胶州湾60年岸线变化对水动力影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胶州湾是青岛市赖以生存和发展的重要保障,它在港口、海上运输、水产养殖业和旅游等多方面经济发展中发挥着重要的作用,但随着城市化的进程和沿岸经济的迅猛发展,胶州湾水域面积急剧缩小,其直接后果是造成海湾的纳潮量减少,气候的调节能力降低,流场改变,水动力强度减弱,水体交换和携沙能力下降,海洋自净能力降低,生态环境恶化等一系列潜在的隐患。
     由于胶州湾地形复杂,岸线曲折,并有大面积的滩涂存在,使用三维海洋数值模型EFDC对胶州湾进行数值模拟。对1952年和2008年的胶州湾水动力环境包括纳潮量、潮位、潮流以及水交换能力进行模拟分析,并加以比较,定量的分析随着胶州湾岸线的不同演变、海湾面积不断缩小情况下,胶州湾的水动力环境发生变化的规律。
     本文基于EFDC数值模型,在垂向上引入了改进的σ坐标——LCLσ坐标,开边界选取M2、S2、K1、01四个分潮预报水位作为边界驱动力,分别模拟1952年和2008年胶州湾的水动力环境,得到其流场、余流场的分布情况;引进水龄浓度概念,结合计算水交换时间的水质模型公式,在EFDC水动力的基础上计算胶州湾的水交换时间;基于纳潮量定义公式,计算了不同时期胶州湾的纳潮量。
     近60年来,由于岸线的自然演化及人类活动,导致了整个胶州湾的岸线、水深发生了较大的改变,胶州湾岸线从1952年的206.4.1 km减少到2008年的178.06km,水体面积从540.3 km2减少到348.07 km2,同时在浅水区等深线基本上都向湾内收缩。通过数值模式对比:胶州湾的大潮纳潮量从1952年的16.29×108m3减少为2008年的9.57×108m3,小潮时从11.07×108m3减少到6.53×108m3。整个胶州湾的湾内流速呈整体变小趋势,流速最大减少约0.90m/s,并且越靠近滩涂的位置其流速流向变化越大;由于黄岛与陆地相连以后,导致与之相关的两个强流涡不但余流速度减少,而且流涡中心均向东南方移动,同时北部海域的地形发生很大变化,直接导致此区域的余流场变弱或消失;胶州湾整体水交换时间急剧增加,从1952年的59天,增加至2008年的80天,在强混合潮的作用下,表层和底层的水交换时间相差最大不超过一天。
Jiaozhou Bay is an essential condition that Qingdao exists and develops, which plays an important role in port、marine transport、aquaculture industry and travel.With the rapid development of urbanization and economy, water area of Jiaozhou Bay has shrinked tremendously in recent years, which results lots of potential hazards of the decrease of tidal prisms、reduction of the ability to regulate climate、changing of the flow field、lessening of the intensity of hydrodynamic、reducing of water exchange and the capacity of carrying sand、diminishing of the environmental capacity of the harbour、deteriorating of ecological environment and so on.
     According to the complex terrain, flexural coastline and the large area of beaches of Jiaozhou Bay,3-D hydrodynamic numerical model EFDC is used to simulate the area. The hydrodynamic environment of the Jiaozhou Bay in the 1952 and 2008 is simulated, which contains tidal water capacity、tide、current and water exchange. The stimulations data are compared, and the variation rule of Jiaozhou bay coastline dynamical environment changes is quantifily analysed during the changes of Jiaozhou Bay coastline and the reducing of the area in different periods.
     Based on hydrodynamic numerical model EFDC,the modifiedσcoordinate-LCLσcoordinate is introduced in vertical direction, and only tidal forcing-M2、S2、Ol、K1 are concerned in open boundary.The hydrodynamic environment of the Jiaozhou Bay in the 1952 and 2008 is respectively simulated, which obtain the distribution condition of tidal current fields and residual current fields.Water concentration is introduced and it is combined the water quality formula to compute the water exchange.Tthe water age of Jiaozhou Bay is calculated based on the hydrodynamic of EFDC.According to the formula of tidal prisms, the tidal prisms of Jiaozhou Bay are computed in different period.
