基于相移光栅双波长窄线宽光纤激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了基于相移光栅的双波长窄线宽光纤激光器的设计,其中双波长、窄线宽滤波的实现,以及激光器结构的设计是研究的重点。从等效谐振腔驻波条件的角度,对相移光纤光栅特别是双相移点光纤光栅以及相移取样光纤光栅的结构特点以及反射谱特性进行了一系列的理论研究。此外,实验研究了两种基于相移光栅的光纤激光器结构,并获得了激光输出。主要研究内容包括:
     (1)根据光纤光栅的耦合模理论和传输矩阵理论,结合单相移点光纤光栅中两段Bragg光栅的反射系数的相位特性,利用等效谐振腔的驻波条件,分析了影响单相移点光纤光栅透射波长的因素,分析表明:在光纤光栅中插入一个相移点,会在光栅的反射带宽内产生一个透射峰,透射峰的波长与单相移点的大小及位置有关。当相移量为π时,相移光栅透射峰波长只与相移量的大小有关,与相移点的位置无关;当相移量远离π时,相移光栅透射峰波长不仅与相移量的大小有关,还与相移点的位置有关。
     (2)利用等效谐振腔的驻波条件,对双相移点光纤光栅的反射谱特性及影响透射波长的因素进行分析。结果表明:在光纤光栅中插入两个相移点,会在反射带宽内产生两个透射峰。两透射峰的波长间隔与相移量的大小及相移点的位置有关。相移量一定时,波长间隔随着相移点间距变大而减小;当相移点间距一定,波长间隔随两相移点相位差的增加而增大,另外相移点间距越大,相移量对波长间隔的影响越明显。
     (3)通过设置合适的参数,取样光纤光栅可以得到具有双波长的反射谱,在该取样光栅中增加相移点,可以在原双反射带宽内分别得到超窄带的透射峰。同样利用等效谐振腔的驻波条件,对影响相移取样光栅透射波长的因素进行研究,可得:相移取样光栅的透射波长与相移点的位置及相移量的大小有关。改变相移量的大小,两透射波长会同时向短波长或长波长方向移动。相移点越偏离中点,相移量的大小对透射峰波长的影响越明显,但相移点远离光栅中点时,相移取样光栅透射功率损耗较大。
     (4)实验研究了两种不同的基于相移光栅的光纤激光器:1、等效为相移光栅的光纤对直接刻写在铒纤上,构造单相移点光纤光栅DFB光纤激光器,获得了稳定的单波长激光激射。2、相移光栅与Bragg光栅共同作为双波长窄带滤波器,构造双波长环形光纤激光器,得到双波长激光输出。
In this thesis, the Dual-wavelength fiber laser with narrow linewidth based on thephase-shifted grating was designed. The focuses were how to obtain a dual-wavelength andnarrow line width filter and how to design the structure of the fiber laser. Standing wavecondition of the equivalent resonator, as a new method, was used to discuss the structure andreflection spectrum characteristics of phase-shifted grating, including the single anddual-phase-shift grating and the phase-shifted sampled grating. Laser with narrow linewidthbased on different laser structures can be obtained experimentally. The details were describedas follows:
     (1) Phase-shifted grating was regard as a resonator formed by two FBGs. According to thecouple mode and transfer matrix theory, combined with phase changes caused byreflection coefficient of the FBG, using standing wave condition of the equivalentresonator, transmission peak wavelength dependence of factors were analyzed. Thefollows can be demonstrated: there were one transmission peak in the bandwidth of thereflection; the wavelength space was influenced by value and position of the phase shift.when the phase shift was π, the transmission wavelength was not related to the positionof the phase shift, when the value of phase shift was deviated from π, the wavelength ofthe transmission peak was not only related to the value of phase shift, but also theposition of phase shift.
     (2) Using standing wave condition of the equivalent resonator, structural of the dual-phase-shifted grating and factors affecting transmission wavelength were analyzed, Thefollows can be demonstrated: there were two transmission peaks in the bandwidth of thereflection, the wavelength space was influenced by value and position of the phase shift.When the value of the phase shift was unchangeable, the wavelength spacing becamesmaller with the increasing distance of the two phase shifts. With invariable distance ofthe two phase shifts, the wavelength spacing became bigger with the increasing of phasedifference. With the increasing of distance between phase shifts, the value of the phaseshift impact on the wavelength space was more obvious.
