄集雨种植农田土壤水温状况、产量及水分利用效率
     1)FM处理能显著的提高0-200cm土层土壤储水量,3年春玉米生育期,FM处理0-200cm土层3年平均土壤储水量分别较CK增加了40.07mm,提高幅度为10.56%;3年冬小麦全生育期,PF处理0-200cm土层3年平均土壤储水量较CK增加了17.17mm,提高幅度为5.26%。沟垄集雨种植模式对于0-100cm土层土壤蓄水保墒效果高于100-200cm土层。3年春玉米全生育期,FM和CK处理0~20cm和20~60cm土层土壤水分动态变化规律相似,随着降雨量的大小而波动剧烈,60-120cm和120~200cm土层土壤水分受降雨量影响较小,变化较为平缓。3年冬小麦生育期,PF和CK处理0-20cm和20~100cm土层土壤水分随着降雨量的高低变化明显,100-200cm土层土壤水分基本不受到降雨量的影响,因而变化平缓。
     2)春玉米播后60天,FM处理显著地提高了0-20cm土层平均温度,较CK增加了1.76℃,其中,FM处理0-20cm土层在14:00时增温效果最好,其温度较CK提高了1.950C,说明沟垄集雨覆膜种植能够显著提高玉米生长前期的土壤温度。而不同土层土壤温度的日变化结果表明,FM和CK处理土壤温度在4个土层(5cm、10cm、15cm和20cm)的变化趋势一致,土壤温度均随着土壤深度的加深逐渐降低,5cm和10cm的土壤温度变化幅度较大,其中,5cm土温最敏感,15cm和20cm的土壤温度变化幅度较小。
     3)沟垄集雨覆膜种植显著提高了玉米和冬小麦的产量。FM处理的春玉米3年平均产量、千粒重、穗粒数、穗长和水分利用效率较CK处理显著增加,其产量、千粒重、穗粒数、穗长和水分利用效率分别较CK处理提高了20.37%、8.82%、11.31%、8.48%和23.48%。由于光热条件和降雨量的不同,春玉米各年际间产量水平不同,表现为2010年>2008年>2009年,FM处理较CK增产和提高水分利用效率效果均表现为2008年>2010年>2009年。PF处理冬小麦3年平均产量、千粒重、穗粒数、穗数和水分利用效率分别较CK提高了19.85%、3.68%、5.70%、10.54%和19.81%。PF处理冬小麦产量较对照增产效果表现为2008~2009年>2009-2010年>2007-2008年。
     2. DNDC模型的改进、验证及敏感性分析
     1)本研究将沟垄集雨覆膜作为一种农田管理措施,并与土壤水文学和生物地球化学过程结合后加入模型,用于计算新版本DNDC模型的土壤水热状况,种植模式的持续时间和土壤表面的地膜覆盖率作为2个输入参数,使DNDC模型具备了模拟沟垄集雨覆膜种植模式下土壤水热运动和产量效应的能力。
     2)利用2008-2010年陕西合阳沟垄集雨覆膜(FM)和传统平作(CK)2种处理下田间土壤温度、土壤湿度及作物产量观测数据对模型进行校正和验证。验证结果表明,新版本DNDC很好地再现了FM和CK处理下春玉米田土壤温度、土壤湿度的动态变化规律及产量,模拟值和观测值相关性显著。
     3)敏感性分析结果表明,在沟垄集雨覆膜种植和传统平作2种模式下,气象因素(降雨量、气温)、土壤质地及施氮肥量对作物产量的影响程度并不相同,在传统平作模式下,作物产量对参数敏感度从大到小依次是降雨量、氮肥施用量、土壤质地和气温,而在沟垄集雨覆膜种植模式下,作物产量对参数敏感度从大到小依次是氮肥施用量、降雨量、土壤质地和气温,沟垄集雨覆膜种植模式降低了作物产量对降雨量的敏感度。对于降雨量较少的地区来说,沟垄集雨覆膜种植对作物增产效应高于降雨量较多的地区。
     3.沟垄集雨种植下陕西省土壤水分效应及玉米产量模拟
     1)2001~2010年陕西省的年均降雨量为609.2mm,降雨量从北至南呈现出逐渐递增的趋势,陕西南部地区的降雨量最高,其次是关中地区,陕西北部地区的降雨量最低。从2001至2010年,12个代表点的年降雨量并没有明显增加或者减少趋势,其中降雨量为700mm以上的地区年际间波动剧烈。
     2)10年玉米田土壤年蒸发量的模拟结果表明,沟垄集雨覆膜和平作种植模式的空间变化规律并不一致。与平作相比,沟垄集雨种植模式下土壤年蒸发量190mm以上的地区从94个县减至16个县,其余地区的土壤年蒸发量均在190mm以下。12个代表点玉米沟垄集雨种植模式下土壤蒸发量显著低于平作模式,年平均土壤蒸发量较平作降低了67.62%。
     3)沟垄集雨覆膜和平作种植玉米模式下,陕西省各地区10年平均土壤储水量从北至南均呈现出逐渐增加的趋势,与年均降雨量的趋势相同。与平作相比,沟垄集雨覆膜种植模式年均土壤储水量85mm以下的地区由17个县减少至12个县,其中,平作和沟垄集雨覆膜种植模式年均土壤储水量最小值分别为59mm和79mm;沟垄集雨覆膜种植模式年均土壤储水量145mm以上的地区由16个县增加至20个县。除了年均降雨量为700mm以上的洛南、镇安和平利,其余9个代表点的年土壤储水量随着降雨量大小而波动剧烈。
     4)10年平均水分胁迫从北至南呈现出逐渐减弱的趋势,在年均降雨量在500mm以下的地区最严重,年均降雨量为700mm以上的地区,2种种植模式下玉米生长均无水分胁迫现象,主要是因为降雨量的增加减弱了水分的胁迫。和平作种植模式相比,由于实行沟垄集雨覆膜种植模式,陕西北部6个县和中部14个县10年平均土壤水分胁迫减弱,逐渐接近1。
     5)产量模拟结果表明:第一,沟垄集雨覆膜和传统平作种植模式下陕西省玉米10a平均产量分别为1320万t.a-1和1140万t·a-1。与平作相比,实行沟垄集雨覆膜种植后,陕西省10年平均产量增加了180万t·a-1,提高幅度为16%;第二,陕西北部年均降雨量低于500mm的地区增产效果最高,产量增加了2000~3500kg·hm-2,而且降雨量偏少年份的增产效应高于降雨量较多的年份;第三,从北至南呈现出逐渐降低的趋势,与年均降雨量的空间分布规律相反;第四,陕西南部年均降雨量为700~800mm的地区,沟垄集雨覆膜种植模式的增产效应较小,与平作模式相比,产量增加了1~1000kg·hm-2;第五,陕西南部年均降雨量高于800mm的地区,沟垄集雨覆膜种植模式对产量的提高具有负效应。
The dryland farming area in northern China is the key development area for grain production in twenty-first century. The imbalance spatial and temporal distribution of rainfall and seasonal drought seriously restrict the increase of agricultural productivity in this area. Rainfall harvesting with ridge and furrow is a field rainfall harvesting technology, which can collect the rainfall from plastic-covered ridges serving as a rainfall harvesting zone to the furrows serving as a planting zone. This technology can effectively improve the supply of water for crops, promote the growth of crops, and increase the yield and efficiency of water use, which has become one of vital measures to improve the productivity of arid crops.
