聚酰亚胺/梯形聚倍半硅氧烷杂化薄膜的制备及其结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高性能聚合物领域中,聚酰亚胺以其优异的性能指标受到科学家们的广泛关注,改性后的聚酰亚胺则显示出了许多更加出色的性能。将硅元素引入到聚酰亚胺基体中可以有效使杂化材料的粘结性增强、介电常数和吸水率下降,因此成为改性聚酰亚胺的主要研究方向之一。梯形聚倍半硅氧烷(ladder-like polysilsesquioxane, LPSQ)具有独特的双链结构,拥有优异的化学、物理性能。另外,其分子链长度、官能团以及官能度都可以根据需要进行调控。因此,本课题首次提出将LPSQ引入到聚酰亚胺基体中制备出高性能聚酰亚胺杂化薄膜。并且通过研究杂化薄膜的结构与性能的关系,实现聚酰亚胺性能可调控这一目标。主要的研究工作如下。
     本文通过平衡缩聚法和溶胶-凝胶法分别合成了高、低两种不同分子量的苯基梯形聚倍半硅氧烷(LPPSQ),利用凝胶渗透色谱法(GPC)对其分子量进行表征,利用傅立叶红外光谱(FTIR)、核磁共振(NMR)、X射线衍射(XRD)及分子模拟对LPPSQ的梯形结构进行表征,结果表明,该梯形聚合物的规整度会随着分子量的提高稍有下降。通过调节含有巯基和苯基官能团的两种单体的投料比,合成了巯基含量可控的巯基苯基梯形聚倍半硅氧烷(LPMPSQ),利用FTIR、29Si-NMR和XRD对投料比不同的两种LPMPSQ的结构进行表征,结果表明,含巯基单体的用量对产物中巯基的含量有着直接的影响。利用发烟硝酸将LPPSQ的侧基硝化,得到了硝苯基梯形聚倍半硅氧烷(LPNPSQ);利用水合肼将LPNPSQ的侧基还原,即可得到氨苯基梯形聚倍半硅氧烷(LPAPSQ)。利用FTIR、NMR、XRD和分子模拟分别对LPNPSQ和LPAPSQ进行结构表征,结果表明,经过化学改性后,LPSQ的梯形结构骨架得到了较好的保持,但由于取代反应随机发生在间位或对位,其规整度稍有下降。并且,通过调节硝化作用的时间或还原催化剂的用量,可以实现LPSQ官能度可控。
     将制备好的一系列不同分子量、含有不同官能团以及具有不同官能度的LPSQ分别引入到聚酰亚胺基体中,制得了一系列聚酰亚胺/梯形聚倍半硅氧烷(PI/LPSQ)杂化薄膜。由于LPSQ的掺杂量、分子量、官能团、官能度的不同,相应制得的杂化薄膜的性质也各不相同。利用XRD、扫面电子显微镜(SEM)和X射线光电子能谱仪(XPS)对PI/LPSQ杂化薄膜的结构进行表征;利用动态热分析仪(DMA)、热失重仪(TGA)、万能材料试验机、水接触角和吸水率对杂化薄膜的性能进行表征。研究表明:(1)随着掺杂量的提高,LPMPSQ粒子的数量和尺寸都明显增大,表面硅元素含量随之提高,吸水率随之下降;掺杂量对热稳定性没有明显的影响;在掺杂量低于10wt%的时候,可以得到表面硅含量较高且力学性能较好的杂化薄膜。(2)LPMPSQ的分子量对杂化薄膜的热性能没有明显影响。在掺杂量低于10wt%的时候,两相的相互作用力占主导作用,长链LPMPSQ杂化薄膜的力学性能较好;随着掺杂量进一步提高,两相的相分离开始逐渐占主导作用,长链的LPMPSQ比短链的更容易发生团聚,从而影响其力学性能。(3)LPPSQ、LPNPSQ、LPAPSQ与聚酰亚胺基体间分别存在弱氢键、物理缠结、化学交联三种类型的相互作用,作用力依次由弱到强。较强的界面相互作用可以明显提高LPSQ在聚酰亚胺基体中的分散性,从而提高杂化薄膜的热性能、力学性能,但较强的相互作用力同时也限制了LPSQ向杂化薄膜表面的迁移和富集,使其表面改性效果不明显。(4)利用不同氨苯基含量的LPSQ研究其官能度对杂化薄膜的影响。随着LPSQ中氨苯基含量的提高,杂化体系的交联密度也随之上升,这种变化使杂化薄膜的表面性能、热性能以及力学性能都随之发生改变。过高的氨基含量不但会使杂化体系的交联密度过高导致材料变脆,而且过多的氨基与聚酰胺酸分子链上的羧基进行反应导致聚酰亚胺的亚胺化不完全。(5)通过跟踪PI/LPPSQ和PI/LPMPSQ两种杂化薄膜在不同处理条件下的表面硅元素含量,研究热亚胺化过程对杂化薄膜的影响。杂化薄膜表面硅元素的变化规律说明,LPSQ向杂化薄膜表面迁移和富集主要发生在溶剂挥发的过程中,即晾膜的过程;而在热亚胺化过程中,只有少量的LPSQ随着温度的升高继续向杂化薄膜表面迁移。研究发现,在PI/LPMPSQ杂化薄膜中,聚酰亚胺基体会随着亚胺化温度的升高逐渐向LPMPSQ粒子表面包覆,与PI/LPPSQ体系相比,证明了巯基与聚酰亚胺基体间存在较强的相互作用。
In the field of high performance polymer, polyimide (PI) has receivedwide attention due to its outstanding properties. Furthermore, PI compositeshave shown very promising properties. Blending silicon element in PI matrixhas been one of the most important research trends, because the compositespossessed higher adhesive properties, lower dielectric constant and lowerwater absorption. Ladder-like polysilsesquioxane (LPSQ) has attractedconsiderable interest because of their excellent chemical, physical andelectrical properties derived from the unique double-chained skeleton.Moreover, the aspect ratio, functional groups and average functionality ofLPSQ are controllable according to diverse requirements. Thus, LPSQs werechosen to incorporate into PI matrix for the first time in order to fabricate highperformance PI. By studying the relationship between structure and propertiesof hybrid films, the performance of PI composite can be controlled ultimately.The main content of this dissertation are shown below.
