利用蛇纹石纳米管组装单分散硫化镉纳米颗粒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科学与技术从20世纪中后期出现发展至今,已经在信息、材料、能源、环境、生物、农业、国防等领域引起了广泛的关注,并被认为是21世纪最重要的科学技术之一。随着科学研究和技术应用的深入,拥有创造这样微小结构的能力已经显得至关重要。
     本文研究了纳米管家族中的新秀——蛇纹石纳米管。以煎茶岭地区纤胶蛇纹岩中的天然纳米管为例,通过透射电镜观察该地区的蛇纹石纳米管,发现其外径在25nm至45nm之间,内径在12nm至25nm之间。管内中空,管端很少有封闭的现象。同时观察了较为少见的隐晶质的纤蛇纹石纳米管,这种天然蛇纹石纳米管与普通的纤蛇纹石纳米管有所不同。
     使用简便的水热合成法制备了单分散硫化镉纳米颗粒,该方法最大的优点就是易实施低成本。同时利用透射电子显微镜观察颗粒的粒径分布在10 nm左右,其分散程度较好。利用X射线粉末衍射分析其结晶程度,结果表明硫化镉的结晶程度很不好,基本上是无定型的。分析原因是因为合成温度不够高,无法达到硫化镉的理想结晶温度。但对试样进行光致发光光谱研究,发现其发光性能很好。说明结晶程度是硫化镉纳米颗粒发光性能的一个主要影响因素,但不是决定性指标。
     最后将单分散硫化镉纳米颗粒注入到蛇纹石纳米管中,组装得到介孔纳米体系。对试样进行了透射电子显微镜观察,得知硫化镉纳米颗粒在蛇纹石纳米管里为线状点链。光致发光光谱研究表明,组装成的纳米体系的发光性能进一步提高,这是介电限域效应和量子尺寸效应共同作用的结果。
Nanometer (nm) scale structures represent an exciting, challenging and rapidly expanding area of research that crosses the borders between many disciplines of sciences and engineering.
     One-dimensional nanostructures, e.g. nanowires and nanotubes, are playing a special role within the realm of nanoscience and nanotechnology. With decrease in size of nanowires or nanotubes, singularities in the electronic density of states develop at special energies. The density of states becomes very large, appearing to be very different from that of crystalline solids or even two dimensional systems. Zero-dimensional materials, like quantum dots and semiconductor nanoclusters, have been showing distinct electronic structures from their bulk counterparts, and exhibited novel optical properties. One-dimensional materials, representatively serpentine nanotubes are expected to show novel properties.
     The discovery of serpentine nanotubes in the chrysotlie-serpophite rock was reported. Transmission electron microscope (TEM) images show that the nanotubes are multiwalled. Rarely nanotubes appear capped. Their lengths and inner diameters range from 100 to 1000 nm and 12 to 25 nm, respectively.
     CdS nanoparticles were synthesized by using an aqueous precipitation method; this method is simple, fast and can be developed at room temperature. The obtained particles were characterized using TEM and spectroscopic techniques. TEM images show well dispersed particles and The particle size was 15 nm. This particle size produce a quantum confinement observed in an increment on the band gap value. CdS nanocrystals show an emission band with a maximum in 531 nm.
     Nanosystem have been formed by the infiltration of CdS nanoparticles into nanotubes of serpentine. Photoluminescence of these templated nanowires was studied under the excitation of the light from a xenon lamp at 400nm wavelengths. Strong interactions of nanoparticles with structural defects of the template were observed. The efficiency of emission in a semiconductor can be improved by forming nanosystem due to the combined effect of the quantum and dielectric confinement.
     Semiconductor nanoparticles represent emitters with high quantum efficiency. Arranging them in nanotubes can lead to further emission improvement by exploiting the dielectric confinement factor.
引文
[1]张立德.纳米材料的研究现状和发展趋势[J] .现代科学仪器, 1998,Z1: 27-29
    [2] Gleiter, H. Nanostructured materials: basic concepts and microstructure[J] Acta Materialia, 2000, 48(1): 1-29.
