不锈钢纯Ar保护激光扫描-CMT复合焊接研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TIG焊接过程稳定、焊缝成形美观、焊接接头冶金性能高,是目前我国核电、航空、航天等领域关键部件焊接制造的常用方法之一。但是,TIG焊接效率低、焊接热输入大、容易导致较大的焊接变形。因此,随着我国核电、航空、航天等领域的快速发展,TIG焊接方法仍难以完全满足我国各领域对其关键部件优质、高效焊接制造的需求。哈尔滨焊接研究所在激光-电弧复合焊接研究的基础上,充分利用CMT弧焊特点,提出了纯Ar保护激光-CMT电弧复合焊接新方法,并研究了该方法在我国核电、航空、航天等领域关键部件优质、高效焊接制造的应用可行性。在不锈钢纯Ar保护激光-CMT复合焊接研究中发现,激光对电弧具有吸引作用,有利于增强焊接电弧挺度,提高焊接过程稳定性;与CMT弧焊相比,在高速焊接条件下,复合焊接可以获得连续成形的焊缝;与TIG焊接相比,复合焊接质量与TIG焊接相当。但前期研究发现,纯Ar保护不锈钢激光-CMT复合焊接焊缝边沿仍存在成形不规则及部分未熔合等现象。本论文在充分考虑激光扫描焊接特点的基础上,提出采用激光扫描-CMT电弧复合焊接方法以解决该问题。
     本论文针对304不锈钢,在纯Ar保护条件下,分析了激光扫描-CMT电弧复合焊接参数对焊缝成形的影响规律,研究了复合焊接电弧、熔池特点,探讨了复合焊接焊缝边沿铺展机理。在此基础上,与不锈钢厚板TIG填丝焊对比,从接头成形、综合力学性能及焊接效率等方面探讨了纯Ar保护激光扫描-CMT复合热源焊接取代TIG填丝焊的可行性。研究结果表明:
     采用激光扫描-CMT复合焊接技术可有效解决纯Ar保护不锈钢焊缝边沿成形不规则、部分未熔合等问题。激光在电弧前扫描,延长了熔池边沿液态金属的凝固时间,有利于熔池金属向焊缝边沿铺展,最终获得成形规则、稳定的焊缝。
     激光扫描-CMT复合焊接时,光丝间距、焊接速度、焊接电流对焊缝成形(熔深、熔宽、余高)的影响规律与非激光扫描焊接时基本一致;仅当激光扫描焊接熔池宽度与CMT焊接熔池宽度良好匹配时,才可获得成形良好的焊缝;当焊接速度v=0.6m/min,焊接电流I=132A时,满足良好焊缝成形的激光扫描焊接熔池宽度与CMT焊接熔池宽度的比值为1.2左右;当焊接速度v=0.6m/min,焊接电流I=132A时,复合焊接焊缝边沿连续成形的最优工艺参数为:激光扫描功率达到2KW,激光扫描宽度W=9mm,激光扫描频率f≥52Hz。
     与CMT电弧焊接相比,激光扫描-CMT复合焊接过程稳定性提高,其复合焊接电弧亮度增强、熔滴过渡频率提高、短路时间和短路周期分布更集中;与激光不扫描深熔焊接对比,激光扫描-CMT复合焊接的焊接模式已转变为热导焊,有利于消除焊接气孔、降低热影响区的峰值温度。
     激光扫描-CMT复合焊接接头力学性能(包括冲击韧性、拉伸、弯曲、硬度)与TIG填丝焊相当,组织与TIG填丝焊相差不大;效率是TIG填丝焊的5倍以上。
Tungsten inert gas (TIG) arc welding method is widely used for the key componentmanufacturing in the realms of aviation, spaceflight and nuclear power station etc due to itsadvantages of stable welding process, regular weld seam and high quality metallurgic property.But the disadvantages of low welding efficiency, high heat input and biggish deformation ofTIG welding method doesn’t completely meet the demand of high quality and high efficiencywelding manufacture of key component. Based on the secular investigation of laser-arc hybridwelding technology, Harbin Welding Institute (HWI) has presented a new laser-cold mateltransfer (CMT) arc hybrid welding technology under argon atmosphere, and verified theapplied feasibility of laser-CMT hybrid welding method for the manufacture of keycomponents in the realms of aviation, spaceflight and nuclear power station etc. With argon asshielding gas, the stainless steel laser-CMT hybrid welding results of HWI indicated that, theCMT arc was attracted to the the laser-heated spot, and the stability of hybrid arc in hybridwelding process was prominent; Comparing with nomal CMT welding method, continuousweld seam was obtained in laser-CMT hybrid welding process under high welding velocity;The welding quality of laser-CMT hybrid weld joint was as good as nomal TIG weldingmethod. But the results of HWI also indicated that, the defects of irregular formation and lackof fusion at the bilateral edges of weld seam were found in stainless steel laser-CMT hybridwelding process under argon atmosphere. In this paper, the stainless steel scan laser-CMT archybrid welding technology under argon atmosphere is investigated to solve the above defectsof irregular formation and lack of fusion at the bilateral edges of weld seam produced bynomal laser-CMT hybrid welding method without scanning.