     Through the combined methods of the field point tests from2007to2010, DNDC modeling and GIS technology, this research studied on the differences of soil temperature and moisture and yield between rainfall harvesting with ridge and furrow and traditional flat planting in the arid farming area. DNDC modeling was improved, validated and sensitivity analysed with field observation data. With GIS technology, the spatial and temporal variations of soil moisture, yield of maize for both plastic-covered ridge-furrow for rainfall harvesting and traditional flat planting in the arid farming area in Shaanxi province from2001to2010were simulated, in order to determine the farmland water control effects and yield effects of the ridge-furrow planting for rainfall harvesting system on a regional scale.
     1. The soil temperature and moisture, yield and efficiency of water use of rainfall harvesting with ridge and furrow system
     1) The treatment of plastic-covered ridge and furrow planting for rainfall harvesting significantly increased the water storage of the soil from0to200cm. For3years of spring maize growth period, the mean of soil water storage treated with FM on the0-200cm soil was increased40.07mm, which was increased by10.56%, compared to the control. For3years of the whole growth period of winter wheat, compared to the control, the mean of soil water storage treated with FM on the0-200cm soil was increased17.17mm, which was increased by5.26%. The plastic-covered ridge and furrow planting mode for rainfall harvesting had more effect to the soil moisture conservation for0-100cm soil than for100-200cm soil. For3years of the whole growth period of spring maize,0-20cm soil retreated with FM and CK had the similar dynamic variations of soil moisture, compared the soil of20-60cm with the same treatments, which had jagged fluctuations with the variations of the amount of rainfall. However, the moisture of60-120cm and120-200cm soil was less affected by the amount of rainfall, which had flat fluctuations. For3years of growth period of winter wheat, the moisture of0-20cm soil and20-100cm soil retreated with FM and CK changed obviously with the variations of the amount of rainfall. However, the moisture of100-200cm soil water was not influenced much by the amount of rainfall, which had gentle changes.
     2) For spring maize,60days after sowing, compared with CK, the mean temperature of the0-20cm soil was dramatically increased by1.76℃when treated with FM, which had the best effect at2pm, with an increase of1.95℃. It was demonstrated that plastic-covered ridge and furrow planting for rainfall harvesting significantly increased the soil temperature during the earlier growth stage of maize. While the daily variation of soil temperature at different soil layers indicated that soil temperature in four soil layers (5cm,10cm,15cm,20cm) showed the same trend for FM treatment and CK, soil temperature increased with soil depth reduction. Out of them, the temperature of soil at5cm and10cm changed greatly, and the one at5cm was most sensitive. The temperature of soil at15cm and20cm had small changes.
     3) The plastic-covered ridge and furrow planting for rainfall harvesting significantly increased the yield of maize and winter wheat. Compared to CK, the mean yield,1000-grain weight, grain number per spike, spike length and efficiency of water use of the spring maize treated with FM were significantly increased by20.37%,8.82%,11.31%,8.48%, and23.48%, respectively. Due to the variations of the illumination and the amount of rainfall, there were variations in yield of spring maize among different years. The yield in2010was greater than the one in2008, which was greater than the one in2009. Compared to CK, the increased yield and efficiency of water use with FM treatment in2008were greats than those in2010, which were greater than those in2009. The yield,1000-grain weight, grain number per spike, spike number and water use efficiency of winter wheat treated with PF were increased than those of CK by19.85%,3.68%,5.70%,10.54%and19.81%, respectively. Compared the CK, the increased yield of winter wheat with FM treatment in2008-2009was greater than that in2009-2010, which was greater than that in2007-2008.
     2. Improvement, validation and sensitivity analysis of DNDC modeling
     1) In this research, the plastic-covered ridge and furrow planting for rainfall harvesting served as a measure of farmland management, which was combined with pedohydrology and biogeochemical process to calculate the temperature and moisture of soil in the new version DNDC modeling. Furthermore, duration of planting pattern and the rate plastic-covered ridge were used as two parameters, which made the DNDC modeling get the ability to simulate the moisture and temperature of soil and productivity effects with the plastic-covered ridge and furrow planting for rainfall harvesting system.
     2) DNDC modeling was corrected and validated with the observation data of soil temperature, soil moisture and crop yield under both plastic-covered ridge and furrow planting for rainfall harvesting (FM) and conventional flat planting (CK) conditions from2008to2010in Heyang, Shaanxi province. The results showed that new version DNDC modeling represented the dynamic variations of the temperature and moisture of soil and yield of spring maize under FM and CK treatments, and the simulated value and observation value were significantly correlated.
     3) The sensitivity analysis results showed that the effects of meteorological factors, such as the amount of rainfall and temperature, the soil texture and the amount of nitrogen fertilizer on crop yield were not the identical under FM and CK treatments. For CK, sensitivity of crop yield to the parameters from large to small was the amount of rainfall, the amount of nitrogen fertilizer, soil texture and temperature. However, for FM, sensitivity of crop yield to the parameters from large to small were the amount of nitrogen fertilizer, the amount of rainfall, soil texture and temperature, which demonstrated that FM treatment could relieve the effects of the amount of rainfall to crop yield. FM in the area lacking of rainfall is more effective to increase crop yield than in the area with enough rainfall.