     The coastline、water depth and sea area of the entire Jiaozhou Bay has been changed obviously in the recent 60 years due to Human Activities and the coastline of natural evolution. The coastline of Jiaozhou Bay has reduced from 206.41 km in 1952 to 178.06km in 2008;the sea area is 540.3 km2 in 1952 while 348.07 km2 in 2008;and at the same time, the isobath of the shoal water is basically shrinked toward interbay. During the spring tides, the tidal prisms of Jiaozhou Bay has reduced from 16.29×108m3 in 1952 to9.57×108m3in 2008;while during the neap tides,the tidal prisms in 1952 was 11.07×108m3, cutted down by 40 percent. The velocity of Jiaozhou Bay shows the trend of decrease. The maximum velocity ruduces by 90cm/s; and the velocity and direction of the tide change the more largely the more nearer the tideland. After the Huang island was connectted with land, the residual current velocity of the two strong gyres related to the Huang island not only becomes smaller, but also the center of gyres move to southeast. The topography of the northern sea of Jiaozhou Bay has gotted great change, which results the residual current fields of the area gets weaker or disappear directly. The time of water exchange of Jiaozhou Bay has increased dramatically from 59 days in 1952 to 80 days in 2008.Comparing the time of water exchange of the surface and bottom, it is not more than one day due to strong mixedtide.
引文
[1]国家海洋局第一海洋研究所.胶州湾自然环境.北京:海洋出版社,1984.
    [2]李乃胜,于洪军,赵松龄等.胶州湾自然环境与地质演化.北京:海洋出版社,2006.
    [3]Griffies S M, Boning C, Bryan F O, et al. Developments in ocean climate modeling. Ocean Modelling,2000,2:123-192.
    [4]陶建峰,张长宽.河口海岸三维水流数值模型中几种垂向坐标模式研究述评.海洋工程.2007,25(1):133-142.
    [5]Bryan K. A numerical method forthe study of the circulation of the world ocean. Journal of Computational Physics.1969,4:347-376.
    [6]孙文心,江文胜,李磊.近海环境流体动力学.北京:科学出版社,2004,266-269.
    [7]Bleck R, Rooth C, Hu D, et al. Salinity-driven thermocline transients in a wind-and thermohaline-forced isopycnic coordinate model of the North Atlantic. Journal of Physics Oceanography,1992,22:1486-1505.
    [8]Hallberg R W. Time integration of diapycnal diffusion and Richardson number dependent mixing in isopycnal coordinate ocean models. Monthly Weather Review,2000,128:1402-1419.
    [9]Bleck R. An oceanic general circulation model framed in hybrid isopycnic cartesian coordinates. OceanModelling,2000,4:55-88.
    [10]Phillips NA. A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology,1957,14:184-185.
    [11]孙文心,江文胜,李磊.近海环境流体动力学.北京:科学出版社.2004.249-250.
    [12]谭维炎.计算浅水动力学.北京:清华大学出版社.1998.
    [13]周华君.长江口最大浑浊带特性研究和三维水流泥沙数值模拟:[博士学位论文].南京:河海大学,1952.
    [14]Chau, K. W., Jiang, Y W.3D Numerical Model For Pearl River Estuary. Journal of Hydraulic Engineering,2001,127(1):72-82.
    [15]刘桦,何友生.河口三维流动数学模型研究进展.海洋工程,2000,18(2):87-93.
    [16]何少苓,龚振瀛,林秉南.隐式破开算子法在二维潮流计算中的应用.海洋学 报,1985,7(2):225-232.
    [17]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟.海洋学报,1993,15(1):107-118.
    [18]吴江航,陈凯麒等.核电站冷却水远区热、核污染数值计算的一种新方法.水利学报;1986,(10):16-25.
    [19]宋志尧,严以新等.二维潮流方程的一种分裂算子格式及算例.第七届全国海岸工程学术讨论会论文集.北京:海洋出版社,1993,384-392.
    [20]孙文心.三维浅海流体动力学的一种数值方法流速分解法.物理海洋数值计算.郑州:河南科学技术出版社.1992.
    [21]Mellor G L. Users guide for a three-dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences Princeton University, Princeton,1998.
    [22]Blumberg A F,Mellor G L. A description of a three-dimension coastal ocean circulation model.Washington:American Geophys Union,1987.1-16.