    [3] Wong E.W., Sheehan P.E., Lieber, C.M. Nanobeam Mechanics: Elasticity, Strength, and toughness of Nanorods and Nanotubes [J]. Science, 1997, 277(5334): 1971
    [4] Bruchez Jr M., Moronne M., Gin, P., et al. Semiconductor Nanocrystals as Fluorescent Biological Labels [J]. Science, 1998, 281(5385): 2013
    [5] Chan, W. C. W. , Nie S. . Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J] .Science, 1998, 281(5385): 201
    [6] Lieber, C. M. One-Dimensional Nanostructures:Chemistry, Physics & Applications [J] .Solid State Communications, 1998, 107(11):607-616
    [7] Gaponik N. P. , D. V. Talapin, et al. A light-emitting device based on a CdTe nanocrystal/polyaniline composite [J] .Physical Chemistry Chemical Physics, 1999, 1(8):1787-1789
    [8] Harrison M. T. , Kershaw S. V. , Burt M. G. , et al. Colloidal Nanocrystals for Telecommunications. Complete Coverage of the Low-loss Fiber Windows by Mercury Telluride Quantum Dots [J] .Pure Appl. Chem, 2000, 72(1-2):295-307
    [9] Han M. , Gao X. , et al. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules [J] .Nature Biotechnology, 2001, (19):631-635
    [10] Gudiksen, M. S. , Wang J. , et al. Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires [J] .J. Phys. Chem. B, 2002, 106(16):4036
    [11] Lieber C. M. Nanowire Superlattices [J] .Nano Letters, 2002, 2(2):81-82
    [12] Murphy C. J. , Coffer J. L. Optical Sensing With Quantum Dots [J] .Quantum Dots:A Primer, 2002, 74(19):520-526
    [13] Lieber, C. M. Nanoscale Science and Technology:Building a Big Future from Small Things [J] .MRS Bulletin, 2003, 28(7):486-491
    [14] Samuelson L. Self-forming Nanoscale Devices [J] .Materials Today, 2003, 6(10):22-31
    [15] Wang D. , Lieber C. M. Inorganic Materials:Nanocrystals Branch Out [J] .Nat Mater ,2003, 2(6):355-6
    [16] Barrelet C. J. , Greytak A. B. , et al. Nanowire Photonic Circuit Elements [J] .Nano Lett, 2004 , 4(10):1981–1985
    [17] Tenne R. , Rao C. N. R. Inorganic Nanotubes [J] .Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences,2004, 362(1823):2099-2125
    [18] Wang Z. L. Nanostructures of Zinc Oxide [J] .Materials Today , 2004, 7(6):26-33
    [19] Friedman R.S., McAlpine M.C., et al. Nanotechnology: High-speed Integrated Nanowire Circuits [J] .Nature, 2005, 434(7037):1085-1085
    [20] McAlpine M. C. , Friedman R. S. , Lieber C.M. , et al. High-performance Nanowire Electronics and Photonics and Nanoscale Patterning on Flexible Plastic Substrates [J] .Proceedings of the IEEE , 2005, 93(7):1357-1363
    [21] Pal B. , Torimoto T. Lwasaki K. , et al.Synthesis of Metal–Cadmium Sulfide Nanocomposites Using Jingle-bell-shaped Core-shell Photocatalyst Particles [J] .Journal of Applied Electrochemistry, 2005, 35(7):751-756
    [22] Patolsky F. , Lieber C. M. Nanowire Nanosensors [J] .Materials Today, 2005, 8(4):20-28
    [23] Qian F. , Gradecak S. Li Y. , et al. Core / Multishell Nanowire Heterostructures as Multicolor, High-efficiency Light-emitting Diodes [J] .Nano Lett, 2005, 5(11):2287-2291
    [24] Li Y., Qian F., Xiang J. , Lieber C. M. Nanowire Electronic and Optoelectronic Devices [J] .Materials Today, 2006, 9(10):18-27
    [25] Tenne R. Inorganic Nanotubes and Fullerene-like Nanoparticles [J] .Journal of Materials Research, 2006, 21(11):2726-2743
    [26] Javey A. , S. Nam, Friedman R. S. et al. Layer-by-layer Assembly of Nanowires for Three-dimensional, Multifunctional Electronics [J] .Nano Lett, 2007, 7(3):773-777
    [27] Lieber C. M. , Wang Z. L. Functional Nanowires [J] .MRS Bull, 2007, 32(2):99-108
    [28] Lu S., Shao N. Liu Y. Panchapakesan B. Nanotube Micro-Opto-Mechanical Systems (N-MOMS) [J] .Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International, 2007, :1043-1046