     (3) With appropriately parameters, dual-wavelength reflection peaks in the reflection of thesampled grating can be obtained. When Phase shift was inserted, two new transmissionpeaks can be gained separately in the bandwidth of the two reflection peaks. Accordingto standing wave condition, transmission wavelength dependence of factors weredemonstrated: the transmission wavelength was related to the value and position of thephase shift. When value of the phase shift changed, both the transmission wavelengthsbecame bigger or smaller;With phase shift position deviated from the center, phaseshifted sampled grating has a more obvious wavelength change versus the value of phase shift, but there will be a high loss.
     (4) Two different kinds of fiber laser were studied experimentally:1. Grating pair wascarved on the EDF, due to the EDF between the pair can be regarded as phase shift, asingle phase shifted DFB fiber laser can be obtained. Single-wavelength narrowlinewidth laser was carried out.2. Dual-phase-shifted grating and FBG were used as thefilter, a dual-wavelength ring fiber laser was made up, dual-wavelength laser was carriedout.
引文
[1]乔桂红等.光纤通信[M].北京:人民邮电出版社,2005
    [2]吕璠.光纤通信的发展趋势及应用[J].科技信息,2009(23):39~40.
    [3]罗志成.试论光纤通信技术的发展[J].科技信息,2009(3):11.
    [4]胡辽林,刘增基.光纤通信的发展现状和若干关键技术[J].电子科技,2004(2):3-10.
    [5]侯蓝田,韩颖.光纤激光器的发展与应用[J].燕山大学学报,2011,35(2):95~101.
    [6]刘颂豪.光纤激光器的新进展[J].光电子技术与信息,2003,16(1):1-8.
    [7] Geoffrey A. Cranch, Gordon M. H. Flockhart et al.. Distributed feedback fiber laser strain sensors [J].IEEE Sensors Journal,2008,8(7):1161~1172.
    [8]谭花娣,张卫东.WDM系统中掺铒光纤放大器(EDFA)的原理及其应用[J].科技资讯,2008(36):5.
    [9]吴海西.WDM技术的原理及其应用与发展[J].Modern Science&Rechnology of Telecommunication,2000(10):6~10.
    [10] Fei Wang, Xinliang Zhang, Enming Xu. A tunable and switchable single-longitudinal-modedual-wavelength fiber laser for microwave generation [J]. IEEE,2010,17(24):728~729.
    [11]周炳昆,高以智等.激光原理[M].北京:国防工业出版社,1984.
    [12] Duan Liu, Nam Quoc Ngo, Swee Chuan Tjin et al.. A dual-wavelength fiber laser sensor system formeasurement of temperature and strain [J]. IEEE Photonics Technology Letters,2007,19(15):1148-1150.
    [13] M. Nakazawa, Y. Kimura. Simultaneous oscillation at0.91,1.08, and1.53μm in a fusion-spliced fiberlaser [J]. Applied Physics Letters,1987,1(22):1768-1770.
    [14] H.Takahashi, H.Toba, Y.Inoue. Multiwavelength ring laser composed of EDFAs and anarrayed-waveguide wavelength multiplexer [J]. Electronics Letters,1994,30(1):44-45.
    [15] M.Ibsen, S.Alam, Michalis N.Zervas et al..8-and16-channel all-fiber DFB laser WDM transmitterswith integrated pump redundancy, IEEE Photonics Technology Letters,1999,11(9):1114-1116.
    [16] N. Park, P. F. Wysocki.24-line multi-wavelength operation of erbium-doped fiber-ring laser [J]. IEEEPhotonics Technology Letters,1996,8(11):1459-1461.
    [17]王佳晨.四波混频形多波长掺铒光纤激光器的输出特性研究[D].硕士.哈尔滨工业大学,2009.
    [18] F.Faere, D.Le.Guen, J.-C.Simon et al.. Four-wave mixing in traveling-wave semiconductor laseramplifier [J]. Electronics Letters,1989,25(4):272-273.
    [19] V. J. Matsas, T. P. Newson, D.J.Richardson et al.. Selfstarting passively mode-locked fiber ringsoliton laser exploiting nonlinear polarization rotation [J]. Electronics Letters,1992,28(15):1391-1393.
    [20] Zu Xing Zhang, Kun Xu, Jian Wu et al.. Two different operation regimes of fiber laser based onnonlinear polarization rotation: passive mode-locking and multiwavelength emission [J]. IEEEPhotonics Technology Letters,2008,12(15):979-981.