     Two kinds of ladder-like polyphenylsilsesquioxane (LPPSQ) have beensynthesized by quilibrium polycondensation and sol-gel method, respectively.They were characterized by gel permeation chromatograph (GPC), Fouriertransform infrared (FTIR), nuclear magnetic resonance (NMR), X-raydiffraction (XRD) and molecular simulation. The results confirmed that the regularity of LPPSQ decreased slightly as the molecular weight increased.Mercapto functionalized ladder-like polysilsesquioxanes (LPMPSQs) havebeen synthesized with different feed ratio. They were characterized by FTIR,29Si-NMR and XRD. The results suggested that the dosage of mercaptomonomer had great effect on the final production. LPPSQ has been modifiedto ladder-like poly(nitrophenyl)silsesquioxane (LPNPSQ) andpoly(aminophenyl)silsesquioxane (LPAPSQ) by nitration and reductionreaction, respectively. They were also characterized by FTIR, NMR, XRD andmolecular simulation. The results confirm the ladder-like structures of LPSQand suggest the decrease of regularity after the chemical modification. Thefunctionality of LPSQ can be controlled by adjusting the time of nitrificationor the amount of reducing catalyzer agent.
     A series of LPSQs with different molecular weight, functional groups andaverage functionality was incorporated into PI matrix, respectively. ThesePI/LPSQ hybrid films showed different properties owning to the difference ofLPSQs. The structure of PI/LPSQ hybrid film was investigated with XRD,scanning electron microscopy (SEM) and X-ray photoelectron spectroscopic(XPS). The properties were studied using dynamic mechanical analysis(DMA), thermogravimetry (TGA), tensile tests, water contact angles analysisand water absorption test. The main conclusions are shown below.(a) With theincrease of LPMPSQ fraction, the concentration of silicon atom on the surfaceof the hybrid film keeps rising, and the water absorption capacity decreasesaccordingly. However, the doping content had no effect on the thermalstability of PI/LPMPSQ hybrid films. PI/LPMPSQ hybrid films stillmaintained excellent mechanical properties of PI when the doping content wasless than and equal to10wt%.(b) The molecular weight of LPMPSQ also hadno effect on the thermal properties of PI/LPMPSQ hybrid films. Themechanical properties depended on the interaction of the two phases when the doping content was less than and equal to10wt%. With the doping contentfurther increasing, the effect of phase separation became important.Long-chained LPMPSQ was more inclined to aggregation, so the mechanicalproperties of PI/long-chained LPMPSQ hybrid film were weaker thanshort-chained LPMPSQ’s.(c) There are hydrogen bonds, physicalentanglement, and chemical cross-link between LPPSQ, LPNPSQ, LPAPSQand PI matrix, respectively. The strong interfacial interactions can improvedispersion of LPSQ significantly, thereby improving the thermal andmechanical properties of hybrid films. However, these strong interactions canalso limit the migration and enrichment of LPSQ to the surface of the film.(d)With the increase of amino concentration in LPSQ, the cross-linking densityof hybrids raised and the interfacial interactions were enhanced, thereby themovement of PI and LPSQ was more restricted. As a result, the surface siliconconcentration decreased, Young’s modulus increased and the elongation atbreak dropped. Due to the incomplete imidization, both Tgand tensile strengthdecreased with the increase of amino content.(e) XPS results of PI/LPPSQand PI/LPMPSQ hybrid films showed that the migration and enrichment ofLPSQ to the surface of the film mainly occurred at solvent evaporation stagebefore heat treatment. It is worth mentioning that the polymer chains of PIseem to get absorbed on the surface of LPMPSQ particles after thermal curing.Compared with PI/LPPSQ, all the LPMPSQ particles were in close contactwith the PI matrix, which implied the existence of the relatively stronginteractions between mercapto groups and PI.