     In the paper, directed toward304stainless steel scan laser-CMT arc hybrid weldingtechnology with argon as shielding gas, the effects of hybrid welding parameters on the weldseam formation are researched; The characteristics of hybrid welding stability and moltenpool are investigated; And the spreading mechanism at the bilateral edges of hybrid weldseam is analysed. And based on the above investigations, comparing with the20mm thick304stainless steel TIG welding with filler wire method, the formation of weld joint, mechanicalproperty of weld joint and welding efficiency of scan laser-CMT arc hybrid weldingtechnology under argon atmosphere are discussed. The investigate results indicated that:
     The scan laser-CMT arc hybrid welding technology is an effectual method to solve thedefects of irregular formation and lack of fusion at the bilateral edges of weld seam, and iseasy to obtain regular and continuous formation of hybrid weld seam. The scanning motion of laser before CMT arc is helpful to elongate the solidified time of molten metal at the edge ofmolten pool, and to make the molten metal at the center of molten pool to spread to the weldseam edge, therefore obtaining the regular and continuous hybrid weld seam.
     The effects of scan laser-CMT arc hybrid welding parameters (including distancebetween laser and arc, welding velocity and welding current) on the weld seam formations(weld penetration, weld width and weld reinforcement) are the same as nomal laser-CMThybrid welding method without scanning. To obtain regular and continuous hybrid weld seamedge, there is a certain matching relationship between the weld pool widths producedindividually by scan laser welding and CMT welding. When the welding velocity v=0.6m/minand welding current I=132A, it is able to obtain regular and continuous formation of hybridweld seam edge while the the weld pool width ratio between scan laser welding and CMTwelding is reach to1.2. The optimizational parameters of scan laser-CMT arc hybrid weldingunder argon atmosphere are scan laser power P=2kW, laser scanning width W=9mm andlaser scanning frequency f≥52Hz while the welding velocity v=0.6m/min and weldingcurrent I=132A.
     Comparing with nomal CMT arc welding, in scan laser-CMT hybrid welding processunder argon atmosphere, the hybrid welding process stability is improved, the hybrid arc islighter, the metal transfer frequency is increase, the distributing of short-circuit time andshort-circuit cycle are centralized. Comparing with the deep penetration mode of laser andlaser-CMT welding without scanning, the welding mode of scan laser weding and scanlaser-CMT hybrid welding is turn to thermal conductivity welding mode, which is propitiousto eliminate welding porosity and to decrease the peak temperature of heat-affected zone.
