游离氧化铁对花岗岩残积红土强度增长的试验及本构模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红土是一种分布广泛的区域性特殊土。其特殊性主要表现在:一方面在天然状态下的红土具有看似较差的物理性质,如高孔隙比,高含水率、低密度等;而另一方面,却具有与其物理性质并不对应的较高的强度和较低的压缩性。随着我国经济的高速发展,南方的主要土体─红土被大量用作建筑地基和材料使用。因此,对红土的深入研究就显得十分必要和紧迫。
     本文就是以广东地区花岗岩残积红土为研究对象,在相关的室内力学试验、化学试验、微观结构参数的定量化、微结构分形参数提取的基础上对红土中游离氧化铁的作用以及游离氧化铁的环境影响因素进行了系统研究,目的在于探索游离氧化铁在红土结构强度形成和强度增长过程中的作用,并建立起与游离氧化铁含量有关的本构模型。
     论文首先设计试验人工制备出不同游离氧化铁含量的红土试样,通过对各试样性质测试,明确游离氧化铁在红土中的作用,并对所制备的不同游离氧化铁含量红土试样结构性的宏观力学表现进行了探讨。其次,首次分别从温度和pH值两个角度对红土中游离氧化铁的环境影响因素进行了研究。再次,对不同游离氧化铁含量、不同养护温度、不同环境pH值的红土试样微观结构特征进行定性和定量研究,采用分形理论验证红土微观结构的分形特征,探讨了微观结构单元体和孔隙分形维数与游离氧化铁含量及强度之间的关系,并利用微观结构抽象物理模型对自然界中红土因失水而产生的大面积开裂现象加以解释。在此基础上对红土强度形成的机理进行了分析。最后在本构模型的建立过程中,首次考虑了游离氧化铁含量这一因素,建立起了红土扰动状态模型和统计损伤模型,并通过室内试验对所建立的本构模型进行了验证。
     本文为研究游离氧化铁对红土强度增长的作用以及考虑游离氧化铁含量红土本构模型的建立提供了一种新的思路。
Red soil is one kind of the soil which widely distributes and almost covers the southeast areas where have developed economy in our country. With the rapid development of economy, red soil ---the main soil in the South is widely used as construction material and foundation. In fact, the bearing capacity of red soil foundation is often acquired as common clay soil,which ignores the potentiality of red soil foundation and causes great waste in engineering construction. So it’s necessary and urgent to study red soil profoundly.
     It is well known that there is a high strength in red soil because of the free ferric oxide which results in a strong structural connection. Therefore, to understand the special engineering geology feature of red soil, the studies on formation condition, existing form and content of free ferric oxide are important parts.
     At present, though many studies on red soil have been done, there still are some problems. First, emphasis was put on the comparison of properties between red soil and red soil from which free ferric oxide was removed, and no study was done on the properties of red soil with different ferric content. Secondly, not some single but synthetic environmental factor was the main study direction in influence factor of free ferric oxide. Additionally, red soil is one sort of structural soil, however, the study on its structural effect still remained in the stage of description about the engineering geology feature, which makes there is a blank of constitutive model of regional special soil such as red soil.
     So based on granite residual red soil in Guangdong, the study on the effect of free ferric oxide and environmental influencing factor to red soil is carried on in this paper on the basis of indoors mechanical tests, chemical tests, quantitative analysis of microstructure parameters and the extracting of microstructure fractal parameters, in order to search the function of free ferric oxide in the progress of red soil strength formation and increase and find the cementation mechanism of free ferric oxide. At the same time, micro structural feature of samples with different free ferric oxide content is studied, and the relationship between free ferric oxide content and microstructure fractal dimension is established. Finally, disturbed state model considering free ferric oxide content and damage model based statistic theory of red soil are build and testified through indoor triaxial shearing test.
     Following study is done in the paper:
     First of all, the function of free ferric oxide in red soil is studied and the properties of red soil samples with different free ferric oxide content are determined. Results show that:○1 with the increase of free ferric oxide content, there is an enhancement in aggregate with larger particle diameter and reduction in the content of clay particle and in the dimension of grain size distribution.○2 the higher the free ferric oxide content in soil is, the lower pH value is, the larger specific area is, and the lower the total content of cation exchange is. What’s more, there is an elevation in plastic limit of samples, while a decrease in plastic index I p. Additionally, the cohesion force and the angle of internal friction present an increasing tendency, which leads the enhancement of shearing strength and a better mechanical property.○3 macro mechanical property of red soil with different free ferric oxide content are shown as the followings: there is structural yield stress in original sample, which increases with the content of free ferric oxide. And there is an obvious inflection point in e ? logp curve because of the existence of structural yield stress. On the other hand, there is great difference in consolidation coefficient of samples before and after structural yield stress, causing the strength enveloping curve present a fold line type. Whereas the e ? logp curve of remolding soil basically is a line, and its consolidation coefficient is a constant.
     Secondly, environmental influencing factors of free ferric oxide in red soil are studied, and the influencing mechanism of free ferric oxide is investigated from the aspects of environmental temperature and pH value. From the research, conclusions can be drawn as followings:○1 with the increase of temperature, the silt content in soil increases, cation exchange capacity decreases and mechanical property turns better under some pH.○2with the increase of pH, the particle diameter turns smaller, the dimension of grain size distribution becomes larger, and there is a decrease in aggregating degree of soil grains as well as an increase in cation exchange capacity and specific surface area under some temperature.○3 environmental temperature and change of pH result in the change of free ferric oxide content in soil, leading to the alteration of red soil engineering geology property.
     Thirdly, qualitative, quantitative and fractal features analysis of microstructure of red soil is done. Results show that:○1 free ferric oxide exits in red soil in terms of“integument”and“bridge”, with the increase of free ferric oxide content and temperature and the decrease of pH value, the microstructure of samples turns compact.○2 with the increase of free ferric oxide content, there is a reduction in shape fractal dimension of grain in microstructure unit and a decrease in direction fractal dimension of structure unit, on the other hand, there is an increase in shape fractal dimension of microstructure pore, but a reduction in distribution fractal dimension of pore.○3 red soil is mainly composed of sand and silt which constitute the skeleton of soil grains in which structural connection formed of free ferric exits. Physical model of microstructure can be obtained by abstracting the microstructure of red soil. The model can be described as followings: red soil with higher structural strength can be taken as a multi-layer frame structure which is restrained in side direction. In this structure, some grains with larger size such as gravel, sand and silt form vertical pillar through cementation, while some single or few silts inlaying vertical pillars form beam. Stiff connection caused by cementation of ferric oxide exits in vertical pillars and beams. This physical model can be used to explain why red soil in nature shrink and large scale crack occurs with the lost of water.