    [29] Lauhon L. J. , Gudiksen M. S. Liber C. M. Semiconductor Nanowire Heterostructures [J] .Philosophical Transactions Mathematical Physical and Engineering Sciences, 2004, 362(1819):1247-1260
    [30] Gudiksen M.S., Lieber C.M. Diameter-Selective Synthesis of Semiconductor Nanowires [J] .Growth, 1993, 127(849):857
    [31] Morales A. M. , Lieber C. M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires [J] .Science, 1998, 279(5348):208
    [32] Barrelet C.J. , Wu Y., Bell D.C., et al. Synthesis of CdS and ZnS Nanowires Using Single-source Molecular Precursors [J] .J. Am. Chem. Soc, 2003, 125(38):11498-11499
    [33] Faraday M. The Bakerian Lecture:Experimental Relations of Gold (and Other Metals) to Light [J] .Philosophical Transactions of the Royal Society of London, 1857, 147:145-181
    [34]Spanhel L. , Haase M. , Weller H. , et al. Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles [J] .Journal of the American Chemical Society, . 1987, 109(19):5649-5655
    [35] Resch U. , Weller H. Henglein A. Photochemistry and Radiation Chemistry of Colloidal Semiconductors. 33. Chemical Changes and Fluorescence in CdTe and ZnTe [J] .Langmuir, 1989, 5(4):1015-1020
    [36] Murray C. B. , Norris D. J. Bawendi M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E= S, Se, Te) Semiconductor Nanocrystallites [J] .Journal of the American Chemical Society, 1993, 115(19):8706-8715
    [37] Vossmeyer T. , Katsikas L. Giersig M. , et al. CdS Nanoclusters:Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift [J] .The Journal of Physical Chemistry, 1994, 98(31):7665-7673
    [38] Romanov S. G. , Fokin A. V. , Butko, et al. Optical Properties of Ordered Three-dimensional Arrays of Structurally Confined Semiconductors [J] .Journal of Crystal Growth, 1996, 159(1):857-860
    [39] Dneprovskii V. S. , Zhukov E. A. ,Markova N. Y. , et al. Optical Properties of Excitons in Semiconductor (InP)-insulator Quantum Wires [J] .Physics of the Solid State, 2000, 42(3):544-547
    [40] Bardosova M. , Romanov S. G. , Sotomayor C. M. , et al. Light Emission from Three-dimensional Ensembles of CdTe Nanocrystal Wires Templated in Nanotubes of Chrysotile Asbestos [J] .Physica E:Low-dimensional Systems and Nanostructures, 2007, 37(1-2):218-221
    [41] Romanov S. G. , Torres C. M. S. Yates H. M. , et al. Optical Properties of Self-assembled Arrays of InP Quantum Wires Confined in Nanotubes of Chrysotile Asbestos [J] .Journal of Applied Physics, 1997, 82:380
    [42] Bardosova M. , Romanov S. G. , Sotomayor Torres C. M. , et al. Effect of Template Defects in Radiative Energy Relaxation of CdTe Nanocrystals in Nanotubes of Chrysotile Asbestos [J] Microporous and Mesoporous Materials, 2008, 107(1-2):212-218
    [43]彭同江,马国华,焦永峰.合成纤蛇纹石纳米管的CdS组装实验研究[J]功能材料, 2007, : 3
    [44] Poborchii V. V. , Ivanova M. S. , Ivanova M.S. , et al. Cylindrical GaAs Quantum Wires Incorporated within Chrysotile Asbestos Nanotubes:Fabrication and Polarized Optical Absorption Spectra [J] .Superlattices and Microstructures, 1994, 16(2):133-133
    [45] Iijima S. Helical microtubules of graphitic carbon[J] .Nature, 1991,354(6348):56-58
    [46] Wicks F. J., Whittaker E. J. W. A reappraisal of the structures of the serpentineminerals[J] .Canadian Mineralogist, 1975,13(3):227
    [47] Wicks F. J., O'Hanley D. S. Serpentine minerals; structures and petrology[J] .Reviews in Mineralogy and Geochemistry, 1988,19(1):91-167
    [48] Veblen D. R., Wylie A. G. Mineralogy of amphiboles and 1: 1 layer silicates[J] .Reviews in Mineralogy and Geochemistry, 1993,28(1):61-137
    [49] Rinaudo C., Gastaldi D., et al. CHARACTERIZATION OF CHRYSOTILE, ANTIGORITE AND LIZARDITE BY FT-RAMAN SPECTROSCOPY[J] .Canadian Mineralogist, 2003,41(4):883