     The mechanical properties (includeing impact toughness, tensile property, side bandproperty and hardness), microstructure and weld seam formation of20mm thick304stainlesssteel scan laser-CMT arc hybrid weld joint are as good as that of nomal TIG welding withfiller wire. And the welding efficiency of scan laser-CMT hybrid welding method is5times asthe TIG welding with filler wire.
引文
[1]曹运明.中厚板钛合金激光-TIG电弧复合热源焊接研究.[硕士学位论文].大连理工大学.2011
    [2]孙清洁.超声-TIG电弧复合焊接方法及电弧行为研究.[博士学位论文].哈尔滨工业大学.2010
    [3]杨修荣.超薄板MIG/MAG焊-CMT冷金属过度技术[J].电焊机.2006,36(6):5~7
    [4]曾君. STT气体保护焊在全位置半自动焊中的应用[J].电焊机.2003,33(4):39~41
    [5]王志坚,苗张木.表面张力过渡焊在海洋工程建造中的应用[J].武汉理工大学学报,2002,26(2):249~252
    [6]蔡锌如.一种新型高效的焊接技术-表面张力过渡技术[J].江西电力职工大学学报,2002,15(2):9~10
    [7]单利涛. CCD图像传感器及STT技术在水轮机.焊接中的应用[J].电力建设,2005,26(3):69~73
    [8]三田,品田,坂本等.薄板用交流GMAW焊接电源的开发和其应用.第166次焊接法研究委员会资料SW-2638-99(1999)
    [9] T. Era, T. Ueyama.Spatter reduction in GMAW by current waveform control,Welding International,2007,21(7):499~501
    [10] T Era, A Ide,T Uezono.Spatter Reduction of Steel Sheets Welding Using ControlledBridge Transfer (CBT) GMA. Process Materials Science Forum,2008
    [11]雷振,王旭友,王威,林尚扬等.基于纯Ar保护气体的304不锈钢激光-CMT电弧复合热源焊接试验研究[J].焊接,2010,(8):18~22
    [12]姜晓飞,何鹏,冯吉才等.CMT法30CrMnSi钢板表面熔敷CuSi3接头组织结构特征[J].焊接学报,2007,28(2):47~50
    [13]张洪涛,何鹏,孔庆伟等.铝钢异种材料焊接研究现状与发展[J].焊接,2006,(12):13~18
    [14]石常亮,何鹏,冯吉才.铝/镀锌钢板CMT熔钎焊界面区组织与接头性能[J].焊接学报,2006,27(12):61~64
    [15]李玉龙,姜志超,禹业晓.铝合金与镀锌钢薄板熔钎焊接头组织与力学性能[J].材料工程,2010(10):82~85
    [16]尚晶,王克鸿,李广乐等.冷金属过渡搭接焊镁铝合金异种金属接头组织及性能[J].焊接学报,32(12):41~46
    [17]尹铁,金晶,张锋,乐天.CMT冷金属过渡技术在管道外部根焊中的应用[J].管道技术与设备,2011,(2):39~41
    [18]周方明,孙红辉,宋辉,周涌明,张军.CMT窄间隙多层多道焊接工艺参数对焊缝成形的影响[J].江苏科技大学学报,2011,25(2):126~130
    [19]朱宇虹,耿志卿.薄板焊接的极限-CMT冷金属过渡焊接技术[J].电焊机,41(4):69~75
    [20] Steen W M. Arc augmented laser processing of materials[J].Appl.Phys.1980,51(11):5636~5641
    [21] Steen W M, Eboo M. Arc augmented laser welding [J].Metal Construction,1979,11(6):332~335
    [22] Shinn B W, Farson D F, Denney P E. Laser stabilization of arc cathode spots intitanium welding [J]. Science and Technology of Welding and Joining,2005,10(4):475~481
    [23] Qin G L, Lei Z, Lin S Y. Effects of Nd:YAG laser plus pulsed MAG arc hybrid weldingParameters on its weld shape[J]. Science and Technology of Welding and Joining2007,12(1):79~86
    [24]吕高尚.激光-电弧复合焊接不锈钢的研究[D].大连:大连交通大学,2004
    [25]陈彦宾.激光-TIG复合热源焊接物理特性研究[D].哈尔滨:哈尔滨工业大学,2003