     From the analysis mentioned above, the main mechanism of free ferric oxide influencing red soil strength can be drawn as followings:○1 the function mechanism of free ferric oxide in red soil can be attributed to physicochemical function and structural connection function.○2 the physicochemical function of free ferric oxide mainly reflected from the aspects of grain size, pH value, specific surface area, cation exchange capacity and plasticity of red soil. The structural connection function of free ferric oxide is demonstrated in micro and macro aspects. Free ferric oxide connects smaller particles into larger aggregates in terms of“integument”and“bridge”. The more free ferric oxide soil contains, the stronger of cementation effect is. From the aspect of macro shearing strength indexes, with the increase of cementation effect of free ferric oxide, the shearing strength of soil becomes larger.○3 influence of temperature and pH value on the property of red soil can be attributed to the change in content and form of free ferric oxide which caused by change of temperature and pH and leads to the change in red soil property.
     Finally, disturbed state conception and damage theory are introduced into the establishment of stress-strain model of red soil. During the progress of constructing model, free ferric oxide content is taken into account in the first time, based on which disturbed state model and damage model on statistic theory of red soil are build. What’s more, the built models are testified by triaxial shearing test. Study shows that:○1 in disturbed state model, there is a positive correlation between K,G, Z d and free ferric oxide content, and a negative correlation between Ad and free ferric oxide content.○2 in statistic damage model, there is a positive correlation between E、qu、F0 and free ferric oxide content, and a negative correlation betweenν、m and free ferric oxide content.○3 the construction of disturbed state model and damage model puts forward a feasible method in stress-strain description of structural soil. These two models both have merits and drawbacks: in disturbed model, the interaction between micro cracks and micro mechanical model needn’t be taken into account in analysis progress, but there are more parameters need to be solve. Damage model based on statistic theory with fewer parameters isn’t restrained by micro-mechanism, and mathematic tool are sufficiently used in solving problems. However, parameters in Weibull function are obtained through tests fitting, which weaken the theory value of model in some degree.○4 comparison between theory calculation and test results shows that theory calculation curve got from two kinds of models both can reflect the factual stress-strain character of red soil. The constitutive model of red soil taken account of free ferric oxide content is more convenience in modeling the deformation features of red soil with different free ferric oxide content and similar other properties.
引文
[1] 王清,陈剑平,马丽英.中国红土的研究与地基承载力的评价[J].探矿工程,1995, 4: 15-17.
    [2] 唐大雄.第二届全国红土工程地质研讨会论文综述[A].第二届全国红土工程地质研讨会论文集[C],贵州科技出版社 1991,1-5.
    [3] 施斌,李生林.国外红土工程地质研究概况[J].中国科学院基金资助项目,1985,3.
    [4] 王毓华.中国红土及红粘土分布特征[A].中国工程地质新进展论文集[C].成都科技大学出版社,1989,第 1 版,199-204.
    [5] 冯金良,赵泽三,高国瑞.红土中游离氧化铁的作用及其机理探讨[J].河北省科学院学报,1994 (1):35-43.
    [6] 王清,陈剑平,蒋慧忠.先期固结压力理论的新认识[J].长春地质学院学报,1996,26 (1): 59-63.
    [7] 熊毅等.土壤胶体(第一册):土壤胶体的物质基础[M]. 北京:科学出版社,1983: 145-196.
    [8] 沈珠江.土体结构性的数学模型-21 世纪土力学的核心问题[J].岩土工程学报, 1996,18(1):95-97.
    [9] 龚晓南,熊传祥,项可祥.粘土结构性对其力学性质的影响及形成原因分析[J].水利学报,2000,(10):43-47.
    [10] S.MALOMO.“红土”一词在工程地质领域中的用法[J].国外工程地质研究,1987,404-408.
    [11] Muhs D R,Crittenden R C,Rosholt J N et al.Genesis of marine terrace soils, Barbados,west Indies:evidence from mineralogy and geochemistry[J].Earth Surface Processes and Landforms,1987,12:605-618.
    [12] Muhs D R,Bush C A and Stewart K.Geochemical evidence of Saharan dush parent material for soils developed on Quarernary limestone of Caribbean and westem Atlantic islands[J].Quaternary Research,1990,33:157-177.
    [13] Borg L E and Banner J L.Neodymium and Strontium isotopic constraints on soil sources in Barbados,West Indies[J].Geochimicaet Cosmochimica Acta, 1996, 60: 4193- 4260.
    [14] Macleod D A.The origin of the red Mediterranean soils in Spirus, Greece [J]. Journal of Soil Science,1980,31:125-136.
    [15] Isphording W C.Mineralogical and physical properties of Gulf coast limestone soils [J].Transactions-Gulf coast Association of Geological Societies. 1978,18:201-214.
    [16] Danin A,Gerson E M,Marton K et al.Patterns of limestone and dolomite weathering by lichens and blue-green algae and their palaeoclimatic significance [J]. Palaeogeogr.Palaeoclimatol.Palaeoecol,1982,37:221-233.
    [17] Verges V.Solution and associated features of limastone fragments in a calcareous soil(lithic calcixeroll)from southern France[J].Geoderma,1985,36:109-122.
    [18] 席承藩.论华南红色风化壳[J].第四纪研究,1993,1:75-84.
    [19] 冯金良.游离氧化铁对红土工程地质性质影响的研究[D].成都:成都地质学院硕士学位论文,1991.
    [20] 黄镇国等.中国南方红色风化壳[M].海洋出版社(第一版),1996.
    [21] 徐则民,黄润秋,唐正光等.中国南方碳酸盐岩上覆红土形成机制研究进展[J].地球与环境,2005,33(4):29-36.