引文
[1]丁孟贤,聚酰亚胺-化学、结构与性能的关系及材料[M].北京:科学出版社,2006
    [2] Liaw D-J, Hsu P-N, Chen W-H, et al. High Glass Transitions of New Polyamides,Polyimides, and Poly(amide imide)s Containing a Triphenylamine Group: Synthesis andCharacterization[J]. Macromolecules,2002,35(12):4669-4676
    [3] Ranucci E, Sandgren, Andronova N, et al. Improved polyimide/metal adhesion bychemical modification approaches[J]. Journal of Applied Polymer Science,2001,82(8):1971-1985
    [4] Terui Y, Matsuda S-I, Ando S. Molecular structure and thickness dependence of chainorientation in aromatic polyimide films[J]. Journal of Polymer Science Part B: PolymerPhysics,2005,43(15):2109-2120
    [5]杨祖华,王刚,王鸿灵,等.聚酰亚胺薄膜的制备及其摩擦学性能研究[J].材料科学与工程学报,2004,22(1):105-109
    [6]徐庆玉,范和平,井强山,等.聚酰亚胺纳米杂化材料的制备、结构和性能[J].功能高分子学报,2002,15(2):207-213
    [7] Ahmad Z, Mark J E. Polyimide Ceramic Hybrid Composites by the Sol Gel Route[J].Chemistry of Materials,2001,13(10):3320-3330
    [8]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [9]王茂功,刘勤华,钟顺和,等.聚酰亚胺/SiO2杂化膜的制备、表征和气体渗透性能[J].化学通报,2007,(3):201-206
    [10]蒋大伟,姜其斌,刘跃军,等.聚酰亚胺的研究及应用进展[J].绝缘材料,2009,42(2):33-35
    [11] Bogert M T, Renshaw R R.4-Amino-o-phthalic acid and some of its derivatives[J].Journal of the American Society1908,30(7):1135-1144
    [12] Searle N E, inventor N-arylmaleimides[P]. US patent,2444536.1948-07-06.
    [13] Edwards W M, Robinson I M, inventors; Polyimides of pyromellitic acid[P]. US patent2710853.1955-06-14.
    [14]李生柱,吴建华,朱小华.高性能聚酰亚胺的进展[J].化工新型材料,2002,30(6):19-24
    [15]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学出版社,1998
    [16]谭必恩,益小苏.航空发动机用PMR聚酰亚胺树脂基复合材料[J].航空材料学报,2001,21(1):55-62
    [17]张雯,张露,李家利,等.国外聚酰亚胺薄膜概况及其应用进展[J].绝缘材料,2001,(2):21-23
    [18]李战雄,王标兵,欧育湘.耐高温聚合物[M].北京:化学工业出版社,2007
    [19]宋晓峰.聚酰亚胺的研究与进展[J].纤维复合材料,2007,(3):33-37
    [20]徐昌运.国外工程塑料现状与发展趋势[J].化工新型材料,1999,27(11):3-11
    [21]钱伯章.聚酰亚胺国内外发展分析[J].国外塑料,2008,26(11):40-43
    [22]李英葆.我国聚酰亚胺薄膜制造技术发展水平的评估[J].绝缘材料,2002,(5):28-30
    [23]张俊彦,刘维民,薛群基.聚酰亚胺膜的热性能分析[J].化学物理学报,1999,12(2):197-200
    [24]刘金刚,王强,朱普坤.热分析方法研究四种聚酰亚胺的热稳定性[J].河北业大学学报,1999,28(1):15-19
    [25]史宝利,吴庸烈.聚酰亚胺/磺化聚芳醚矾共混中空纤维膜用于醇/醚气相分离的研究[J].膜科学与技术,1999,19(6):48-51
    [26]戴俊燕,刘德山.含氟聚酰亚胺的研究进展[J].功能高分子学报,1999,(3):337-344
    [27]汪称意,光李,江建明,等.聚酰亚胺研究新进展[J].化学进展,2009,21(1):174-181
    [28]蔡辉,闫逢元,陈建敏,等.聚酰亚胺的改性研究[J].材料科学与工程学报,2003,21(1):95-98
    [29] Chung I S, Kim S Y. Soluble Polyimides from Unsymmetrical Diamine withTrifluoromethyl Pendent Group[J]. Macromolecules,2000,33(9):3190-3193
    [30] Zhao X, Liu J, Yang H, et al. Novel polyfluorinated polyimides derived fromα,α-bis(4-amino-3,5-difluorophenyl)phenylmethane and aromatic dianhydrides: Synthesisand characterization[J]. European Polymer Journal,2008,44(3):808-820
    [31] Liaw D-J, Wang K-L, Chang F-C, et al. Novel poly(pyridine imide) with pendentnaphthalene groups: Synthesis and thermal, optical, electrochemical, electrochromic, andprotonation characterization[J]. Journal of Polymer Science Part A: Polymer Chemistry,2007,45(12):2367-2374
    [32] Li H-S, Liu J-G, Rui J-M, et al. Synthesis and characterization of novel fluorinatedaromatic polyimides derived from1,1-bis(4-amino-3,5-dimethylphenyl)-1-(3,5-ditrifluoromethylphenyl)-2,2,2-trifluoroethane and various aromatic dianhydrides[J]. Journal of Polymer Science Part A: PolymerChemistry,2006,44(8):2665-2674
    [33] Ge Z, Fan L, Yang S. Synthesis and characterization of novel fluorinated polyimidesderived from1,1'-bis(4-aminophenyl)-1-(3-trifluoromethylphenyl)-2,2,2-trifluoroethaneand aromatic dianhydrides[J]. European Polymer Journal,2008,44(4):1252-1260
    [34]葛建芳,卢风纪.可溶性聚酞亚胺研究新进展[J].绝缘材料通讯,1999,(6):22-27
    [35] Shao Y, Li Y, Zhao X, et al. Synthesis and characterization of soluble polyimides derivedfrom a novel unsymmetrical diamine monomer:1,4-(2',4''-diaminodiphenoxy)benzene[J].European Polymer Journal,2007,43(10):4389-4397
    [36] Liaw D-J, Chang F-C, Leung M-k, et al. High Thermal Stability and Rigid Rod of NovelOrganosoluble Polyimides and Polyamides Based on Bulky and NoncoplanarNaphthalene Biphenyldiamine[J]. Macromolecules,2005,38(9):4024-4029