    [26] Dilthey U, Keller H. Prospects in Laser MAG Hybrid Welding of Steel.Proceedingsof the first International WLT-conference on Lasers in Manufacturing,2001[C].Munich:453~465
    [27] Downs D, Mulligan S.Hybrid CO2laser-MAG welding of carbon steel-a literaturereview and initial study [R]. TWI report,2002
    [28]刘继常,李力钧.激光复合焊接的探讨[J].焊接技术,2002,31(4):6~8
    [29] Moor P L, Howse DS,Wallach E R. Development of Nd:YAG1aser and laser/MAGhybrid welding for land pipeline applications [J].Welding and Cutting,2004,3(3):174~180
    [30] Tishide, Nayama M. Coaxial TIG-YAG and MIG-YAG welding Methods [J]. Weldinginternational,2001,15(12):940~945
    [31] Philip W, Fuerschbach. Laser Assisted Plasma Arc Welding [J]. Section D-ICALEO,1999:102~109
    [32] Moore P L, Wallach E R, Howse D S. Development of laser and laser/arc hybridwelding for land pipeline applications [J/OL]. Internet,15de Janeiro2004
    [33] Moore P.L. Microstructural investigation of Laser/Arc hybrid welds in pipelinesteel [J/OL]. Internet,15de Janeiro2004
    [34] Jokinen Tommi,Teppo Viherca, Veli Kujanpa. Welding of ship structural steel A36using a Nd:YAG laser and gas-metal are welding [J]. Journal of Laser Applications,2000,12(5):55~60
    [35] Shide T, Hirokawa M, Fujikura N, et al. Welding of Aluminum Alloys by UsingHigh Power CO2Laser in Combination with MIG Arc.6th International Coferenceon Welding and Melting by Electron and Laser Beams,1998[C]. Toulon:399~406
    [36] Shide T, Hirokawa M, Satio S, et al. CO2Laser Welding of Aluminum Alloys(No.1) Welding of Aluminum Alloys Using CO2Laser Beam in Combination withMIG Arc [J].溶接学会论文集,1997,15(1):18~23
    [37] Malmuth N D. Hybrid Laser Welding Developed for Ship Building [J]. AdvancedMaterials and Processes: Materials Selection,2001,159(9):20~30
    [38] Dilthey U, Lueder F, Wieschemann A. Technical and Economical Advantages bySynergies in Laser Arc Hybrid Welding [J]. Welding in the World,1999,43(4):141~152
    [39]雷振,林尚扬,王旭友等.激光-数字化精确控制短路过渡电弧复合热源焊接技术[J].焊接,2009,431(5):23~26
    [40]刘西洋,孙凤莲,王旭友,等.Nd: YAG激光+CMT电弧复合热源平焊工艺参数对焊缝成形的影响[J].哈尔滨理工大学学报,2010(12):107~111
    [41]刘西洋.Nd:YAG激光+CMT复合热源不锈钢焊接工艺研究.[硕士学位论文].哈尔滨理工大学.2010
    [42]杨永强,王迪,杨斌,韩善果.激光扫描焊接的研究现状与应用前景[J].机电工程技术,2010,39(9):13~17
    [43] http://www.newmaker.com/art_26603.html,激光扫描焊接工艺在新奥迪A4车门上的应用[EB/OL]
    [44] http://www.Laserfocusworld.com.cn/article_isplay. aspid1188#,应用碟片激光器和光学扫描仪进行远程焊接.《激光世界》[EB/OL]
    [45]康涅狄格先进技术中心.激光复合焊接与光束摆动.US Patent, No.US7154065B2,2006
    [46]哈尔滨工业大学.利用激光-GMA电弧复合装置实现摆动焊接的方法.中国专利,CN101716701A,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700