     3. Modeling of soil moisture effects and maize yield with ridge and furrow planting for rainfall harvesting in Shaanxi province
     1) The mean amount of rainfall was609.2mm between2001and2010, which gradually increased from north to south in Shaanxi province. The southwest area of Shaanxi province had the most amount of rainfall, followed by Guanzhong area, and the north of Shaanxi province had the least amount of rainfall. The annual rainfall of12locations did not show any obvious increase or decrease trend from2001to2000. However, the locations with the amount of rainfall over700mm had great inter-annual fluctuation.
     2) The simulated results of maize farmland soil evaporation during10years showed that the spatial variation of plastic-covered ridge and furrow planting for rainfall harvesting was not consistent with that of flat planting. Compared to flat planting, the locations with over190mm of annual soil evaporation decreased from94districts to16districts with ridge-furrow planting for rainfall harvesting system, with the rest of the locations with that under190mm.
     The maize farmland soil evaporation of12locations with ridge and furrow planting for rainfall harvesting system were significantly lower than those with flat planting. The mean annual soil evaporation compared to flat planting decreased by67.62%.
     3) With the modes of plastic-covered ridge and furrow planting for rainfall harvesting and flat planting of maize, the average soil water storage in various regions10a of Shaanxi province showed a gradually increasing trend from north to south, which was the same as the trend of the average annual amount of rainfall. Compared to flat planting, the locations with less than85mm of annual soil water storage decreased from17districts to12districts with ridge and furrow planting for rainfall harvesting system. Out of them, the minimum annual soil water storage with flat planting and with ridge-furrow planting for rainfall harvesting system were59mm and79mm respectively. The locations with over145mm of the annual soil water storage with ridge and furrow planting for rainfall harvesting system increased from16to20. Except for Luonan, Zhen'an and Pingli with over700mm of the annual average rainfall, the annual soil water storage of the rest of9locations fluctuated seriously upon the amount of rainfall.
     4) The average moisture stress of10a represented a gradually decreasing trend from north to south, which was most serious in the area with annual rainfall below500mm. While in the locations with an average annual rainfall over700mm, there were no moisture stress during the growth of maize with the two kinds of planting modes, which was due to the moisture stress relieved by the increasing of rainfall. Compared to flat planting, with plastic-covered ridge and furrow planting for rainfall harvesting system, the average moisture stress of10a in6districts in north of Shaanxi and14districts in central of Shaanxi relieved, which gradually closed to1.
     5) The results of simulated yield demonstrated that:a. the average yield of maize in Shaanxi province with plastic-covered ridge and furrow planting for rainfall harvesting system and flat planting were13.2M tons and11.4M tons per annual, respectively. Compared to flat planting, with plastic-covered ridge and furrow planting for rainfall harvesting system, the average yield of10a in Shaanxi province increased1.8M tons, which increased by16%. b. The increased yield effect was most significant in the areas in north of Shaanxi, with the average annual rainfall less than500mm, and the yield increased2000to3500kg·hm-2. The effect during the year lack of rainfall was higher than the one with more rainfall, c. a trend of gradual decrease from north to south was represented, in contrast with the space distribution of the average annual rainfall. d. In south of Shaanxi areas with700to800mm of the average annual rainfall, the effect of increasing yield with ridge-furrow planting for rainfall harvesting system was lower, with the yield increased1to1000kg·hm-2. e, In south of Shaanxi areas with over800mm of the average annual rainfall, ridge and furrow planting for rainfall harvesting system had a negative effect on yield increasing.
引文
白清俊.1999.流域坡面综合产流数学模型的研究.土壤侵蚀与水土保持学报,5(3):54-58
    卜玉山,苗果园,周乃健,邵海林,王建程.2006.地膜和秸秆覆盖土壤肥力效应分析与比较.中国农业科学,39(5):1069-1075
    曹卫星,潘洁,朱艳,刘小军.2007.基于生长模型与Web应用的小麦管理决策支持系统.农业工程学报,(1):133-138
    曹永华.1991.美国CERES作物模拟模型及其应用.世界农业,(9):52-55
    陈国平.1994.玉米的干物质生产与分配.玉米科学,2(1):48-53
    陈辉林,田宵鸿,王晓峰,曹玉贤,吴玉红,王朝辉.2010.不同栽培模式对渭北旱塬区冬小麦生长期间土壤水分、温度及产量的影响.生态学报,30(9):2424-2433
    陈维新,欧阳竹.2008.关于单株玉米耗水量的探讨.自然资源学报,23(5):929-935
    邓天宏,方文松,付祥军,刘荣花.2005.冬小麦夏玉米土壤水分预报及优化灌溉模型.气象科技,33(1):68-72
    丁瑞霞,贾志宽,韩清芳,任广鑫,王俊鹏.2006.宁南旱区微集水种植条件下谷子边际效应和生理特性的响应.中国农业科学,39(3):494-501
    丁瑞霞.2006.宁南早区农田微集水种植技术与应用研究.[博士学位论文].陕西杨凌:西北农林科技大学
