基于船体刚度变化的轴系振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶推进轴系是船舶动力装置的一个重要组成部分,它的振动情况和性能直接关系到船舶动力系统的生存能力。如果轴系设计质量欠佳,将会引起轴系校中不良以及剧烈的轴系振动,从而引起机体振动、传动系统零部件损坏、轴承过度磨损、甚至轴系折断等事故,就会中止机械系统的正常运行。船体刚度是船体抵抗总纵弯曲变形的能力,在实际工程应用中,针对轴系振动模型中涉及到船体刚度的取值问题仅仅是根据经验估计,导致结果不符合实际要求。因此,目前探索和解决船体刚度对轴系振动的影响显得尤为必要。
     本文基于船体刚度变化对轴系振动的影响,在查阅国内外大量资料的基础上对轴系振动进行深入的研究,利用ANSYS软件,对考虑了双层底结构刚度情况下的轴系进行了回旋振动计算,能够更准确的反映船体刚度的取值对轴系振动的影响。论文的主要内容概括为以下几点:
     (1)在双层底结构刚度分析中,从船体三维结构入手,以局部双层底结构为例,创建了双层底结构模型,详细计算了船底板厚度、加强筋间距、旁桁材间距等情况下对双层底的结构刚度的影响,分析中包括计算方法的选取、双层底的ANSYS有限元建模及具体计算。
     (2)基于有限元软件,对船舶轴系回旋振动进行物理建模,由于建模过程中将双层底结构刚度值准确导入模型中,所以本文建模方法对同类问题的研究有一定的参考意义。
     (3)在充分考虑船体刚度基础上,选取一艘实船轴系进行了回旋振动计算,并与不考虑船体刚度情况下相比较,分析两种情况下轴系固有频率及振型的变化情况,分析结果是合理可信的。
     (4)最后对研究成果和有关问题进行了总结,并对今后的工作做出了展望。
Ship propulsion shafting is an important component of the marine power plant, which vibration and performance is directly related to the viability of the ship power system. If Shaft design quality is poor, it will result in adverse shafting alignment and severe vibration, thus cause the body vibration, transmission system parts damaged, excessive bearing wear and even axis broken accidents, finally mechanical systems will abort normal operation. Hull stiffness is the hull ability of resisting the longitudinal bending deformation. In practical engineering applications, the value of hull stiffness related to the axial vibration model is only according to experience estimate, the results do not meet the actual requirements. Therefore, exploring and resolving the impact of the hull stiffness of shaft whirling vibration is particularly essential now.
     Looking up a large number of data in both at home and abroad, this paper which based on the hull stiffness on shaft vibration give a further research on the shaft vibration. At the same time, this paper consider the double bottom structure stiffness of the shaft in whirly vibration computing using of ANSYS software, and can reflect value of hull stiffness more accurately for shaft vibration.
     The main content of the paper summarized is as follows:
     (1) In the double bottom structure stiffness analysis, from hull structure of three-dimensional, with local double bottom structure as an example, create the double bottom structure model, the effects of the analysis of the selection include steel thickness, reinforcing rid space and side girder space of double bottom structure, the effects of the analysis of the selection. The analysis include the selection of calculation method of the double bottom, ANSYS finite element modeling and the specific calculation.
     (2) Physical modeling based on finite element software of whirling vibration of the ship shaft. Due to the structural stiffness values of the double bottom of the modeling process will be imported model, so the modeling methods for similar problems in this article on have certain reference significance.
     (3) On the base of fully consider the hull stiffness, this paper select a real ship shaft whirling vibration calculation, and compared with without regard to hull stiffness, analysis the shaft natural frequencies and mode shapes changes with the two cases, the analysis is reasonable and credible.
     (4) Finally, the research results and relevant problems are summarized and the work is looked far ahead into the future.
引文
[1]徐筱欣.船舶动力装置.上海:上海交通大学出版社,2007,18-22
    [2]陈之炎.船舶推进轴系振动.上海:上海交通大学出版社,1987,196-201
    [3]周春良.船舶轴系振动研究:[博士学位论文].哈尔滨:哈尔滨工程大学,2006-04
    [4]M HUNDAL.An Extension of the Holzer Method for Redundant Drive Trains. Journal of Engineering for Industry 97(1974)2,697-698
    [5]张志华等.动力装置振动数值计算.哈尔滨:哈尔滨工程大学出版社,1994
    [6]S. SANKAR.On the Torsional Vibration of Branched Systems Using Extended Transfer Matrix Method.Journal of Mechanical Design101(1979)4,546-553