    [22] 鹿化煜,安芷生.黄土高原红粘土与黄土古土壤粒度特征对比─红粘土风成成因新证据[J].沉积学报,1999,17(2): 226-232.
    [23] M.D.Gidigasu.Mode of Formation and Geotechnical Characteristics of Laterite Matericals of Ghananin Telation to Soil Forming Factors .Eng.Geol.Vol 6,No.2 August 1972.
    [24] 高国瑞.近代土质学[M]. 南京:东南大学出版社,1990.
    [25] 高国瑞.中国地区性土的分布和形成[J].地质评论,1988,34(6):533-542.
    [26] 冯金良,赵泽三,高国瑞.试论红土化作用和红土的工程地质分类[J].水文地质工程地质,1993,3:32-35.
    [27] 黄英,符必昌.红土化学成分的变化特征[J].昆明理工大学学报,2002,27(4):63- 70.
    [28] 李景阳等.碳酸盐岩残积红粘土微观结构的扫描电镜研究[J].中国岩溶,2002,21 (4):233-237.
    [29] 李景阳,王朝富,樊廷章.残积红粘土成因探讨[A].第二届全国红土工程地质研讨会论文集[C].贵阳:贵州科技出版社,1991,21-29.
    [30] 秦刚,廖义玲.母岩成分对残积红土形成及分带的影响[J].贵州科学,1994,12 (3):33 -39.
    [31] 廖义玲,毕庆涛,姜国萍等.碳酸盐岩地表岩溶与红粘土[J].地球与环境, 2005, 33 (4):13-19.
    [32] Persons.Laterite,Genesis,Location,Use.Plenum press,New York-London,1970.
    [33] 黄志仑.花岗岩残积土的分类及其承载力[J].现代勘察,1981,(1):23-26.
    [34] 张永波.花岗岩残积土工程类型划分体系研究[J].地球学报,1997,18(2):201- 204.
    [35] 林宗元.试论红土的工程分类[J].岩土工程学报,1989,11(1):85-96.
    [36] 高国瑞.近代土质学[M]. 南京:东南大学出版社,1990.
    [37] 屈儒敏,梅世龙.红土与红粘土[J].水文地质工程地质,1987(3):13-17.
    [38] 谭罗荣.红土有关问题的探讨[A].第二届全国红土工程地质研讨会论文集[C].贵州科技出版,1991:1-10.
    [39] 唐大雄,王清,张庆云等.红土的工程地质研究和评价[A].长春地质学院建院 40周年科学研究论文集(水文、工程、环境地质)[C],1992:161-169.
    [40] 李宝华.雷琼地区火成岩残积红土的工程地质研究[D].长春地质学院硕士学位论文,1990.
    [41] 王清等.雷琼玄武岩地区残积红土的工程地质研究[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社,1991,124-132.
    [42] 王清,唐大雄,张庆云等.中国东部花岗岩残积土物质成分和结构特征的研究[J].长春地质学报,1991,21(1):72-82.
    [43] 赵继增.花岗岩残积土成分、结构的工程地质研究[D].吉林:长春地质学院硕士学位论文,1989.
    [44] 王清,蒋慧忠,唐大雄.闽南三角地区花岗岩残积土及其工程地质特性的研究[J].福建地质,1990,9(2):90-99.
    [45] 王清,唐大雄,陈剑平.北方花岗岩残积土的工程地质研究[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社,1991,138-143.
    [46] 向春尧.网纹红土的工程地质特性和地基评价[J].水文地质工程地质,1985,3: 1-8.
    [47] 王清,唐大雄.我国南方中更新世网纹红土工程地质评价[J].工程地质学报, 2000, 8 (增刊):330-333.
    [48] 廖义玲.贵阳地区红粘土成分和结构的研究及其对土工程地质性质的影响[D].吉林:长春地质学院硕士学位论文,1988.
    [49] 廖义玲,秦刚.对贵阳地区红粘土成分结构的研究及红粘土特殊性本质的分析[J].贵州科学,1989,2:39-51.
    [50] 李景阳.贵州残积红粘土的力学强度特征[J].贵州工业大学学报,1997,26(2): 73 -79.
    [51] 姜其岩,余培厚,郭沛等.红粘土力学强度特征的形成及分析[J].贵州工学院学报,1991, 20 (2): 22-28.
    [52] 柯尊敬,邝泽民.红粘土抗剪强度的特性及其规律性[A].第七届土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社,1994,287-290.
    [53] 唐大雄,王清,张庆云.红土胀缩性及其在塑性图上的位置[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社,1991,67-77.
    [54] 郭沛等.红粘土的胀缩特征与胀缩机理[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社,1991,105-110.
    [55] 魏庭忠.膨胀性红粘土的特点[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社,1991,111-117.
    [56] 简文彬,陈文庆,郑登贤.花岗岩残积土的崩解试验研究[A].中国土木工程学会第九届土力学及岩土工程学术会议论文集[C].北京:建筑工业出版社,2003.
    [57] 李庆逵.中国红壤[M].北京:科学出版社,1983.
    [58] 祖志贤.福建花岗岩残积土成因及其工程地质特征的初步探讨[J].福州大学土建系,1986.
    [59] 左权.华南湘赣粤地区红土层残积红土的工程地质研究[J].长春地质学院学报,24(1):70-76.
    [60] 陈洪江.花岗岩类全风化带的工程地质特征[J].港工技术,1995,(3):61-65.
    [61] 陈洪江.花岗岩残积土物理力学指标的概率统计分析[J].华中科技大学学报,2001,29(5):95-97.
    [62] 余德彬.珠海地区花岗岩残积土特征[J].四川建筑,2002,22(1):58-59.
    [63] 陈淦.福建红土工程地质特性的初步探讨[J].工程勘察,1984,(3):62-65.
    [64] 刘明俊.深圳花岗岩残积土的物理力学特征[J].工程勘察,1985(4):38-42.
    [65] 张文华.花岗岩残积土工程性质研究-深圳地区岩土工程的理论与实践[M].北京:中国建筑工业出版社,2000.
    [66] 胡红梅.福建沿海花岗岩残积土的工程性能分析[J].电力勘察,2001(3):39-41.