    段喜明,吴普特,白秀敏,冯浩.2006.旱地玉米垄膜沟种微集水种植技术研究.水土保持学报,20(1):143-146
    樊廷录.2002.黄土高原旱作地区径流农业的研究.[博士学位论文].陕西杨凌:西北农林科技大学
    方日尧,同延安,梁东丽,方娟.2003.黄土旱塬不同覆盖对春玉米产量及土壤环境影响.应用生态学报,14(11):1897-1900
    冯应新,钱加绪.1999.甘肃省集水高效农业研究.西北农业学报,8(3):93-97
    高前兆,李小雁,苏德荣.2002.水资源危机.北京:化学工业出版社
    高前兆,李小雁,俎瑞平.2004.干旱区供水集水保水技术.北京:化学工业出版社
    高如泰,陈焕伟,李保国,黄元仿.2006.夏玉米生长期黄淮海平原土壤水氮利用效率模拟分析.农业工程学报,22(6):33-38
    高世铭,张绪成,王亚宏.2010.旱地不同覆盖沟垄种植方式对马铃薯土壤水分和产量的影响.水土保持学报,24(1):249-256
    高世铭.1995.旱地作物水分亏缺补偿效应研究.[博士学位论文].兰州:兰州大学
    高阳,段爱旺,邱新强.2010.玉米/大豆间作条件下作物生物量积累模型.中国生态农业学报,(5):965-968
    郭银巧,郭新宇,赵春江,李存东.2005.玉米栽培管理知识模型系统的设计与实现.玉米科学,13(2):112-115
    郭银巧,郭新宇,赵春江,赵传德,李存东.2006.玉米适宜品种选择和播期确定动态知识模型的设计与实现.中国农业科学,39(2):274-280
    郭银巧,赵传德,孙红春,李存东.2008.玉米肥料运筹动态知识模型研究.河北农业大学学报,31(1):118-126
    韩思明,史俊通,杨春峰.1993.渭北旱原夏闲地聚水保墒耕作技术的研究.干旱地区农业研究,(增刊):46-51
    胡希远,陶士珩,王立祥.1997.半干旱偏早区糜子沟垄径流栽培研究初报.干旱地区农业研究,15(1):44-49
    黄耀,高亮之,金之庆,陈华,葛道阔.1994.水稻群体茎孽动态的计算机模型.生态学杂志,13(4):27-32
    黄占斌.2001.黄土高原农业雨水利用模式.全国雨水利用学术讨论会及国际会论文集,212-215
    蒋定生.1997.黄土高原水土流失与治理模式.北京:中国水利水电出版社:221
    康绍忠.1998.新的农业技术革命与21世纪我国节水农业的发展.干旱地区农业研究,16(1):11-17
    李凤民.2000.半干旱黄土高原地区以集水技术为基础的农牧混合型生态农业.生态农业研究,8(4):1-5
    李军.1997.作物生长模拟模型的开发应用进展.西北农业大学学报,25(4):102-107
    李丽娜.2009.基于陕西省温度和降水的空间变化及其与NDVI的相关性研究.[硕士学位论文].西安:西北大学
    李小雁,张瑞玲.2005.旱作农田沟垄微型集雨结合覆盖玉米种植试验研究.水土保持学报,19(2):45-52
    李小雁.2000.半干旱过渡带雨水集流试验与微型生态集雨模式.[博士学位论文].兰州:中国科学院寒区早区环境与工程研究所
    李育中,程延年.1999.抑蒸集水抗旱技术.北京:气象出版社
    李自珍,王万雄,徐彩琳.2003.多种环境外力作用下作物生长系统的动力学模型及过程数值模拟.应用数学和力学,24(6):644-652
    梁天刚,沈正虎,戴若兰,徐雨清.1999.集水区径流资源空间变化的模拟与分析.兰州大学学报(自然科学版),35(4):83-89
    廖允成,温晓霞,韩思明,贾志宽.2003.黄土台原旱地小麦覆盖保水技术效果研究.中国农业科学,36(5):548-552
    刘铁梅,曹卫星,罗卫红,郭文善.2001.小麦叶面积指数的模拟模型研究.麦类作物学报,21(2):38-41
    刘正辉.2001.半干旱区农田微集水种植带型优化设计研究.[硕士学位论文].陕西杨凌:西北农林科技大学
    柳云龙,吕军,郑丽波.2007.土壤水分平衡与作物生长模拟模型的开发与验证.农业工程学报,23(12):171-175
    马天恩,高世铭.1997.集水高效农业.兰州:甘肃科学技术出版社:1997
    邱建军,王立刚,唐华俊,李红.2004.东北三省耕地土壤有机碳储量变化的模拟研究.中国农业科学,37(008):1166-1171
    山仑,陈国良.1993.黄土高原旱地农业的理论与实践.北京:科学出版社
    尚宗波,杨继武,殷红,罗新兰,赵世勇.2000.玉米生长生理生态学模拟模型.植物学报,(2):184-194
    沈冰,王文焰.1992.降雨条件下黄土坡地表层土壤水分运动实验与数值模拟的研究.水利学报,(6):29-35
    石生新.1992.高强度人工降雨入渗规律.水土保持通报,12(2):49-54
    苏恒强,陈桂芬,朱春烧.2010.基于嫡值法的玉米产量组合预测模型.沈阳农业大学学报,41(1): 125-127
    汤亮,曹卫星,朱艳.2006.基于生长模型的油菜管理决策支持系统.农业工程学报,(11):160-164
    王百田,王斌端.1994.黄土坡面地表处理与产流过程研究.水土保持学报,8(2):19-24
    王百田.1996.黄土高原径流林业.北京:中国林业出版社
    王俊鹏,韩清芳,王龙昌,贾志宽.2000b.宁南半干旱区农田微集水种植技术效果研究.西北农业大学学报,28(4):16-20
    王俊鹏,蒋骏,韩清芳,贾志宽,张久成.1999a.宁南半干旱地区春小麦农田微集水种植技术研.干旱地区农业研究,17(2):8-13
    王俊鹏,马林,蒋骏,贾志宽.1999b.宁南半干旱区农田微集水种植技术研究.西北农业大学学报,27(8);22-26
    王俊鹏,马林,蒋骏,贾志宽.2000a.宁南半干旱地区谷子微集水种植技术研究.水土保持通报,20(3):41-43
    王育光,姜丽霞,杜春英,李秀芬,季生太.2003.黑龙江省作物生长动态模式预测产量的方法及应用.黑龙江气象,(3):15-17
    徐崇刚,胡远端,常禹,姜艳,李秀珍,布仁仓,贺红土.2004.生态模型的灵敏度分析,应用生态学报,15:1056-1062
    徐秋宁.2002.小型集水区降雨径流计算模型研究.水土保持研究,9(1):139-142
    徐雨清.2000.遥感和地理信息系统在半干旱地区降雨—径流关系模拟中的应用.遥感技术与应用,15(1):28-31
    杨封科.2004.旱作春小麦起垄覆膜微集水种植技术研究.灌溉排水学报,23(4):48-49
    姚建民,殷海善.1991.降水资源有效化与旱地农业.资源科学,21(4):47-50
    张怀志,朱艳,曹卫星.2005.基于知识模型的棉花管理决策支持系统.棉花学报,(4):201-206
    张稳,黄耀,郑循华,于永强,韩圣慧.2006.稻田甲烷排放模型研究-模型灵敏度分析.生态学报,26:1359-1366
    张宇,陶炳炎.1991.冬小麦生长发育的模拟研究.南京气象学院学报,14(1):113-121
    赵传德,郭银巧,李存东.2008.玉米适宜密度与播种量确定动态知识模型.农业现代化研究,28(5):610-613
    赵春江,诸德辉,李鸿祥,杨宝祝,康书江,郭晓维.1997.小麦栽培管理计算机专家系统的研究与应用.中国农业科学,30(5):42-49
    赵聚宝,徐祝龄.1986.中国北方旱地农田水分开发利用研究.北京:中国农业出版社
    赵松岭.1996.集水农业引论.西安:陕西科学技术出版社:228-232
    周永娟,侯彦林,李红英.2009.吉林省玉米产量预测统计模型研究(英文).现代农业科学,(3):232-234+239
    朱国庆,史学贵,李巧珍.2001.定西半干旱地区春小麦农田微集水种植技术研究.中国农业气象,22(3):6-9
    朱艳,胡继超,曹卫星,张佳宝.2005.基于作物模型的农田水分管理决策支持系统研究.水土保持学报,(2):160-162+198
    诸叶平,李世娟,于向鸿.2007.玉米数字模拟器研究.中国农业科技导报,9(6):84-89
    邹薇,刘铁梅,孔德艳,汤亮,曹卫星.2009.大麦产量构成模型.应用生态学报,20(2):396-402
    Abbais F, Feyen J, Van Genuchten M Th.2004. Two-dimendional simulation of water flow and solute transport below furrows:model calibration and validation. JHydrol,290:63-79
    Abrahamsen P, Hansen S.2000. Daisy:an open soil-crop-atmosphere system model. Environ Model Softw, 15:313-330
    Araya A, Stroosnijder L.2010. Effects of tied ridges and mulch on barley (Hordeum vulgare) rainwater use efficiency and production in Northern Ethiopia. Agr Water Manage,97:841-847
    Asseng S, Dunin F X, Fillery I R P.2001. Potential deep drainage under wheat crops in a Mediterranean climate I. Temporal and spatial variability. Aust J A gric Res,52(1):57-66
    Asseng S, Fillery I R P, Anderson G C.1998. Use of the APSIM wheat model to predict yield, drainage, and NO3-leaching for a deep sand. JA Gric Re,49(3):363-377
    Asseng S, Keating B.1998. Performance of the APSIM-wheat model in Western Australia. Field Crop Res, 57(2):163-179
    Asseng S, Keulen H V, Stol W.2000. Performance and application of the APSIM N-wheat model in the Netherlands. Eur JA-gron,12(1):37-54
    Babu Y J, Li C, Frolking S, Nayak D R, Adhya T K.2006. Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of india. Nutr Cycl Agroecosys,74(2):157-174