    [37] Chen J P, Natansohn A. Synthesis and Characterization of Novel Carbazole-ContainingSoluble Polyimides[J]. Macromolecules,1999,32(10):3171-3177
    [38] Yang C-P, Su Y-Y. Synthesis and properties of organosoluble polyimides based on4,4prime-bis(4-amino-2-trifluoromethylphenoxy)benzophenone[J]. Journal of PolymerScience Part A: Polymer Chemistry,2004,42(2):222-236
    [39] Wang J, Wang L. The lower surface free energy achievements from ladderpolysilsesquioxanes with fluorinated side chains[J]. Journal of Fluorine Chemistry,2006,127(2):287-290
    [40]鲁云华,王永飞,肖国勇,等.无色透明耐高温聚酰亚胺膜材料的研究进展[J].化工新型材料,2009,37(8):1-3
    [41] Nguyen T, Wang X. Multifunctional composite membrane based on a highly porouspolyimide matrix for direct methanol fuel cells[J]. Journal of Power Sources,2010,195(4):1024-1030
    [42] Li Y, Jin R, Cui Z, et al. Synthesis and characterization of novel sulfonated polyimidesfrom1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid[J]. Polymer,2007,48(8):2280-2287
    [43] Hu Z, Yin Y, Kita H, et al. Synthesis and properties of novel sulfonated polyimidesbearing sulfophenyl pendant groups for polymer electrolyte fuel cell application[J].Polymer,2007,48(7):1962-1971
    [44] Wang Y-W, Yen C-T, Chen W-C. Photosensitive polyimide/silica hybrid optical materials:Synthesis, properties, and patterning[J]. Polymer,2005,46(18):6959-6967
    [45] Kim K-H, Jang S, Harris F W. Synthesis and Characterization of PhotosensitivePolyimides for Optical Applications[J]. Macromolecules,2001,34(26):8925-8933
    [46] Lee S B, Shin G J, Chi J H, et al. Synthesis, characterization and liquid-crystal-aligningproperties of novel aromatic polypyromellitimides bearing (n-alkyloxy)biphenyloxy sidechains[J]. Polymer,2006,47(19):6606-6621
    [47] Wang D H, Shen Z, Guo M, et al. Synthesis and Properties of Polyimides ContainingMultiple Alkyl Side Chains[J]. Macromolecules,2007,40(4):889-900
    [48] Lee Y J, Kim Y W, Ha J D, et al. Synthesis and characterization of novel polyimides with1-octadecyl side chains for liquid crystal alignment layers[J]. Polymers for AdvancedTechnologies,2007,18(3):226-234
    [49]杨淑珍,卢建军,刘妙清.聚酰亚胺/无机纳米复合材料的应用及发展[J].塑料工业,2008,36:55-57
    [50]吴小军,刘西强,占克军,等.聚酰亚胺共混和复合改性的研究进展[J].工程塑料应用,2009,37(2):76-79
    [51] Zhang Q, Naito K, Tanaka Y, et al. Grafting Polyimides from Nanodiamonds[J].Macromolecules,2008,41(3):536-538
    [52] Yuen S-M, Ma C-C M, Chiang C-L, et al. Preparation and morphological, electrical, andmechanical properties of polyimide-grafted MWCNT/polyimide composite[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2007,45(15):3349-3358
    [53] Czeremuszkin G, Latrèche M, Wertheimer M R. Charging/discharge events in coatedspacecraft polymers during electron beam irradiation in a scanning electron microscope[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions withMaterials and Atoms,2001,185(1-4):88-99
    [54] Duo S, Li M, Zhu M, et al. Resistance of polyimide/silica hybrid films to atomic oxygenattack[J]. Surface and Coatings Technology,2006,200:6671-6677
    [55] Shu-wang D, Mei-shuan L, Yan-chun Z. Effect of ion implantation upon erosion resistanceof polyimide films in space environment[J]. Transactions of Nonferrous Metals Society ofChina,2006,16:661-664
    [56] Wang X, Zhao X, Wang M, et al. The effects of atomic oxygen on polyimide resin matrixcomposite containing nano-silicon dioxide[J]. Nuclear Instruments and Methods inPhysics Research B,2006,243:320-324
    [57] Nandi M, Conklin J A, Salvati L, et al. Molecular level ceramic/polymer composites.2.Synthesis of polymer-trapped silica and titania nanoclusters[J]. Chemistry of Materials,1991,3(1):201-206
    [58] Nandi M, Conklin J A, Salvati L, et al. Molecular level ceramic/polymer composites.1.Synthesis of polymer-trapped oxide nanoclusters of chromium and iron[J]. Chemistry ofMaterials,1990,2(6):772-776
    [59] Morikawa A, Yamaguchi H, Kakimoto M, et al. Formation of Interconnected GlobularStructure of Silica Phase in Polyimide-Silica Hybrid Films Prepared by the Sol-GelProcess[J]. Chemistry of Materials,1994,6(7):913-917