    [21] Y. W. Lee, B. Lee. Wavelength-switchable Erbium-doped fiber ring laser using spectral polarizationdependent loss element [J]. IEEE Photonics Technology Letters,2003,15(6):795-797.
    [22]张祖兴,桑明煌,叶志清等.基于非线性偏振旋转效应的多波长光纤激光器[J].光学学报,2008,28(4):648-652.
    [23] V.J.Matsas, T.P.Newson, D.J.Richardson et al.. Selfstarting passively mode-locked fibre ring solitonlaser exploiting nonlinear polarisation rotation [J]. Electronics Letters,2004,12(16):3834-3839.
    [24] Renyuan Wang and Yifei Li, Dual-polarization spatial-hole-burning-free microchip laser [J]. IEEEPhotonics Technology Letters,2009,21(17):1214-1216.
    [25] Xinhuan Feng, Yange Liu, Shenggui Fu et al.. Switchable dual-wavelength ytterbium-doped fiberlaser based on a few-mode fiber grating [J]. IEEE Photonics Technology Letters,2004,16(3):762-764.
    [26]冯新焕,孙磊,刘艳格等.基于保偏光纤光栅的双波长掺铒光纤激光器[J].中国激光,2005,32(2):145-148.
    [27] Lei Sun, Xinhuan Feng, Weigang Zhang et al.. Beating frequency tunable dual-wavelengtherbium-doped fiber laser with one fiber Bragg grating [J]. IEEE Photonics Technology Letters,2004,16(6):1453-1455.
    [28] Wysocki P, Mazurczyk V. Polarization dependent gain in erbium-doped fiber amplifiers: computermodel and approximate formulas [J]. IEEE Journal of Lightwave Technology,1996,14(4):572-584.
    [29] Jian Yao, Jianping Yao, Zhichao Deng et al.. Investigation of room-temperature multiwavelength fiberring laser that incorporates an SOA based phase modulator in the laser cavity [J]. IEEE Journal ofLightwave Technology,2005,23(8):2484-2490.
    [30] Shenping Li, Hao Ding and K.T. Chan. Erbium-doped fibre lasers for dual wavelength operation [J].Electronics Letters,1997,33(1):52-52.
    [31] X.M. Liu. A Novel Dual-wavelength DFB fiber laser based on symmetrical FBG structure [J]. IEEEJournal of Photonics Technology Letters,2007,19(9):632-634.
    [32] Yitang Dai, Xiangfei Chen, Jie Sun et al.. Dual-wavelength DFB Fiber laser based on a chirpedstructure and the equivalent phase shift method [J]. IEEE Photonics Technology Letters,2006,18(18):1964-1966.
    [33] D. Chen, H. Fu, W. Liu et al.. Dual-wavelength single-longitudinal-mode Erbium-doped fibre laserbased on fibre Bragg grating pair and its application in microwave signal generation [J]. ElectronicsLetters,2008,44(7):459-461.
    [34] G. A. Ball, W. W. Morey and W. H. Glenn. Standing-wave monomode erbium fiber laser [J]. IEEEPhotonics Technology Letters,1991,3(7):613-615.
    [35] Y. Cheng, J. T. Kringlebotn et al.. Stable single-frequency traveling-wave fiber loop laser withintegral saturable-absorber-based tracking narrow-band filter [J]. Optics Letters,1995,20(8):875-877.
    [36] J. T. Kringlebotn, W. H. Loh et al.. Polarimetric Er3+-doped fiber distributed-feedback laser sensor fordifferential pressure and force measurements [J]. Optics Letters,1996,21(22):1869-1871.
    [37] Jianluo Zhang, Chao-Yu Yue, Gregory W. Schinn et al.. Stable single-mode compound-ringerbium-doped fiber laser [J], Journal of Lightwave Technology,1996,14(1):104-109.
    [38] Y. Cheng, J. T. Kringlebotn, W. H. Loh et al.. Stable single-frequency traveling-wave fiberloop laser with integral saturable-absorber based tracking narrow-band filter [J]. Optics Letters,1995,20(8):875~877.
    [39] Naoto Kishi, Frequency control of a single-frequency fiber laser by cooperatively induced spatial-holeburning [J]. IEEE Photonics Technology Letters,1996,11(2):104~109.
    [40] Shilong Pan and Jianping Yao. Frequency-switchable microwave generation based on adual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter [J].Optics Letters,2009,17(14):12167-12173.
    [41] Z.G.Lu and C.P.Grover. A widely tunable narrow-line-width triple-wavelength Erbium-doped fiberring laser [J]. IEEE Photonics Technology Letters,2005:22-24.