    Beheydt D, Boeckx P, Sleutel S, Li C, Van Cleemput O.2007. Validation of DNDC for 22 long-term N2O field emissions measurement. Atmospheric Environment,41:6196-6211
    Bellia S.1999. Simulation des impacts des changements climatiques attendus sur la production de la culture de ble'en Beauce. DEA Universite'Aix Marseille,101
    Ben-Asher J, Warrick A W.1987. Effect of variations in soil properties and precipitation on micro-catchment water balance. Agr Water Manage,12(3):177-194
    Boers T M, Ben-Asher J.1982. Areview of rainwater harvesting. Agr Water Manage,5:145-158
    Boers T M, De Groaf M, Feddes R A, Ben-Asher J.1986. A linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones. Agr Water Manage,11:187-206
    Brisson N, Dorel M, Ozier-Lafontaine H.1998. Effects of soil management and water regime on the banana growth between planting and flowering Simulation using the STICS model. In:Galan Sauco, V. (Ed.), Proceedings of the International Symposium Banan in Subtropics, Acta Hort:490:229-238
    Brisson N, Itier B, L'Hotel J C, Lorendeau J Y.1998. Parameterisation of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models. Ecol Model.107,159-169
    Brisson N, Ruget F, Gate P, Lorgeau J, Nicoullaud B, Tayot X, Plenet D, Jeuffroy M H, Bouthier A, Ripoche D, Mary B, Justes E.2002. STICS:a generic model for the simulation of crops and their water and nitrogen balance Ⅱ. Model validation for wheat and maize. Agronomie,22(1):69-93
    Cluff C B.1974. Engineering aspects of water harvesting at the university of Arizona. In:Frasier G W. 1974. Proceedings of the water harvesting symposium. Phoenix, Arizona:27-39
    Critchley W, Siegert K.1991. Water harvesting. Rome:FAO
    De Koning G H G, Janssen H, Van Keulen H.1992. Input and output coefficients of various cropp ing and livestoke systems in the European communities. Netherlands Scientific Council for Government Policy,62:71
    Deng J, Zhu B, Zhou Z X, Zheng X H, Li C S, Wang T, Tang J L.2011. Modeling nitrogen loadings from agricultural soils in southwest China with modified DNDC. JGeophys Res,116
    Deng X P, Shan L, Zhang H P, Turner N C.2006. Improving agricultural water use efficiency in arid and semiarid areas of China. Agr Water Manage,80:23-40
    Dusek J, Ray C, Alavi G, Vogel T, Sanda M.2010. Effect of plastic mulch on water flow and herbicide transport in soil cultivated with pineapple crop:a modeling study. Agr Water Manage,97:1637-1645
    Dutt G R, McCreary T W.1974. Multipurpose salt treated water harvesting system. In:Frasier G.1974. Proceedings of the water harvesting symposium. Hoenix, Arizona:310-314
    Evenari M, Shanan L, Tadmor N.1961. Ancient agriculture in the Negev. Science,133(3457):979-996
    Evenari M, Shanan L, Tadmor N.1968. "Runoff Farming" in the Desert I. Experimental Layout. Agron J, 60:29-32
    Fink D H, Cooley K R, Frasier G W.1973. Wax-treated soils for harvesting water. J Range Manage,26: 396-398
    Fink D H, Frasier G W, Myers L E.1979. Water harvesting treatment evaluation at granite reef. Water Resources Bull,15:861-873
    Fink D H, Frasier G W.1977. Evaluating weathering characteristics of water-harvesting catchments from rainfall-runoff analyses. Soil Sci Soc Am J,41:618-622
    Fink D H.1976. Laboratory testing of water-repellant soil treatments for water harvesting. Soil Sci Soc Am J,40:562-566
    Frasier G W.1975. Water harvesting:a source of livestock water. J Range Manage,28:429-434
    Frasier G W, Cooley K R, Griggs J R.1979. Performance evaluation of water harvesting canchments. J Range Mange,36:453-456
    Frasier G W.1983. Water quality from water-harvesting systems. J Environ Qual,12:225-231
    Frith J L, Nulsen R A, Nicol H I.1975. A computer model for optimizing design of improved catchment. Agricultural Research Service,18:151-157
    Frith J L, Nulsen R A.1971. Clay cover for roaded catchments. J Dept of Aric West Aust,12(8):105-110
    Fumoto T, Kazuhiko K, Li C, Kazuyuki Y, Toshihiro H.2008, Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biol,14:382-402
    Fumoto T, Y Tetsuji, S Takashi, Y Kazuyuki.2010. Assessment of the methane mitigation potentials of alternative water regimes in rice fields using a processbased biogeochemistry model. Global Change Biol,16:1847-1859
    Geddes H J.1963. Water Harvesting Project. Jlrrig Drain E-ASCE,104:43-58
    Giltrap D L, Li C, Saggar S.2010. DNDC:a process-based model of greenhouse gas fluxes from agricultural soils. Agr Ecosyst Environ,136(2010):292-300
    Goudriaan J, Laar H H, Van Keulen H, Louwerse W.1984. Simulation of the effect of increase atmospheric CO2 on assimilation and transpiration of a closed crop canopy. Wissenschafliche Zeitchrift Humbolt Universitaet Berlin. Math.-Nat. R,33(4):32-356
    Goudriaan J.1986. A simple and fast numerical method for commutation of daily totals of crop photosynthesis. Agr Forest Meteorol,38:249-254