    [67] 刘胜娥.海南省花岗岩残积土的工程特征研究[J].岳阳师范学院学报(自然科学版),14(2):48-50.
    [68] 阳发清.花岗岩残积土物理力学性质及变形特性的探讨[J].勘察科学技术,20 02,(6):34-37.
    [69] 黎青宁.红土问题─红土工程地质研究座谈会评述[J].水文地质工程地质,1986 (6) : 9-11.
    [70] Oades,J.H.The nature and distributeon of iron compounds in soils.Soil &Fert.1963 26:69-80.
    [71] Area,M.N&Weed,S.A.Soil aggregation and porosity in relation to content of free iron oxides and clay.Soil Sci.1966,101:164-170.
    [72] 何群,陈家坊,许祖饴.土壤中氧化铁的转化及其对土壤结构的影响[J].土壤学报, 1981,18(4):326-333.
    [73] 胡国成,章明奎,韩常灿.红壤团聚体力学和酸碱稳定性的初步研究[J].浙江农业科学,2000,3:125-127.
    [74] 胡国成,章明奎.氧化铁对土粒强胶结作用的矿物学证明[J].土壤通报,2002,33 (1).25- 27.
    [75] 马毅杰,陈家坊.我国红壤中氧化铁形态及其特征和功能[J].土壤,1998(1):1-6.
    [76] 罗鸿禧.无定形物质对土的力学性质和结构的影响[J].岩土力学, 1983, 4(1): 67 -72.
    [77] 王继庄.游离氧化铁对红粘土工程特性的影响[J].岩土工程学报,1983,5(2): 147-156.
    [78] 王幼麟.斑纹红土工程性质的物理化学研究[J].长江科学学院学报,1994, 4:1-7.
    [79] 罗鸿禧.游离氧化铁对红色粘土工程性质的影响[J].岩土力学,1987,8(2):29-36.
    [80] 曾德清.红土中游离氧化物及其对工程地质性质的影响[D].长春地质学院硕士学位论文,1993.
    [81] 冯金良.粘性土(红土)中游离氧化铁含量对其工程地质性质的影响[J].工程地质学报,1996,4(1):27-31.
    [82] 周训华,廖义玲.红粘土颗粒之间结构连结的胶体化学特征[J].贵州工业大学学报(自然科学版),2004,33(1):26-29.
    [83] 王幼麟.红粘土工程特性物理化学研究浅见[J].红土工程地质研究座谈会发演稿.1986,7.
    [84] 王清,张庆云,唐大雄.残积土微观结构的探讨[A].长春地质学院建院 40 周年科学研究论文集(水文、工程、环境地质)[C],1992:176-180.
    [85] 程昌炳,徐昌伟.花岗岩残积土的胶结特性及其对力学性质的影响[J].岩土力学, 1986, 7 (2):61-66.
    [86] 程昌炳,康哲良,徐昌伟. 针铁矿与高岭土“胶结”本质的微观研究初探[J].岩土力学,1992,13(2,3):122-127.
    [87] 程昌炳.从活化能看土中胶结现象的本质[J].水文地质工程地质,1994(4):54- 55.
    [88] 程昌炳,刘少军,王远发等.胶结土的凝聚力的微观研究[J].岩石力学与工程学报, 1999, 18 (3):322-326.
    [89] 孔令伟,罗鸿禧,袁建新.红粘土有效胶结特征的初步研究[J].岩土工程学报, 1995,17(5):42-47.
    [90] 彭杰,张杨珠,周清.人工合成氧化铁矿物对土壤光谱特性的影响[J].塔里木大学学报,2006,18(2):17-20.
    [91] 黄英,何发祥,符必昌等.红土颗粒粒度的分维变化特征[J].云南工业大学学报, 1998,14(3):54-60.
    [92] 汤连生,刘增贤,黄国怡等.红土中含铁离子物质的化学行为与力学效应[J].水文地质工程地质,2004,4:45-48.
    [93] 吴鼎全,高振明,程昌炳等.针铁矿与盐酸反应的热动力学研究[J].岩土力学, 1992, 13(4):57-62.
    [94] 程昌炳,康哲良,徐昌伟等.人工胶结针铁矿与盐酸反应的化学动力学研究[J]. 长江科学学院学报,1995,12(1):62-66.
    [95] 程昌炳,康哲良,徐昌伟.针铁矿与盐酸反应的化学动力学研究[J].岩土力学, 1993, 14(3):41-46.
    [96] 程昌炳,徐昌伟,孔令伟等.天然针铁矿胶结土样与盐酸反应的化学动力学及其力学特性预报[J].岩土工程学报,17(3):44-50.
    [97] 孙重初.酸液对红粘土物理力学性质的影响[J].岩土工程学报, 1989 ,11(4): 89- 93.
    [98] 毕庆涛,姜国萍,丁树云.含水量对红粘土抗剪强度的影响[J].地球与环境, 2005, 33 (3): 144-147.
    [99] 孔令伟,罗鸿禧.游离氧化铁转化对红粘土工程性质的影响[J].岩土力学, 1993,14 (4):25-39.
    [100] 胡瑞林等.粘性土微结构定量模型及其工程地质特征研究[M].北京:地质出版社,1995.
    [101] Sergeev.E.M.Engineering Geology [M].Moscow State Univ.Publ. House, Mos- cow ,1979.
    [102] 王常明.海积软土微观结构定量化及固结蠕变模型研究[D].吉林:长春科技大学博士学位论文,1999.
    [103] Osipov V.I.et al.Microstucture and changes associated with thixotropic phenol- mena in clay soils[J].Geotechnique,1984,34(2):293-303.
    [104] 施斌.粘性土微观结构研究回顾与展望[J].工程地质学报,1996,4(1):39-34.
    [105] 高国瑞.中国红土的微结构和工程性质[J].岩土工程学报,1985, 7(5):10-21.
    [106] 王幼麟.蒲圻第四纪红色粘土的物质成分和结构特性及其工程性质的关系[J].科技成果选编,1981,9.
    [107] 王清,蒋慧忠,唐大雄.闽南三角地区花岗岩残积土及其工程地质特性的研究[J].福建地质,1990,9(2):90-99.