    [42] Junqiang Sun, Lin Huang. Single-longitudinal-mode fiber ring laser using internal lasing injection andself-injection feedback [J]. Optical Engineering,2007,46(7):07201-1~074201-6.
    [43] Gongquan Liang, Tianshu Wang, Xuefang Zhou et al.. A novel switchable dual-wavelength ringErbium-doped fiber laser operating in single-longitudinal-mode [J]. ICEOE2011:69~71.
    [44] Shinji Yamashita. Single-polarization operation of fiber distributed feedback (DFB) lasers by injectionlocking [J]. Journal of Lightwave Technology,1999,17(3):509~513.
    [45]刘波,贾承来,张昊等.DBR光纤激光器拍频传感及其组网技术研究[J].光电子·激光,2010,21(11):1614~1617.
    [46]张劲松,赵云成.单频DBR光纤激光器的设计[J].光通信研究,1998,2:50~52.
    [47]张劲松,裴丽.单频DBR和DFB光纤激光器综述[J].光电子·激光,1999,9(4):52~355.
    [48]蔡晓峰,赵岩.DFB光纤激光器中相移光栅优化分析[J].中国电子科学研究院学报,2010,5(1):53~56.
    [49]蔡虹.基于耦合模理论均匀光纤光栅光谱仿真研究[J].太原师范学院学报,2011,10(1):120~123.
    [50] Turan Erdogan. Fiber grating spectra [J]. Journal of Lightwave Technology,1997,15(8):1277~1294.
    [51] Kenneth O. Hill and Gerald Meltz. Fiber Bragg grating technology fundamentals and Overview [J].Journal of Lightwave Technology,1997,15(8):1263~1275.
    [52]赵东晖,杨秀峰,刘志国等.相移光纤光栅的特性分析及应用[J].光电子·激光,1998,9(3):177~180.
    [53] Y.Ben-Ezra, U.Mahlab, M. Haridim et al.. Application of all-optical signal processing in modernoptical communications [J]. ICTON2007:328~331.
    [54] Jean Armstrong. OFDM for Optical communications [J]. Journal of Lightwave Technology, February2009,27(3):189~204.
    [55]陈小刚,黄德修,元秀华等.基于超连续谱和超结构光纤光栅的波分复用/光码分复用系统[J].中国激光,2008,35(1):77~81.
    [56]田力,张爱玲.相移光栅及取样光栅的双峰滤波特性[J].中国激光,2010,37(11):2896~2900.
    [57] Jie Sun, Yitang Dai, Xiangfei Chen et al.. Stable dual-wavelength DFB Fiber laser with separateresonant cavities and its application in tunable microwave generation [J]. IEEE Photonics TechnologyLetters,2006,18(24):2587~2589.
    [58] Jie Sun, Yitang Dai, Shizhong Xie et al.. Dual-wavelength DFB fiber laser based on unequalizedphase shifts [J]. IEEE Photonics Technology Letters,2006,18(23):2493~2495.
    [59] Hongpu Li, Yunlong Sheng, Yao Li et al.. Phased-only sampled fiber Bragg gratings forhigh-channel-count chromatic dispersion compensation [J]. Journal of Lightwave Technology,2003,21(9):2047~2083.
    [60] Govind P.Agrawal and Stojan Radic. Phase-shifted fiber Bragg gratings and their Application forwavelength demultiplexing [J]. IEEE Photonics Technology Letters,8.1994,6(8):995~997.
    [61]张东升,姜莉,开桂云等.取样光纤光栅的理论分析及其写入技术[J].南开大学学报,2006.2,39(1):79~83.
    [62]吴强,余重秀,王葵如等.啁啾sinc取样光纤光栅研究[J].光子学报,2005.3,34(3):404~408.
    [63] Morten Ibsen, Michael K. Durkin, Martin J. Cole et al.. Sinc-sampled fiber Bragg gratings foridentical multiple wavelength operation [J]. IEEE Photonics Technology Letters,1998.6,10(6):842~844.
    [64]王劲文,董小鹏.基于延时零拍法的DFB光纤激光器线宽测量[J].厦门大学学报,2007,46(3):322~325.
    [65]叶楠,姜震宇.可调谐DBR激光器波长锁定光路系统模拟设计[J].光电技术应用,2011,32(4):580~584.
    [66]张瑞君.波长可调谐DFB激光器及其进展[J].集成电路通讯,2006,24(2):42~47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700