    He X B.2003. Down-scale analysis for water scarcity in response to soil-water conservation on Loess Plateau of china agriculture. Agr Ecosyst Environ,94:355-361
    Hillel D.1967. Runoff inducement in arid lands. Final Tech Report to the USDA
    Hollick M.1982. Water harvesting in arid lands. Scientific Reviews on Arid Zone Research,1:173-247
    Hoogenboom G., Jones J W, Wilken P W, et al.2004. DSSAT V4.0 [CD-ROM], University of Hawaii, Honolulu, HI,2004
    Hoogenboom G., Jones J W, Wilken P W, et al.2008. DSSAT V4.5 β [CD-ROM], University of Hawaii, Honolulu, HI,2008
    Hoogenboom G., Wilken P W, Tsuji G Y.1999. Chapter three:Laboratory method, DSSAT v3, Volume 4. University of Hawaii, Honolulu, Hawaii:257-270
    Jia Y, Li F M, Wang X L, Yang S M.2006. Soil water and alfalfa yields as affected by alternating ridges and furrows in rainfall harvest in a semiarid environment. Field Crops Res,97:167-175
    Jones C A, Kiniry J R.1986. CERES-Maize:a simulation model of maize growth and development. Texas A&M University Press, College Station, TX:194
    Keating B A, Meinke H.1998. Assessing exceptional drought with a cropping systems simulator:A case study for grain production in northeast Australia. Agr Syst,57(3):315-332
    Kemper W D, Nicks A D, Corey A T.1994. Accumulation of water in soils under gravel and sand mulches. Soil Sci Soc Am J,58:56-63
    Kemper W D. Noonan L.1970. Runoff as affected by salt treatment and soil texture. Soil Sci Soc Amer Proc,34:120-130
    Khan S, Hanjra M A, Mu J.2009. Water management and crop production for food security in China:A review. Agr Water Manage,96,349-360
    Kiniry J R, Blanchet R, Williams J R, Texier V, Jones C A, Cabelguenne M.1992. Sunflower simulation using the EPIC and ALMANAC models. Field Crops Res,30(3-4):403-423
    Kiniry J R, Sanderson M A, Williams J R.1996. Simulating Alamo switch grass with the ALMANAC mode. Agron J,88:602-606
    Kropff, M.J., van Laar, H.H.,1993. ORYZAl-a basic model for irrigated low land rice production. IRRI, Philippines-Wageningen.
    Laing I A F.1970. Reducing evaporation from farm dams. JDept ofAric WestAnst,11(1):8-15
    Laing I A F.1975. Sesling leaking excavated tands on farms in western Australian. Water Harvesting Symp. Pheonix, Arizona:159-174
    Lanen H A J, Diepen C A.1992. Physical land evaluation methods and GIS to explore the crop growth potential and its effects within the EUROPE communities. J Agr Syst,39:307-328
    Lee M D.1985. The development of a distributed computer simulation model of a reconstructed ancient water-harvesting system, Avdat, Israel. In:Whitehead E, Hutchinson C, Timmerman B, Varady R. 1985. Arid Lands:Today and Tomorrow. Proceedings of an International Research and Development Conference, Tuscon, Arizona, USA:20-25
    Leistra M, Boestern J J T L.2010. Pesticide leaching from agricultural fields with ridges and furrows. Water Air and Soil Pollution,213:341-352
    Li C, Frolking S, Frolking T A.1992a. A model of nitrous oxide evolution from soil driven by rainfall events:1. Model structure and sensitivity. J Geophys Res,97(D9):9759-9776
    Li C, Frolking S, Frolking T A.1992b. A model of nitrous oxide evolution from soil driven by rainfall events:2. Model applications. J Geophys Res,97(D9):9777-9783
    Li C, Frolking S, Xiao X, Moore B, Boles S, Qiu J, Huang Y, Salas W, Sass.2005. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions:A case study for water management of rice agriculture of China. Global Biogeochem Cy,19(3):1-13
    Li C, Qiu J, Frolking S, Xiao X, Salas W, Moore B, Boles S, Huang Y, Sass R.2002. Reduced methane emissions from large-scale changes in water management of China's rice paddies during 1980-2000. Geophys Res Lett,29(20):331-334
    Li C, Zhuang Y, Frolking S, Galloway J, Harriss R, Moore B, Schimel D, Wang X.2003. Modeling soil organic carbon change in croplands of China. Ecol Appl,13(2):327-336
    Li C.2000. Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosys,58(1-3): 259-276,
    Li H, Qiu J, Wang L, Tang H, Li C, Van Ranst E.2010. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agric Ecosyst Environ,135:24-33
    Li C S, Frolking S, Harriss R C, Terry RE.1994. Modeling nitrous oxide emissions from agriculture:A Florida case study. Chemosphere,28:1401-1415
    Li C S, Narayanan V, Harris R.1996. Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochem Cy,10:297-306
    Li C S.2000. Modeling Trace Gas Emissions from Agricultural Ecosystems. Nutr Cycl Agroecosys,58: 259-276
    Li F M, Guo A H, Wei H.1999. Effects of clear plastic film mulch on yield of spring wheat. Field Crops Res,63:79-86
    Li R, Hou X Q, Jia Z K, Han Q F, Yang B P.2012. Effects of rainfall harvesting and mulching technologies on soil water, temperature, and maize yield in Loess Plateau region of China. Soil Res,50:105-113