    [60] Srinivasan S A, Hedrick J L, Miller R D, et al. Crosslinked networks based ontrimethoxysilyl functionalized poly(amic ethyl ester) chain extendable oligomers[J].Polymer,1997,38(12):3129-3133
    [61] Kim Y, Lee W K, Cho W J, et al. Morphology of Organic-Inorganic Hybrid Composites inThin Films as Multichip Packaging Material[J]. Polymer International,1997,43(2):129-136
    [62]陈艳,王新宇,高宗明,等.聚酰亚胺/二氧化硅纳米尺度复合材料的研究[J].高分子学报,1997,(1):73-78
    [63]曹峰,朱子康,印杰.新型光敏聚酰亚胺/SiO2杂化材料的制备与性能研究[J].功能高分子学报,2000,13(3):325-328
    [64]李传峰,钟顺和.聚酰亚胺-二氧化硅杂化膜的制备与表征[J].催化学报,2001,22(5):449-452
    [65] Wang S, Ahmad Z, Mark J E. Polyimide-Silica Hybrid Materials Modified byIncorporation of an Organically Substituted Alkoxysilane[J]. Chemistry of Materials,1994,6(7):943-946
    [66] Qiu W, Luo Y, Chen F, et al. Morphology and size control of inorganic particles inpolyimide hybrids by using SiO2-TiO2mixed oxide[J]. Polymer,2003,44(19):5821-5826
    [67] Kioul A, Mascia L. Compatibility of polyimide-silicate ceramers induced by alkoxysilanesilane coupling agents[J]. Journal of Non-Crystalline Solids,1994,175(2-3):169-186
    [68] Brus J, Dybal J, Sysel P, et al. Mobility, Structure, and Domain Size inPolyimide Poly(dimethylsiloxane) Networks Studied by Solid-State NMRSpectroscopy[J]. Macromolecules,2002,35(4):1253-1261
    [69] Lee J-K, Char K, Rhee H-W, et al. Synthetic control of molecular weight andmicrostructure of processible poly(methylsilsesquioxane)s for low-dielectric thin filmapplications[J]. Polymer,2001,42(21):9085-9089
    [70] Wahab M A, Kim I, Ha C-S. Microstructure and properties of3,3’,4,4’-biphenyltetracarboxylic dianhydride (BPDA)-p-phenylene diamine (PDA)polyimide/poly(vinylsilsesquioxane) hybrid nanocomposite films[J]. Journal of PolymerScience Part A: Polymer Chemistry,2004,42(20):5189-5199
    [71] Qin J, Zhao H, Zhu R, et al. Effect of chemical interaction on morphology and mechanicalproperties of CPI-OH/SiO2hybrid films with coupling agent[J]. Journal of AppliedPolymer Science,2007,104(6):3530-3538
    [72] Chang C-C, Chen W-C. Synthesis and Optical Properties of Polyimide-Silica Hybrid ThinFilms[J]. Chemistry of Materials,2002,14(10):4242-4248
    [73] Ahmad Z, Al Sagheer F, Al Arbash A, et al. Synthesis and characterization of chemicallycross-linked polyimide-siloxane hybrid films[J]. Journal of Non-Crystalline Solids,2009,355(8):507-517
    [74] Qin J, Zhao H, Liu X, et al. Double phase separation in preparing polyimide/silica hybridfilms by sol-gel method[J]. Polymer,2007,48(12):3379-3383
    [75] Shang X-y, Zhu Z-k, Yin J, et al. Compatibility of Soluble Polyimide/Silica HybridsInduced by a Coupling Agent[J]. Chemistry of Materials,2002,14(1):71-77
    [76]王晓琳,周宏,范勇,等.改性3-氨丙基三甲氧基硅烷对聚酰亚胺/二氧化硅复合薄膜性能的影响[J].绝缘材料,2009,42(2):42-45
    [77] Cheng C-F, Cheng H-H, Cheng P-W, et al. Effect of Reactive Channel Functional Groupsand Nanoporosity of Nanoscale Mesoporous Silica on Properties of PolyimideComposite[J]. Macromolecules,2006,39(22):7583-7590
    [78] Milano J C, Mekkid S, Vernet J L. Synthese de bismaleimides et polybismaleimides a pontsiloxanique--Reactivite et tenue thermique[J]. European Polymer Journal,1997,33(8):1333-1340
    [79] Schrotter J C, Sma hi M, Guizard C. Polyimide-Siloxane hybrid materials: Influence ofcoupling agents addition on microstructure and properties[J]. Journal of Applied PolymerScience,1996,61(12):2137-2149
    [80]虞鑫海.聚酰亚胺硅氧烷共聚物的合成[J].化工新型材料,2002,30(9):1-5
    [81] Huang Y, Qin J, Gu Y. Polyimide-silica hybrid films made from polyamic acids containingphenolic hydroxyl groups[J]. Journal of Applied Polymer Science,2004,93(3):1198-1202
    [82]李光亮.有机硅高分子化学[M].北京:科学出版社,1998.
    [83] Morikawa A, Iyoku Y, Kakimoto M, et al. Preparation of silica-containingpolyvinylpyrrolidone films by Sol-gel process[J]. Polymer Journal,1992,24(7):689-692
    [84]牛颖,冯可涵,张明艳.溶剂对聚酰亚胺/二氧化硅纳米杂化薄膜微观形貌影响[J].绝缘材料,2009,42(1):47-49
    [85]张沛红,薛玉翠,杨春.无机纳米-聚酰亚胺复合薄膜介电性研究[J].哈尔滨理工大学学报,2009,14(2):98-102
    [86]汪小华,李立,刘润山,等.含硅聚酰亚胺的合成与性能[J].精细石油化工进展,2003,4(12):46-50
    [87]童靖宇,刘向鹏,张超,等.空间原子氧环境对航天器表面侵蚀效应及防护技术[J].航天器环境工程,2009,26(1-4)
    [88]幸松民,王一璐.有机硅合成工艺及产品应用[M].北京:化学工业出版社,2000.