    [108] 谭罗荣,孔令伟.某类红粘土的基本特性与微观结构模型[J].岩土工程学报, 2001,23,4: 458-461.
    [109] 余培厚等.红粘土的微结构模型与力学特征[A].第二届全国红土工程地质研讨会论文集[C].贵州:贵州科技出版社,1991,94-104.
    [110] 廖义玲,余培厚.红粘土的微结构及其概化模型[J].工程地质学报,1994,2 (1): 27-37.
    [111] 李景阳等.碳酸盐岩残积红粘土微观结构的扫描电镜研究[J].中国岩溶,2002, 21 (4):233-237.
    [112] 薛守义,卞富宗.红土的结构与工程特性[J].岩土工程学报,1987,9(3):92-104.
    [113] 王永炎,林在贯.中国黄土的结构特征及物理力学性质[M].北京:科学出版,1990.
    [114] 戴军,M.K.CAMARA,甘海华等.广东省花岗岩赤红壤的微形态特征研究[J].华南农业大学学报, 1998,19(3): 82-86.
    [115] 施斌,姜洪涛.在外力作用下土体内部裂隙发育过程的 CT 研究[J].岩土工程学报, 2000,22(5):537-541.
    [116] 蒲毅彬,陈万业,廖全荣.垅东黄土湿陷过程的 CT 结构变化研究[J].岩土工程学报, 2000,22(1):49-54.
    [117] 吴紫汪,马巍,蒲毅彬等.冻土蠕变变形特征的细观分析[J].岩土工程学报, 1997, 19(3):1-6.
    [118] 李晓军,张登良.路基填土单轴受压细观结构 CT 监测分析[J].岩土工程学报, 2000,22(2):205-209.
    [119] Li Xiao-jun,Wang Zhiren,Yin Jiang-ze.CTdiscrimination of fabric change of unsaturated compression process[J].Chinese Journal of Rock Mechanics andEngineering, 2002, 21 (1): 107-111.
    [120] S.Matuso,M.Kamon.Microscopic study on deformation and strength of clays[A].第九届国际土力学和基础工程会议论文集[C].
    [121] Bai X,Smart P.Change in microstructure of Kailin in consolidation and undrained chear.Geotechnique,1997,47(5):1009-1017.
    [122] Bai X,Smart P.Leng X.Polarizing microphpto metric anlysis. Geotechanique, 1994,44 (4):175-180.
    [123] Chandler RJ,Apted JP.The effect of weathering on the strength of London clay.QJ Engng Geol,1988,21:59-68.
    [124] Kuo C Y,Fost J D,A Chameau J L.Image analysis determination of stereology based fabric tensors[J].Geotechnique,1998,48(4):515-525.
    [125] 谭罗荣.粘性土微结构定向性的 X 射线衍射研究[J].科学通报, 1981,(4): 236 -239.
    [126] 吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报, 1991, (23): 143-150.
    [127] Wu Y X.Quantitative approach on microstructure of engineering clay.In:6th Congress of IAEG,Amsterdam,1990.
    [128] 蒋明镜,沈珠江.结构性粘土剪切带的微观分析[J].岩土工程学报,1998, 20 (2): 102-108.
    [129] 王清.几种粘性土的微观结构特征及变形与强度的时效研究[D].吉林:长春科技大学博士学位论文,1997.
    [130] 齐吉琳,谢定义.孔隙分布曲线及其在土的结构性分析中的应用[J].西安公路交通大学学报,2000,20(2):6-26.
    [131] 汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报,2003,11 (1): 30- 35.
    [132] 雷华阳.海积软土结构性模型的试验研究及其在基坑开挖工程中的应用[D].吉林:吉林大学博士学位论文,2000.
    [133] 何开胜,沈珠江.结构性土的微观变形和机理研究[J].河海大学学报(自然科学版), 2003,31(2):161-165.
    [134] Anandarajah A.On influence of fabric anisotropy on the stress-strain behaviour of clays[J].Computer and Geotechnics,2000,27(1):1-17.
    [135] Latham J P,Y Liu,Munjiza A.A random method foe simalatiing loose packs of angular using retrahedra[J].Geotechinique,2001,51(10):871-879.
    [136] Bohac J,Feda J,Kuthan B.Modeling of grain crushing and debonding [A]. Proceedings of the Fifteenth International Congrence on Soil Mechanics and Geotechnical engineering[C].Lisse:Balkema,2001,43-46.
    [137] Haynie C,Frantziskonis G.Multiscale material characterization and application to artificially created microstructure[J].Computer Methods and Advances in Geome-chanies,2001:529-532.
    [138] 胡瑞林,官国琳,李向全等.黄土湿陷性的微结构效应[J].工程地质学,1999,7 (2): 161-167.
    [139] 王清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000,22(4):496-498.
    [140] 李向全,胡瑞林,张莉.软土固结过程中的微观结构变化特征[J].地学前缘,2003, 7(1 ): 147-152.
    [141] 杨书燕,刘春原.高塑限粘土微结构分析与强度机理的研究[J].河北工业大学学报, 2002,31(5):116-118.
    [142] 孔令伟,罗鸿禧,谭罗荣.红粘土孔隙分布的分形特征研究[A].第七届土力学及基础工程学术会议论文集[C].北京:中国建筑工业出版社,1994,276-279.
    [143] 谢定义,齐吉琳.土结构性及其定量化参数研究的新途径[J].岩土工程学报, 1999,21 (6): 651-656.
    [144] Matuso S,Kamon M.Mocroscopic study on deformation and strength of clays[A]. Proceedings of the 9th International Conference On the Soil Mechanics and Foundation Engineering [C].
    [145] M.D.Liu,J.P.Cater.Virgin compression of structured soil [J]. Geotechnique , 1999, 49 (1):43-57.
    [146] M.D.Liu,J.P.Cater.Modelling the destructoring of soil during virgin compression [J]. Geotechnique,2000,50(4):479-483.
    [147] Diaz-Rodrignez J A,Lopez-Flores L.Effect of soil microstructure on the dynamic properties of a natural clay[R],Proceedings of Seventh World Conference on Earthquake Engineering, 1996.