    Li X Y, Gao S Y, Xu H Y, Liu L Y.2006. Growth of Caragana korshinskii using runoff-collecting microcatchments under semiarid condition. J Hydrol,328:338-346
    Li X Y, Gong J D, Gao Q Z, Li F R.2001. Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid condition. Agr Water Manage,50:173-183
    Li X Y, Gong J D, Wei X H.2000. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. J Arid Environ,46:371-382
    Li X Y, Gong J D.2002. Effects of different ridge:furrow ratios and supplemental irrigation on crop production in ridge and furrow rainfall harvesting system with mulches. Agr Water Manage,54: 243-254
    Mashingsedze A B, Chiviuge O A, Zishiri C.1996. The effects of clear and black much on soil temperature, weed seed viability and seeding emergence, growth and yield of tomatoes. J Appl Sci in southern Africa,2:6-14
    McCree K J.1979. An equation for the rate of respiration of white clover plants grown under controlled conditions. In:Setlik, I. (Ed.), Prediction and Measurement of Photosynthetic Production. Pudoc, Wageningen
    Mcintyre D S.1958. Permability measurements of soil crusts formed by raindrop impact. Soil Sci,85: 185-189
    Melesse A M, Shih S F.2002. Spatially distributed storm runoff depth estimation using Landsat images and GIS. Comput Electron Agr,37:173-183
    Miehle P, Livesley S J, Li C S, Feikema P M, Admas M A, Arndt S K.2006. Quantifying uncertainty from large-scale model predictions of forest carbon dynamics. Glob Change Biol,12:1421-1434
    Morin G C A, Matlock W G.1975. Desert strip farming:computer simulation of an ancient water harvesting technique. Water Harvesting Symposium,141-150
    Myers L E.1964. Harvesting precipitation. Interntl Assoc For Sci,65:343-351
    Myers L E.1967. Recent advance in water harvesting. JSoil Water Conserv, (5-6):95-97
    Mysers L E, Frasier G W, Griggs J R.1967. Sprayed asphalt pavements for water harvesting. J Irrig Drain E-ASCE,93:79-97
    Nash J E, Sutcliffe J V.1970. River flow forecasting through conceptual models part I:A discussion of principles. JHydrol,10:282-290
    Nearing M A, Deer-Ascough L, Laflen J M.1990. Sensitivity analysis of the WEPP hillslope profile erosion model, TASAE,33(3):839-49
    Oron G, Enthoven G.1987. Stochastic considerations in optimal design of a microcatchment layout of runoff water harvesting. Water Resources Res,23:1131-1138
    Oron G, Heaton P, Ben-Asher J.1989. Design criteria for microcatchment water harvesting with scarce data. In:Rydzewski J R, Ward C. Irrigation:Theory and Practice. Institute of Irrigation Studies, University of Southampton, Southampton, UK:302-316
    Pacey A, Cullis A.1986. Rainwater harvesting:the collection of rainfall and runoff in rural areas, London, IT publication
    Pang J, Zhou M, Mendham N, Shabala S.2004. Growth and physiological responses of six barely genotypes to waterlogging and subsequent recovery. Aust J Agric Res,55:895-906
    Panigrahi B, Panda S N, Mull R.2001. Simulation of water harvesting potential in rainfed ricelands using water balance model. Agr Syst,69:165-182
    Pathak H, Li C, Wassmann R.2005. Greenhouse gas emissions from Indian rice fields:calibration and upscaling using the DNDC model. Biogeosciences,2:113-123
    Penning de Vries F W T, Jansen D M, Ten Berge H F M, Bakema A.1989. Simulation of Ecophysiological Processes of Growth in Several Annual Crops. Pudoc, Wageningen.
    Piao S L, Ciais P, Huang Y, Shen Z H, Peng S S, Li J S, Zhou L P, Liu H Y, Ma Y C, Ding Y H, Friedlingstein P, Liu C Z, Tan K, Yu Y Q, Zhang T Y, Fang J Y.2010. The impacts of climate change on water resources and agriculture in China. Nature,467:43-51
    Pingali P.2007. Westernization of Asian diets and the transformation of food systems:implications for research and policy. Food Policy,32:281-298
    Prinz D, Wolfer S, Siegert K.2000. Water harvesting for crop production. Rome:FAO Training Corrse
    Probert M E, Dimes J P, Keating B A.1998. APSIM's water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. A gric Sys,56(1):1-28
    Ravi V, Lourduraj A C.1996. Comparative performance of plastic mulching on soil moisture content, soil temperature and yield of rainfed cotton. Madras Agric J,83:709-711
    Reij C, Mulder P, Begeman L.1988. Water harvesting for plant production. World Bank Technical paper 91. Washington:World Blank:123
    Ren X L, Jia Z K, Chen X L 2008. Rainfall concentration for increasing corn production under semiarid climate. Agr Water Manage,95:1293-1302
    Reyenga P J, Howden S M, Meinke H.1999. Modeling global change impacts on wheat cropping in southeast Queensland, Australia. Environ Mod Softwar,14:297-306
    Ritchie J T, Godwin D C, Otter-Nache S.1988. CERES-Wheat. A simulation model of wheat growth and development. Texas A&M University Press, College Station, TX.