    [89] Zou L, Roddecha S, Anthamatten M. Morphology, hydration, and proton transport innovel sulfonated polyimide-silica nanocomposites[J]. Polymer,2009,50(14):3136-3144
    [90] Chavez R, Ionescu E, Fasel C, et al. Silicon-Containing Polyimide-Based Polymers withHigh Temperature Stability[J]. Chemistry of Materials,2010,22(13):3823-3825
    [91] Novák I, Sysel P, Zemek J, et al. Surface and adhesion properties of poly(imide-siloxane)block copolymers[J]. European Polymer Journal,2009,45(1):57-69
    [92] Zou L, Anthamatten M. Synthesis and characterization of polyimide-polysiloxanesegmented copolymers for fuel cell applications[J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(16):3747-3758
    [93] Liaw W-C, Chen K-P. Preparation and properties of poly(imide siloxane) segmentedcopolymer/silica hybrid nanocomposites[J]. Journal of Applied Polymer Science,2007,105(2):809-820
    [94] Bott R H, Summers J D, Arnold C A, et al. Synthesis and Characteristics of NovelPoly(Imide Siloxane) Segmented Copolymers[J]. The Journal of Adhesion,1987,23(2):67-82
    [95]虞鑫海.含硅聚酰亚胺及其单体[J].化工新型材料,2002,27(11):31-35
    [96]宋春康,余学海.硅氧烷表面改性聚醚酯聚酰亚胺的研究[J].功能高分子学报,1993,6(3):199-205
    [97] Ku C-K, Lee Y-D. Microphase separation in amorphous poly(imide siloxane) segmentedcopolymers[J]. Polymer,2007,48(12):3565-3573
    [98]杨晶晶,周宏伟,党国栋,等.聚酰亚胺硅氧烷/聚酰亚胺两面异性复合膜的制备及性能研究[J].高等学校化学学报,2006,27(8):1579-1582
    [99]潘其维,范星河.六面体倍半硅氧烷(POSS)杂化材料[J].化学进展,2006,18(5):616-621
    [100] Cordes D B, Lickiss P D, Rataboul F. Recent Developments in the Chemistry of CubicPolyhedral Oligosilsesquioxanes[J]. Chemical Reviews,2010,110(4):2081-2173
    [101] Zeng K, Zheng S. Nanostructures and Surface Dewettability of Epoxy ThermosetsContaining Hepta(3,3,3-trifluoropropyl) Polyhedral Oligomeric Silsesquioxane-CappedPoly(ethylene Oxide)[J]. The Journal of Physical Chemistry B,2007,111(50):13919-13928
    [102] Wu S, Hayakawa T, Kakimoto M-a, et al. Synthesis and Characterization ofOrganosoluble Aromatic Polyimides Containing POSS in Main Chain Derived fromDouble-Decker-Shaped Silsesquioxane[J]. Macromolecules,2008,41(10):3481-3487
    [103] Asuncion M Z, Laine R M. Silsesquioxane Barrier Materials[J]. Macromolecules,2007,40(3):555-562
    [104] Verker R, Grossman E, Eliaz N. Erosion of POSS-polyimide films under hypervelocityimpact and atomic oxygen: The role of mechanical properties at elevated temperatures[J].Acta Materialia,2009,57(4):1112-1119
    [105] Lee Y-J, Huang J-M, Kuo S-W, et al. Polyimide and polyhedral oligomeric silsesquioxanenanocomposites for low-dielectric applications[J]. Polymer,2005,46(1):173-181
    [106] Wu S, Hayakawa T, Kikuchi R, et al. Synthesis and Characterization of SemiaromaticPolyimides Containing POSS in Main Chain Derived from Double-Decker-ShapedSilsesquioxane[J]. Macromolecules,2007,40(16):5698-5705
    [107] Iyer P, Coleman M R. Thermal and mechanical properties of blended polyimide andamine-functionalized poly(orthosiloxane) composites[J]. Journal of Applied PolymerScience,2008,108(4):2691-2699
    [108] Ye Y S, Yen Y C, Chen W Y, et al. A simple approach toward low-dielectric polyimidenanocomposites: Blending the polyimide precursor with a fluorinated polyhedraloligomeric silsesquioxane[J]. Journal of Polymer Science Part A: Polymer Chemistry,2008,46(18):6296-6304
    [109] Verker R, Grossman E, Gouzman I, et al. TriSilanolPhenyl POSS-polyimidenanocomposites: Structure-properties relationship[J]. Composites Science andTechnology,2009,69(13):2178-2184
    [110] Yani Y, Lamm M H. Molecular dynamics simulation of mixed matrix nanocompositescontaining polyimide and polyhedral oligomeric silsesquioxane (POSS)[J]. Polymer,2009,50(5):1324-1332
    [111] Lee Y-J, Huang J-M, Kuo S-W, et al. Low-dielectric, nanoporous polyimide filmsprepared from PEO-POSS nanoparticles[J]. Polymer,2005,46(23):10056-10065
    [112] Huang J, Lim P C, Shen L, et al. Cubic silsesquioxane-polyimide nanocomposites withimproved thermomechanical and dielectric properties[J]. Acta Materialia,2005,53(8):2395-2404
    [113] Tamaki R, Choi J, Laine R M. A Polyimide Nanocomposite fromOcta(aminophenyl)silsesquioxane[J]. Chemistry of Materials,2003,15(3):793-797
    [114] Leu C-M, Reddy G M, Wei K-H, et al. Synthesis and Dielectric Properties ofPolyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites[J].Chemistry of Materials,2003,15(11):2261-2265