    [148] Mesri.G,Roskhsar.A,Bohor.B.F.Composition and compressibility of typicall samples of Mexico City clay[J].Geogechnique,1995,25(3):527-554.
    [149] Deleg P,Lefebvre G.Study of the structure of a sensitve champlain clay and evolution during consolidation.Canadian Geotechnical Journal,1984,21:21-25.
    [150] Quigley R M,Thompson C D.The fabric of anisotropically consolidated sensitive marine clay.Canadian Geotechnical Journal,1996,3:40-45.
    [151] Mitchell J K.On the yielding and mechanical strength of Leda clay.Can Geotech J T,1970(3):297-312.
    [152] Sangrey D A.Naturally cementedsensitive soils. Geotechinque, 1972, 22 (1): 139 -152.
    [153] Crooks J H A,Graham J.Geotechnical properties of the Belfast esturarine desposis. Geotechnique,1976,26(2):293-315.
    [154] Graham J,Noonan M L,Lew K V.Yield states and stress-strain relationshio in a natural plastic clay.Can Geotech J,1983,20(3):502-516.
    [155] Moulin G.Etat limite d’ume argile naturelle-1’argo;e de pornic: [dissertatio n ] .University de Nantes France ,1988.
    [156] Burland J B.On the compressibility and shear strength of natural clays[J]. Geitechnique, 1990,40(3):329-378.
    [157] 沈珠江.软土工程特性和软土地基设计[J]岩土工程学报,1998,20(1):100-111.
    [158] 张诚厚.两种结构性土的土工特性[J].水利水运工程学报,1983,(4):65-71.
    [159] 李作勤.粘土压密状态及其力学性质[J].岩土力学,1982,3(1):45-51.
    [160] 张诚厚.上海粘土的准超压密特性[J].岩土工程学报,1982, 4(3):62-69.
    [161] 蒋明镜,沈珠江.结构性粘土试样人工制备方法研究[J].水利学报,1997(,1): 56 -61.
    [162] 吴能森.结构性花岗岩残积土的特性及工程问题研究[D].江苏:南京林业大学博士学位论文,2005.
    [163] Nagaraj,T.S., Srinivasa Murthy, B.R. Catsala, A. and Joshi,R.C.1990.Anagysis of Compesibility of Sensitive Soil.ASCE.Journal of Geotechnical Engineering, Vol. 116,No.1:105-118.
    [164] Nagaraj,T.S., Srinivasa Murthy, B.R.and Catsala, A.1991 Prediction of Soil Behariour, partⅢ-Cemented Saturated Soils.Indian Geotechnical Journal, Vol,21, No.2, 169-186.
    [165] Nagaraj,T.S.,Pandian N.S.,and Narasimha Raju P.S.R.,1994. Stress-state- Permeability -Relations for overconsolidated Soils.Geotechnique Vol.44 , No.2, 349 -352.
    [166] R.C.Joshi,1994 An Approximate Method ofor Estimating the Consolidation Behavior of Soft Sensitive Clays.Geotechnical Testing Journal , 17(1):55-56.
    [167] Fusao Oka S L,etal.1989,A constituteive model for natural soft clay with softening . Japanese Society of Soil Mechanics and Foundation Engineering , 29 (3) : 54-56.
    [168] 谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [169] Kachanov L M.On the time to failure under creep condition[J]. Izv,Akad,Nauk, USSR Otd.Tekhn Nauk, 1958,8:26-31.
    [170] Kachanov L M.Introduction to continuum damage mechanics[M].Martinus Nijhoff Publishers.Dordrecht,The Netherlands,1986.
    [171] Rabotnov Y N.Creep ruptures[C].In:Hetenyi M,et al.ed.Applied mechanics. Processing of the 12thInternational Congress of Applied Mechanix. Standford- Springer- Verlag, Berlin, 1969: 342-349.
    [172] Rabotnov Y N.On the equations of state for creep[C].In:progress in Applied mechanics.1963:307-315.
    [173] Lemaitre J.Local approach of fracture[J].Eng.Frac.Mech.,1986:25(5/6).
    [174] Lemaitre J,Chaboche J L.Mechanics of solid Material[M].Cambridge University Press,1990.
    [175] Chaboche J L.Continuum damage mechanics –a tool to describe phenomenabefore crack initiation[J].Num,Eng.Design,1981,64:233-247.
    [176] 沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28.
    [177] 沈珠江.结构性粘土的非线性损伤力学模型[J].水利水运工程学学报,1993,(3): 247-255.
    [178] 沈珠江.结构性粘土的堆砌体模型[J].岩土力学,2000,21(1):1-4.
    [179] 周成,沈珠江,陈铁林等.结构性粘土的边界面砌块体模型[J].岩土力学, 2003, 24 (3):317- 321.
    [180] 何开胜,沈珠江.结构性粘土的弹粘塑性损伤模型[J].水利水运工程学报, 2002 (4):7-12.
    [181] 沈珠江.岩土破损力学:理想脆弹塑性模型[J].岩土工程学报, 2003,25(3):253 -257.
    [182] 沈珠江,陈铁林.岩样变形和破坏工程的二元介质模拟[J].水利水运工程学报, 2004, (1): 1-5.
    [183] 沈珠江.岩土破损力学与双重介质模型[J].水利水运工程学报,2002(4): 1-6.
    [184] 沈珠江,邓超.超固结粘土的双重介质模型[J].岩土力学,2003,24 (4):495-499.
    [185] 沈珠江,刘恩龙,陈铁林.岩土二元介质模型的一般应力-应变关系[J].岩土工程学报,2005, 27(5): 489-494.
    [186] 赵锡宏.损伤土力学[M].上海:同济大学出版社,2000.
    [187] 蒋明镜.结构性粘土的本构模型和土体逐渐破损分析[D].江苏:南京水利科学研究所博士学位论文,1997.
    [188] 王立忠,丁利,赵志远.结构性软土应力-应变关系的分段特性研究[A].中国土木工程学会第九届土力学及岩土工程学会会议论文集(上)[C].北京:清华大学出版社,2003, 305-318.
    [189] 夏旺民. Q1 黄土的弹塑性损伤本构模型[A].中国土木工程学会第九届土力学及岩土工程学会会议论文集(上)[C].北京:清华大学出版社,2003:248-253.