    [7]P. SCHWIBINGER, R.NORDMANN. Improvement of a Reduced Torsional Model by Means of Parameter Identification. Journal of Vibration, Acoustics, Stress, and Reliability in Design 111(1989),17-26
    [8]唐斌,薛冬新,宋希庚.复杂分支轴系扭振计算的动态矩阵法.船舶工程.2003.025(003)24-27
    [9]张洪田,张志华,刘志刚等.船舶推进轴系纵扭耦合振动研究.中国造船第2期总第129期,1996年5月,68-76
    [10]王新敏ANSYS工程结构数值分析.北京:人民交通出版社,2009
    [11]Saeed Moaveni.Finite Element Analysis—Theory and Application with ANSYS北京:电子工业出版社,2008
    [12]尚晓江,邱峰,赵海峰等.ANSYS结构有限元高级分析方法与范例应用.北京:中国水利水电出版社,2008
    [13]Hashemi,S. Mohammad, Richard, Marc J. A Dynamic Finite Element(DFE) Method for Free Vibrations of Bending-torsion Coupled Beams.Aeropace Science and Technology Volume:4,Issue:1,January,2000,41-45
    [14]谭祖胜,陈川艾,郭贤明.高速船舶推进轴系回旋振动的影响因素及特点探析.船舶工程,1999(3)
    [15]张建军,许运秀.162客位气垫船垫升轴系回旋振动特性分析.噪声与振动控制,1994(2),7-12
    [16]陈锡恩,高景.船舶轴系回旋振动计算及其参数研究.船海工程,2001(5),8-11
    [17]王传溥,张大元,徐伯清.船舶轴系横向振动的模拟实验与分析.哈尔滨船舶工程学院学报.1987,8(2),1-10
    [18]王传溥,刘志刚,张洪田.船舶轴系横向振动共振转速的实验.船舶工程,1995(4),23-24
    [19]廖日东,左正兴,陈宏.考虑旋转软化效应的涡轮叶片模态特性研究.内燃机学报,2000(1),7-79
    [20]王磊,谢俊超,周瑞平.大型船舶推进轴系回旋振动特性分析研究.江苏船舶,2010,27(1),14-17
    [21]Y HORI.et.al. Lateral Vibrations of Propeller Shaft Systems.Bulletin of the Marine Engineering Soeiety in Japan 6(1978)4,38-344
    [22]许运秀,钟学添.船舶轴系纵向振动.北京:人民交通出版社,1985,141-144
    [23]许庆新,沈荣瀛,臧述升.利用ANSYS进行船舶轴系的振动校合计算.ANSYS China用户年会论文集.2002:40-45
    [24]赵耀,张赣波,李良伟.船舶推进轴系纵向振动及其控制技术研究进展.中国造船,2012(4),259-269
    [25]陈志刚,吴崇健,付爱华.WPA法在舰船轴系纵向振动分析中的应用[C]//2005年船舶结构力学学术会议论文集,中国舟山,2005.
    [26]李良伟,赵耀,陆坡,等.减小船舶轴系纵向振动的动力减振器参数优化[J].中国造船,2010,51(2):139-148.
    [27]FENG G P, ZHANG Z Y,CHEN Y,et al.Research on transmission paths of a coupled beam-cylindrical shell system by power flow analysis. Journal of Mechanical Science and Technology,2009,(23):2138-2148.
    [28]张洪田,张志华,刘志刚.船舶推进轴系纵扭耦合振动研究.中国造船,1995(2),68-76
    [29]唐斌.基于精确动态刚度矩阵法的内燃机轴系扭转、纵向及弯曲三维耦合振动研究:[博十学位论文].大连:大连理工大学,2006-03
    [30]宋希庚,宋天相.活塞式发动机轴系的耦合振动.大连理工大学学报,1989,29(6),675-679
    [31]张洪田,张志华,王林.大型船舶轴系纵扭藕合振动计算方法与分析.哈尔滨船舶工程学院研究报告
    [32]AnandaRao,M.Srinivas,J.RamaRaju,V.B.V.Kumar,K.V.S.S. Coupled torsional-lateral vibration analysis of gearedshaft systems using mode synthesis. Journal of Soundand Vibration Volume: 261, Issue: 2, March 20,2003,359-364
    [33]Yigit, A.S.Christoforou, A.P.COUPLED TORSIONAL AND BENDING VIBRATIONS OF DRILLINGS SUBJECT TO IMPACT WITH FRICTION. Journal of Sound and Vibration Volume:215,Issue:1,August 6,1998,167-181
    [34]YIGT,A.S.CHRISTOFOROU, A.P COUPLED TORSIONAL AND BENDJNG VIBRATION, OF ACTIVELY CONTROLLED DRILLSTRINGS. Journal of Sound and Vibration Volume: 234, Issue:1, June29,2000,67-83
    [35]ESLIMY-ISFAHANY, S. H. R. BANERJEE, J. R. USE OF GENERALIZED MASS IN THE INTERPRETATION OF DYNAMIC RESPONSE OF BENDING - TORSION COUPLED BEAMS.Journal of Sound and Vibration Volume:238, Issue:2, November 23,2000,295-308
    [36]Mohiuddin, M. A. Khulief, Y. A. COUPLED BENDING TORSIONAL VIBRATION OF ROTORS USING FINITE ELEMENT. Journal of Sound and Vibration Volume: 223,Issue:2, June3,1999,297-316
    [37]Z LUO,X SUN,JNFAWCETT.Coupled Torsional-Latera-Axial Vibration Analysis of a Geared Shaft System Using Substrueture Synthesis.MeehanismMaehineTheory31(1996)3,345-352
    [38]Darpe,A. K., Gupta, K.Chawla,A.Coupled bending, longitudinal and torsional vibrations of a cracked rotor. Journal of Sound and Vibration Volume:269, Issue:1-2, January 6,2004,33-60
    [39]K-142 Alignment report PA0030. Nauticus,2001.06
    [40]李景涌.有限元法.北京邮电大学出版社,1999:3-30
    [41]聂毓琴.孟广伟.材料力学[M].机械工业出版社
    [42]张文平.轴系横向振动的研究[硕十学位论文].哈尔滨船舶工程学院硕十学位论文.1984
    [43]龚曙光ANSYS工程应用实例解析.机械工业出版社2003:144-183
    [44]王忠.船舶结构与设备[M].大连海事出版社
    [45]孙训方.材料力学(Ⅰ)[M].高等教育出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700