    [115] Leu C-M, Chang Y-T, Wei K-H. Synthesis and Dielectric Properties ofPolyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites viaPOSS-diamine[J]. Macromolecules,2003,36(24):9122-9127
    [116] Leu C-M, Chang Y-T, Wei K-H. Polyimide-Side-Chain Tethered Polyhedral OligomericSilsesquioxane Nanocomposites for Low-Dielectric Film Applications[J]. Chemistry ofMaterials,2003,15(19):3721-3727
    [117] Huang J-c, He C-b, Xiao Y, et al. Polyimide/POSS nanocomposites: interfacial interaction,thermal properties and mechanical properties[J]. Polymer,2003,44(16):4491-4499
    [118] Choi J, Tamaki R, Kim S G, et al. Organic/Inorganic Imide Nanocomposites fromAminophenylsilsesquioxanes[J]. Chemistry of Materials,2003,15(17):3365-3375
    [119] Park E S, Ro H W, Nguyen C V, et al. Infrared Spectroscopy Study of Microstructures ofPoly(silsesquioxane)s[J]. Chemistry of Materials,2008,20(4):1548-1554
    [120] Hillson S D, Smith E, Zeldin M, et al. Cages, Baskets, Ladders, and Tubes:Conformational Studies of Polyhedral Oligomeric Silsesquioxanes[J]. The Journal ofPhysical Chemistry A,2005,109(37):8371-8378
    [121] Abe Y, Gunji T. Oligo-and polysiloxanes[J]. Progress in Polymer Science,2004,29(3):149-182
    [122] Zhou Q, Yan S, Han C C, et al. Promising Functional Materials Based on LadderPolysiloxanes[J]. Advanced Materials,2008,20(15):2970-2976
    [123] Jr. J F B, Jr. L H V, Katchman A, et al. Double Chain Polymers ofPhenylsilsesquioxane[J]. Journal of the American Chemical Society,1960,82(23):6194-6195
    [124] Brown J F, Vogt L H, Prescott P I. Preparation and Characterization of the LowerEquilibrated Phenylsilsesquioxanes[J]. Journal of the American Chemical Society,1964,86(6):1120-1125
    [125] Zhang X S, Shi L H, Huang C R. More on the Struetures of Polyphenylsilsesquioxanes[J].Chinese Journal of Polymer Science,1987,5(4):353-358
    [126] Frye C L, Klosowski J M. So-called "ladder structure" of equilibratedphenylsilsesquioxane[J]. Journal of the American Chemical Society,1971,93(18):4599-4601
    [127] Unno M, Suto A, Matsumoto H. Pentacyclic Laddersiloxane[J]. Journal of the AmericanChemical Society,2002,124(8):1574-1575
    [128] Unno M, Tanaka R, Tanaka S, et al. Oligocyclic Ladder Polysiloxanes: AlternativeSynthesis by Oxidation[J]. Organometallics,2005,24(4):765-768
    [129] Yamamoto S, Yasuda N, Ueyama A, et al. Mechanism for the Formation ofPoly(phenylsilsesquioxane)[J]. Macromolecules,2004,37(8):2775-2778
    [130] Yamamoto S-i, Minami F, Masuda T, et al. Preparation of polysilsesquioxane havingdimethylamino group and grafted thermoresponsive polymer[J]. Polymer,2006,47(22):7693-7701
    [131] Wan Y, Yang L, Zhang J, et al. Template of Concerted CT and H-BondingInteractions-Directed Synthesis of a Highly Soluble and Perfect Organo-Bridged LadderPolymethylsiloxane[J]. Macromolecules,2005,39(2):541-547
    [132] Zhang X, Xie P, Shen Z, et al. Confined Synthesis of a cis-Isotactic LadderPolysilsesquioxane by Using a pi-Stacking and H-Bonding Superstructure13[J].Angewandte Chemie International Edition,2006,45(19):3112-3116
    [133] Liu C, Liu Y, Xie P, et al. Synthesis and characterization of a novel soluble reactiveladder-like polysilsesquioxane with side-chain2-(4-chloromethyl phenyl) ethyl groups[J].Polymers for Advanced Technologies,2001,12(8):475-481
    [134] Deng K, Zhang T, Zhang X, et al. A Concerted H-Bonding Self-Assembly-BasedApproach to Ladder Poly(silsesquioxane)[J]. Macromolecular Chemistry and Physics,2006,207(4):404-411
    [135] Deng K L, Zhang T Y, Zhang X J, et al. H-bonding template-directed synthesis of acomplete m-PDA-bridged ladder polyhydrosiloxane (OLPHS)[J]. Chinese ChemicalLetters,2007,18(7):779-782
    [136] Zhang Z-X, Hao J, Xie P, et al. A Well-Defined Ladder Polyphenylsilsesquioxane(Ph-LPSQ) Synthesized via a New Three-Step Approach: MonomerSelf-Organization Lyophilization—Surface-Confined Polycondensation[J]. Chemistry ofMaterials,2008,20(4):1322-1330
    [137] Zhou Q, Zhang J, Ren Z, et al. A Stable and High-Efficiency Blue-Light EmittingTerphenyl-Bridged Ladder Polysiloxane[J]. Macromolecular Rapid Communications,2008,29(14):1259-1263
    [138] Ren Z, Xie P, Jiang S, et al. Study of the Supramolecular Architecture-Directed Synthesisof a Well-Defined Triple-Chain Ladder Polyphenylsiloxane[J]. Macromolecules,2010,43(5):2130-2136