    [190] 施建勇.考虑损伤的软土地基变形分析[J].岩土工程学报,1998,20(2):2-5.
    [191] 丁绿芳.真空预压加固地基时的土体损伤[J].河海大学学报(自然科学版),2002,30 (4):57-60.
    [192] 何开胜.天然沉积粘土的结构性调查[J].东南大学学报(自然科学版), 2002, 32 (5): 818-822.
    [193] 胡黎明,濮家骝.土与结构物接触面损伤本构模型[J].岩土力学,2002,3(1):6-11.
    [194] 刘祖德,王士恩.结构性土体破损的力学描述[J].土工基础,1996,10(3):1-6.
    [195] 张嘎,吴伟,张建民.粗粒土亚塑性损伤模型[J].清华大学学报(自然科学版),2006, 46(6):793-796.
    [196] Desai.C.S.Aconsistent finite element technique for work softening behaveior [C]. Proc. Int. Conf.On Computer Methods in Nonlinear Mechanics, University of Texas,Austin,TX,1974.
    [197] Desai.C.S,Somasundaram.S,Frantziskonis.G.Ahierarchical approach for constitu-teive modeling of geologic materials[J].Int. J. Numer. Anal. Mech. Geomech , 1986,10: 225-257.
    [198] Shao.C,Desai.C.S.Implementation of DSC model and application for analysis of field pile tests under cyclic loading[J].Int J Numer Anal Meth Geomech, 2000, 24: 601-624.
    [199] 王国欣.软土结构性及其扰动状态模型研究[D].吉林大学博士学位论文,2003.
    [200] 周成,沈珠江,陈生水等.结构性土的次塑性扰动状态模型[J]. 岩土工程学报, 2004, 26 (4) : 435 -439.
    [201] 陈锦剑等.基于扰动状态概念模型的饱和软粘土力学特性[J].上海交通大学学报,2004,38(6):952-955.
    [202] ?红土工程地质研究?科研组.闽粤沿海地区花岗岩残积红土的工程地质研究.1989.
    [203] 中华人民共和国水利部电力工业部. 土工试验规程 SDS01-97(第二分册)[M]. 北京: 水利出版社. 1981.
    [204] 鲜于开耀,刘代清.土中游离氧化物的选择溶解及其测定方法[J].水文地质工程地质, 1984: 36-39.
    [205] 徐永福,刘斯宏,董平.粒状土体的结构模型[J].岩土力学, 2001, 22(4):366– 372 .
    [206] 张凌,王宝军,施斌土粒度分维的确定方法探讨[J]水文地质工程地质,1999, 5: 43-45.
    [207] Mandelbort, B.B.The fractal geometry of nature .W. H. Freeman, New York. 1983.
    [208] 刘松玉,方磊,陈浩东.论我国特殊土粒度分布的分形结构[J],岩土工程学报,1993, 15 (1): 23- 30.
    [209] 李作勤.有结构强度的欠压密土的力学特性[J].岩土工程学报,1982,4(1):34- 45.
    [210] 杨英华.土力学[M].北京:地质出版社, 1986.
    [211] 唐群艳.花岗岩残积红土结构强度的温度效应研究[D].吉林:吉林大学硕士学位论文,2005.
    [212] 陈慧娥.有机质影响水泥加固软土效果的研究[D].吉林:吉林大学博士学位论文,2006.
    [213] 胡瑞林等.21 世纪工程地质学生长点:土体微结构力学[J].水文地质工程地质, 1999,(4):5-8.
    [214] 王清.海积软土和吹填土固化机理及地基处理机制研究[D].吉林:吉林大学博士后科学研究报告,2002.
    [215] 白冰,周建.扫描电子显微镜测试技术在岩土工程中的应用与进展[J].电子显微学报,2001,20(2):154-160.
    [216] 金克盛.昆明红土的固化特性及微观结构图像特征参数研究[D].云南:昆明理工大学硕士学位论文,2005.
    [217] 刘莹.吹填土固化后结构强度的形成及影响因素[D].吉林:吉林大学博士学位论文,2000.
    [218] 雷华阳.饱和软黏土固结变形的微结构效应[J].水利学报,2004(4):91-100.
    [219] 王清,王凤艳,肖树芳.土微观结构特征的定量研究及其在工程中的应用[J].成都理工学院学报,2001,28(2):148-153.
    [220] 施斌.粘性土击实过程中微观结构的定量评价[J].岩土工程学报,1996,18 (4):57-62.
    [221] B.B.Mandelbrot.How Long is the Coast of Britain,Statistical Self Similarity and Fractional Dimension[J].Science,1967,155:636-638.
    [222] B.B.Mandelbrot.,et al.Fractal character of farcture surfacesofmetals of metala [J]. Nature,1984,308:721-723.
    [223] J.Feder.Fractals[M]. Plenum Press, New York and London,1988.
    [224] Mandelbrot,B.B.,The fractal geometry of nature[M].San Franciso:Freeman W H, 1982.
    [225] 孙霞等.分形原理及应用[M].合肥:中国科学技术大学出版社,2003.
    [226] 谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992, 14(1): 14-24.
    [227] Tyler S.W.,Wheatcraft S.W.Fractal scaling of soil particle-size distribution analysis and limitations[J].Slio Sci Soc.Am.J.,1992,56:362-369.
    [228] 李向全,胡瑞林,张莉.粘性土固结过程中的微结构效应研究[J].岩土工程技术, 1999,3: 52-56.
    [229] MooreC.A.DonaldsonC.F.Quantifying soil microstructure usingfractal[J]. Geote- chique , 1995,1(45):105-116.
    [230] 王宝军等.基于 GIS 的黏性土微观结构的分形研究[J].岩土工程学报,2004, 26 (2):244-247.
    [231] 毛灵涛等.软土孔隙微观结构的分形研究[J].中国矿业大学学报, 2005, 34(5):345.
    [232] 刘熙媛等.基于分形理论的土体微观结构研究[J].建筑科学, 2005,21(5):21-25.