    Ritchie J T.1991. Wheat phasic development. In:Hanks, R.J., Ritchie, J.T. (Eds.), Modeling Plant and Soil System. Agronomy Monograph,31:31-54
    Rockstrom J.1999. On-farm green water estimates as a too for increased food production in water scarce regions. Phy Chem Earth (B),24(4):375-383
    Rogers R D, Schumm S A.1991. The effect of sparce vegetation cover on erosion sediment yield. JHydrol, 123:19-24
    Romero-Diaz A, Cammeraat L H, Vacca A.1999. Soil erosion at three experimental sites in the Mediterranean. Earth Surf Process Landforms,24:1243-1256
    Saggar S, Giltrap D L, Li C, Tate K R.2007. Modeling nitrous oxide emissions from grazed grasslands in New Zealand. Agr Ecosyst Environ,119:205-216
    Sanchez-Cohen I, Lopes V L, Slack D C.1997. Water balance model for small-scalewater harvesting systems. JIrrig Drain E-ASCE,123(2):123-128
    Setter T L, Waters I.2003. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil,253:1-34
    Smith P, Smith J U, Powlson D S.1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma,81:153-225
    Smith W N, Grant B, Desjardins R L, Lemke R, Li C.2004. Estimates of the interannual variations of N2O emissions from agricultural soils in Canada. Nutr Cycl Agroecosys,68; 37-45
    Spitters C J T, Toussaint H A J M, Goudriaan J.1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part 1:components of incoming radiation. Agr Forest Meteorol,38:217-229
    Spitters C J T.1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part Ⅱ:calculation of canopy photosynthesis. Agr Forest Meteorol, 38:231-242
    Tabor J A.1995. Improving crop yield in the Sahel by means of water-harvesting. J Arid Environ,30: 83-106
    Tang H, Qiu J, Van Ranst E, Li C.2006. Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma,134:200-206
    Tauer W, Humborg G.1992. Runoff irrigation in the Sahel zone. Remote sensing and geographical information systems for determining potential sites. CTA, Margraf, Wageningen, The Netherlands: 192
    Thames J L, Fischer J L.1981. Management of water resouces in arid lands. In:Goodall D W, Perry R A. Arid lands ecosystems:519-547
    Tian Y, Su D R, Li F M, Li X L.2003. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res,84:385-391
    Tonitto C, David M, Drinkwater L, Li C.2007. Application of the DNDC model to tile-drained Illinois agroecosystems:model calibration, validation, and uncertainty analysis. Nutr Cycl Agroecosys,78: 51-63
    Tonitto C, Li C S, Seidel R, Drinkwater L.2010. Application of the DNDC model to the Rodale Institute Farming Systems Trial:challenges for the validation of drainage and nitrate leaching in agroecosystem models. Nutr Cycl Agroecosys,87:483-494
    USDA (United States Department of Agriculture).1972. Hydrology. National Engineering Handbook. Section 4. Washington, DC, USA:734
    Vashistha R N, Pandita, M L, Batra, R R.1980.Water harvesting studies under rainfall condition in relation togrowth and yield of okra. Hargana JHort Sci,314(9):188-191
    Walker S E, Mitchell J K, Hirschi M C, Johnsen K E.2000. Sensitivity analysis of the root zone water quality model, TASAE,43(4):841-846
    Walker S, Tsubo M, Hensley M.2005. Quantifying risk for water harvesting under semi-arid conditions Part II. Crop yield simulation. Agr Water Manage,76:94-107
    Wang Q, Zhang E H, Li F M.2008. Runoff efficiency and the technique of micro-water harvesting with ridges and furrows, for potato production in semi-arid areas. Water Resour Res,22:1431-1443
    Wang X L, Li F M, Jia Y, Shi W Q.2005. Increasing potato yields with additional water and increased soil temperature. Agr Water Manage,78:181-194
    Weiss M, Troufleau D, Baret F, Chauki H, Prevot L, Olioso A, Bruguier N, Brisson N.2001. Coupling canopy functioning and radiative transfer models for remote sensing data assimilation. Agr Forest Meteorol,108:113-128
    Williama J R, Nearing M, Niek A.1996. Using soil erosion models for global change studies. JSoil Water Conserv,51:381-385
    Williams J R.1995. The EPIC model. In:Singh, V.P. (Ed.),Computer Models of Watershed Hydrology. Water Resources Publications, Highlands Ranch, CO:909-1000.
    Wiyo K A, Kasomekera Z M, Feyen J.1999. Variability in ridge and furrow size and shape and maize population density on small subsistence farms in Malawi. Soil Till Res,51:113-119
    Wiyo K A, Kasomekera Z M, Feyen J.2000. Effect of tied ridging on soil water status of maize crop under Malawi conditions. Agr Water Manage.45:101-112
    Xu R, Wang Y S, Zheng X H, Ji B M, Wang M X.2003. A comparison between measured and modeled N2O emissions from Inner Mongolian semi-arid grassland. Plant Soil,255(2):513-528
    Yair A.1983. Hill slope hydrology water harvesting and areal distribution of some ancient agriculture system in the northern Negev desert. JArid Environ,6:283-301
    Yers L E.1975. Water harvesting-2000BC to 1974 AD. In:U S Department of Agriculture.1974. Proceedings of the Water Harvesting Symposium, Phoenix, Arizona:Agricultural Research Service: 1-7
    Young M D B, Gowing J W, Wyseure G C L.2002. Parched-thirst:development and validation of a process-based model of rainwater harvesting. Agr Water Manage,55:121-140
    Yuan T, Li F M, Liu P H.2003. Economic analysis of rainwater harvesting and irrigation methods, with an example from China. Agr Water Manage,60:217-226
    Zhang Y, Li C, Trettin C C, Li H, Sun G.2002a. An integrated model of soil, hydrology and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochem Cy,16:1061
    Zhang F, Li C, Wang Z, Wu H.2006. Modeling impacts of management alternatives on soil carbon storage of farmland in Northwest China. Biogeosciences,3:451-466
    Zhang F, Qi J, Li F M, Li C, Li C B.2010. Quantifying nitrous oxide emissions from Chinese grasslands with a process-based model. Biogeosciences,7:2039-2050
    Zhang S L, Li P R, Yang X Y, Wang Z H, Chen X P.2011. Effects of tillage and plastic mulch on soil water, growth and yield of spring-sown maize. Soil Till Res,112:92-97
    Zhang Y Q.2004. Effect of soil water deficit on evaporatranspiration, crop yield, and water use efficiency in the north China Plain. Agr Water manage,64:107-122
    Zhang Y, Li C S, Zhou X J, Moore B.2002b. A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecol Model,151:75-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700