    [50] Balan E., Mauri F., et al. Multiple Ionic-Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos[J] .Physical Review Letters, 2002,89(17):177-401
    [51] Warren B. E., Hering K. W. The Random Structure of Chrysotile Asbestos[J] .Phys. Rev, 1941,59:925
    [52] Young G. J., Chessick J. J., et al. Thermodynamics of the Adsorption of Water on Graphon from Heats of Immersion and Adsorption Data[J] .The Journal of Physical Chemistry, . 1954,58(4):313-315
    [53] Naumann A. W., Dresher W. H. The Morphology of Chrysotile Asbestos as Inferred From Nitrogen Adsorption Data[J] .The American Mineralogist, 1966,51:711-725
    [54]焦永峰.纤蛇纹石纳米管的组装实验研究. [D] (2006)
    [55] Balan E., Mauri F., et al. Multiple Ionic-Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos[J] .Physical Review Letters, 2002,89(17):177-401
    [56] Zega, T.J., Transmission Electron Microscopy and Electron Energy-Loss Spectroscopy of Fine-Grained Materials in Primitive Meteorites[D]2003
    [57] Thomas J., Zega L. A. J. G., Istva′n Do′dony, Peter R. Buseck . Serpentine nanotubes in the Mighei CM chondrite[J] .Earth and Planetary Science Letters, 2004,223:141–146
    [58] Weller H. Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals[J] .J. Phys. Chem. B, 1999,103:3065-3069
    [59] Petit C., Lixon P., et al. Synthesis of cadmium sulfide in situ in reverse micelles. 2. Influence of the interface on the growth of the particles[J] .The Journal of Physical Chemistry, 1990,94(4):1598-1603
    [60]Petit C., Jain T. K., et al. Oil in Water Micellar Solution Used to Synthesize CdS Particles: Structural Study and Photoelectron Transfer Reaction[J] .Langmuir, 1994,10(12):4446-4450
    [61] Motte L., Petit C., et al. Synthesis of cadmium sulfide in situ in cadmium bis (2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction[J] .Langmuir, 1992,8(4):1049-1053
    [62] Pinna N., Weiss K., et al. Triangular CdS Nanocrystals: Structural and Optical Studies[J] .Advanced Materials, 2001,13(4):261-264
    [63] Pileni M. P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals[J] .Nature Materials, 2003,2(3):145-150
    [64] Pinna N., Weiss K., et al. Triangular CdS nanocrystals: synthesis, characterization, and stability[J] .Langmuir, 2001,17(26):7982–7987
    [65] Murray C.B., Norris D. J., et al. Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites[J] .Journal of the American Chemical Society, 1993,115(19):8706-8715
    [66] Martínez-Casta?ón G..A., Sánchez-Loredo M.G., et al. (2005). "Synthesis of CdS Nanoparticles: a Simple Method in Aqueous Media." AZojomo (ISSN 1833-122X)1.
    [67] Gaponenko S.V. Optical properties of semiconductor nanocrystals[M]. Cambridge University Press, 1998:
    [68] Gaponenko S.V., Kapitonov A. M., et al. Electrons and photons in mesoscopic structures: Quantum dots in a photonic crystal[J] .Journal of Experimental and Theoretical Physics Letters, 1998,68(2):142-147
    [69] Bogomolov V.N. Liquids in ultrathin channels (Filament and cluster crystals)[J] .Physics-Uspekhi, 1978, 21(1):77-83
    [70] Poborchii V.V., Ivanova M.S., et al. Cylindrical GaAs quantum wires incorporated within chrysotile asbestos nanotubes: fabrication and polarized optical absorption spectra[J] .Superlattices and Microstructures, 1994,16(2):133-133
    [71] Ivanova M. S., Kumzerov Y. A., et al. Ultrathin wires incorporated within chrysotile asbestos nanotubes: optical and electrical properties[J] .Microporous Materials, 1995,4(4):319-322
    [72]马国华,彭同江.水热法合成掺杂铁离子纤蛇纹石纳米管[J].无机化学学报,2006, 153(22):1663-1667
    [73]彭同江,马国华.合成纤蛇纹石纳米管的CdS组装实验研究[J].功能材料, 2007,:03

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700