    [139] Zhang J, Chen Z, Fu W, et al. Supramolecular template-directed synthesis of stable andhigh-efficiency photoluminescence9,10-diphenylanthryl-bridged ladder polysiloxane[J].Journal of Polymer Science Part A: Polymer Chemistry,2010,48(11):2491-2497
    [140] Chang S, Matsumoto T, Matsumoto H, et al. Synthesis and characterization of heptacyclicladdersiloxanes and ladder polysilsesquioxane[J]. Applied Organometallic Chemistry,2010,24(3):241-246
    [141] Handke M, Kowalewska A, Mozgawa W. Spectroscopic study of ceramic precursorsobtained by hydrolytic condensation of ethoxycyclotetrasiloxane[J]. Journal of MolecularStructure,2008,887(1-3):152-158
    [142] Hossain M D, Kim W S, Hwang H S, et al. Role of water on PMMA/clay nanocompositessynthesized by in situ polymerization in ethanol and supercritical carbon dioxide[J].Journal of Colloid and Interface Science,2009,336(2):443-448
    [143] Li G, Matsuda T, Nishioka A, et al. Rheological properties of poly(methylmethacrylate)/rigid ladderlike polyphenylsilsesquioxane blends[J]. Journal of AppliedPolymer Science,2007,104(1):352-359
    [144] Chiu Y-C, Liu F-Y, Ma C-C M, et al. Syntheses and characterization of novel P/Sipolysilsesquioxanes/epoxy nanocomposites[J]. Thermochimica Acta,2008,473(1-2):7-13
    [145] Chiu Y-C, Ma C-C M, Liu F-Y, et al. Thermal degradation and flammability of P/Sipolysilsesquioxane epoxy nanocomposites[J]. Journal of Applied Polymer Science,2009,114(3):1435-1443
    [146] Ren Z, Cao X, Xie P, et al. Supramolecular architecture-directed synthesis of a reactiveand purely inorganic ladder polyhydrosilsesquioxane[J]. Chemical Communications,2009,2009(27):4079-4081
    [147] Moriya O, Kuga M, Yamamoto S-i, et al. Preparation of polysilsesquioxane graftedthermoresponsive polymer by use of mercapto group[J]. Polymer,2006,47(6):1837-1844
    [148] Huang J, Xiao Y, Mya K Y, et al. Thermomechanical properties of polyimide-epoxynanocomposites from cubic silsesquioxane epoxides[J]. Journal of Materials Chemistry,2004,14:2858-2863
    [149] Jovanovski V, Orel B, Jese R, et al. Novel Polysilsesquioxane-I-/I3-Ionic Electrolyte forDye-Sensitized Photoelectrochemical Cells[J]. The Journal of Physical Chemistry B,2005,109(30):14387-14395
    [150] Huang F, Rong Z, Shen X, et al. Organic/inorganic hybrid bismaleimide resin withocta(aminophenyl)silsesquioxane[J]. Polymer Engineering&Science,2008,48(5):1022-1028
    [151] Tamaki R, Tanaka Y, Asuncion M Z, et al. Octa(aminophenyl)silsesquioxane as aNanoconstruction Site[J]. Journal of the American Chemical Society,2001,123(49):12416-12417
    [152] GB/T1040.3-2006.塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件[S].2006
    [153] Fu S-Y, Zheng B. Templated Silica Tubes with High Aspect Ratios as Effective Fillers forEnhancing the Overall Performance of Polyimide Films[J]. Chemistry of Materials,2008,20(3):1090-1098
    [154] Wahab M A, Kim I, Ha C-S. Microstructure and properties ofpolyimide/poly(vinylsilsesquioxane) hybrid composite films[J]. Polymer,2003,44(16):4705-4713
    [155] Suk D E, Chowdhury G, Matsuura T, et al. Study on the Kinetics of Surface Migration ofSurface Modifying Macromolecules in Membrane Preparation[J]. Macromolecules,2002,35(8):3017-3021
    [156] Mahoney C M, Gardella J A, Rosenfeld J C. Surface Characterization and AdhesiveProperties of Poly(imidesiloxane) Copolymers Containing Multiple Siloxane SegmentLengths[J]. Macromolecules,2002,35(13):5256-5266
    [157] Wohl C J, Belcher M A, Chen L, et al. Laser Ablative Patterning of Copoly(imidesiloxane)s Generating Superhydrophobic Surfaces[J]. Langmuir,2010,26(13):11469-11478
    [158] Xiong M, You B, Zhou S, et al. Study on acrylic resin/titania organic-inorganic hybridmaterials prepared by the sol-gel process[J]. Polymer,2004,45(9):2967-2976
    [159] Nagendiran S, Alagar M, Hamerton I. Octasilsesquioxane-reinforced DGEBA andTGDDM epoxy nanocomposites: Characterization of thermal, dielectric andmorphological properties[J]. Acta Materialia,2010,58(9):3345-3356
    [160] Ortiz-Maldonado M, Ballou D P, Massey V. A Rate-Limiting Conformational Change ofthe Flavin in p-Hydroxybenzoate Hydroxylase Is Necessary for Ligand Exchange andCatalysis: Studies with8-Mercapto-and8-Hydroxy-Flavins[J]. Biochemistry,2001,40(4):1091-1101

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700