    [233] 袁琴.基于 ERDAS 的淤泥质土微观孔隙的分形特征研究[J].资源环境与工程, 2005,19(4):323-326.
    [234] 于天仁,王振权.土壤分析化学[M].北京:科学出版社,1988.
    [235] 唐大雄等.工程岩土学(第二版)[M].北京:地质出版社,1999.
    [236] 吴刚.工程材料的扰动状态本构模型(1)-扰动状态概念及其理论基础[J].岩石力学与工程学报,2002,21(6):759-765.
    [237] Desai.c.s,TothJ.Disturbed state constitutive modeling based on stress-strain and nondestructive behavior[J].International Journal of Solids and Structures, 1996, 33(11) :1619-1650.
    [238] 吴刚,金剑,潘建华.扰动状态概念及其研究现状[A].中国岩石力学与工程学会第六次学术大会论文集[C].北京:中国科学技术出版社,2000: 40- 43.
    [239] Liu.M.D,Carter.J.P,Desai.D.S,Xu.K.J.Analysis of the compression of structured soil using the disturbed state concept[J].Int.J.Numer.Anal.Mech.Geomech.,2000, 24: 723-735.
    [240] Kachanov.L.M. Introduction to Continuum Damage Mechanics[M]. Martinus Nijhoft Publishers, Dordrecht, The Netherlands,1986.
    [241] Frantziskonis.G,Desai.C.S.Constitutive model with strain softening[J]. Int. J. Solids Structures.1987,23:751-767.
    [242] Desai.C.S.The disturbed state as transition through self-adjustment concept for modeling mechanical response of materials and interfaces[R].Report,Dept.of Civil Engineering and Engineering Mechanics,University of Arizona,Tucson, Ariz,1992.
    [243] Desai.C.S,Ma.Y.Modelling of joints and tnerfaces using the disturbed state concept[J].I nt.J.Numer.Anal.Mech.Geomech.,1992, 16: 623-653.
    [244] Pal.S,Wathugala.G.W.Disturbed state model for sand-geosynthetic interfaces and application to pull-out tests[J].Int.J. Numer.Anal.Mech.Geomech.,1986, 10: 225-257.
    [245] 吴刚等.扰动状态概念的特点及与其它模型的对比[A].中国岩石力学与工程学会第七次学术大会论文集[C].西安:西安科技出版社,2001,155-157.
    [246] Al.S,Wathugala.G.W.Disturbed state model for sand-geosynthetic interfaces and application to pull-out tests[J].Int.J.Numer.Anal.Mech.Geomech.,1999,23:1871- 1892.
    [247] Krajcinovic D,Silva M A G.Statistical aspects of the continuous damage theory[J].Int J Solids Structure,1982 18(2):551-562.
    [248] 曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报,1998,17, (6): 628-633.
    [249] 曹文贵,张升.基于 Mohr-Coulomb 准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版), 2005, 32(1): 43-47.
    [250] 廖华林,李根生.基于 Mohr-Coulomb 准则的岩石损伤统计本构模型[J].石油钻采工艺,27(6): 85-87.
    [251] 曹文贵,赵明华,刘成学.基于 Weibull 分布的岩石损伤软化模型及其修正方法研究[J].岩石力学与工程学报,2004, 23 (19): 3223-3231.
    [252] 徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002,21 (6): 787-791.
    [253] 李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [254] 夏蒙棼等.统计细观损伤力学和损伤演化诱致突变(Ⅰ)[J].力学进展,1995,2(5): 1–23.
    [255] 曹文贵,赵明华,田政海.岩石变形破坏全过程的概率损伤方法研究[J].湖南科技大学学报(自然科学版),2004,19(4):21-24.
    [256] 罗晓辉,白世伟.结构性土体强度的统计损伤模型分析[J].岩土工程学报,2004, 26(5): 712 -714.
    [257] 张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.
    [258] 蔺海荣.材料力学[M].北京:国防工业出版社,2001.
    [259] 刘鸿文.材料力学(第三版)(上册).北京:高等教育出版社,1992.
    [260] 张升.岩土材料本构模型的损伤统计理论研究[D].湖南:湖南大学硕士学位论文, 2005.
    [261] 郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工程出版社,2002.
    [262] 曹文贵,张升,赵明华.软化与硬化特性转化的岩石损伤统计本构模型之研究[J].工程力学,2006, 23(11):110-115.
    [263] 曹文贵,李鹏,赵明华等.基于正态分布的岩石损伤统计本构模型及其参数确定方法研究[J].水文地质工程地质,2005, 3: 11-14.
    [264] 曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力学,2006 ,27 :141-46.
    [265] 曹文贵,赵明华,刘成学.基于统计损伤理论的莫尔-库仑岩石强度判据修正方法之研究[J].岩石力学与工程学报, 2005, 24(14):2403-2408.
    [266] 曹文贵,赵明华,刘成学.基于统计损伤理论的德鲁克-普拉格岩石强度准则的修正[J].水利学报,2004, 9:18-23.
    [267] 徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报 ,2002 ,21 (6): 787- 791.
    [268] 秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报,2001,20 (4): 560- 562.
    [269] 陈爱军 . 岩石统计损本构模型及其相关参数确定的研究 [J]. 森林工程,2005,21(2): 49-51.
    [270] 韦立德,徐卫亚,杨春和等.具有统计损伤岩石弹塑性本构模型研究[J].岩石力学与工程学报,2004,23(12):1971-1975.
    [271] 廖华林,李根生.基于 Moh-Coulmb 准则的岩石损伤统计本构模型[J].石油钻采 工艺,2005,27(6): 85-87.
    [272] 李杭州,廖红建,盛谦.基于统一强度理论的软岩损伤统计本构模型研究[J].岩石力学与工程学报,2006,25(7):1331-1336.
    [273] 刘齐建,杨林德,曹文贵.岩石统计损伤本构模型及其参数反演[J].岩石力学与工程学报 ,2005 ,24(4):616-621.
    [274] 朱乃龙.基于统计断裂理论的混凝土本构关系的研究[J].武汉理工大学学报,2007, 29(2):58-61.
    [275] 朱军贤.基于 WF 三轴系统非饱和土损伤统计本构模型试验研究[D].甘肃:兰州理工大学硕士学位论文, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700