    [23]ChangshengC, Robert C Beardsley, GeoffreyC. An Unstructured Grid, Finite-Volume Coastal Ocean Model FVCOM User Manual,2006.
    [24]Enrique, Alvarez, Fanjul.Description of HAMSOM,2004.
    [25]Neves.Mohid Description.Technical University of Lisbon, Portugal.2003.
    [26]A Wallcraft. Hybrid Coordinate Ocean Model. User's Guide,2003.
    [27]Hamrick J M. Athree-dimensional environmental fluid dynamics computer code:theoretical and computational aspects.Williamsburg, Virginia:The College of William and Mary, Virginia Institute of Marine Science,1992.
    [28]王化桐,方欣华,匡国瑞等.胶州湾环流和污染扩散的数值模拟.山东海洋学院学报,1980,10(]):26-63.
    [29]孙英兰,孙长青,王学昌等青岛海湾大桥对胶州湾潮汐、潮流及余环流的影响预测1.胶州湾及邻近海域的潮流.1994,8:105-119.
    [30]孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟.海洋与湖沼,2001,32(4):355-362.
    [31]万修全,鲍献文,吴德星等.胶州湾及其邻近海域潮流和污染物扩散的数值模拟.海洋科学,2003,27(5):31-36.
    [32]余静,孙英兰,张燕.陆域形成对胶州湾及前湾海洋环境的影响预测Ⅰ.海洋环境科学,26(5):470-474.
    [33]吕新刚,乔方利,夏长水.胶州湾潮汐潮流动边界数值模拟.海洋学报,2008,30(4):21-29.
    [34]高大鲁,魏泽勋,华锋.胶州湾多分潮漫滩数值模拟研究.海洋科学进展,2007,25(2):131-138.
    [35]王翠,孙英兰,张学庆.基于EFDC模型的胶州湾三维潮流数值模拟.中国海洋大学学报,2008,38(5):833-840.
    [36]李善为.从海湾沉积物特征看胶州湾的形成演变.海洋学报,1983,5(3):328-340.
    [37]郑全安,吴隆业,张欣梅等.胶州湾遥感研究:1.总水域面积和总岸线长度量算.海洋与湖沼,1991,22(3):193-199.
    [38]杨世伦,陈启明,朱俊等.半封闭海湾潮间带部分围垦后纳潮量计算的商榷—以胶州湾为例.海洋科学,2003,27(8):43-47.
    [39]乔贯宇,华锋,范斌等.基于ADCP湾口测流的纳潮量计算.海洋科学进展,2008,26(3):285-291.
    [40]陈红霞,华锋,刘娜等.不同方式的纳潮量计算比较_以胶州湾2006年秋季小潮为例.海洋科学进展,2009,27(1):11-15.
    [41]孙英兰,陈时俊,俞光耀.海湾物理自净能力分析和水质预测—胶州湾.山东海洋学院学报,1988,18(2):60-65.
    [42]王学昌,孙长青,孙英兰等.填海造地对胶州湾水动力环境影响的数值研究.海洋环境科学,2000,19(3):55-59.
    [43]赵亮,魏浩,赵建中.胶州湾水交换的数值研究.海洋与湖沼,2000,33(1):23-29.
    [44]张学庆.胶州湾三维环境动力学数值模拟及环境容量研究:[硕士学位论文].青岛:中国海洋大学,2003.
    [45]刘哲.胶州湾水体交换与营养盐收支过程数值模型研究:[博士学位论文].青岛:中国海洋大学,2006.
    [46]张志恒.胶州湾海岸带利用现状与评价:[硕士学位论文].青岛:中国海洋大学,2009.
    [47]叶小敏,纪育强,郑全安等.胶州湾海岸线历史变迁的分形分析.海洋科学进展,2009,27(4):495-501.
    [48]贾怡然,填海造地对胶州湾环境容量的影响研究:[硕士学位论文].青岛:中国海洋大学,2006.
    [49]齐珺,杨志峰,熊明.长江水系武汉段水动力过程三维数值模拟.水动力学研究与进 展,2008,23(2):212-219.
    [50]郑晓琴,丁平兴,胡克林.长江口及邻近海域夏季温盐分布特征数值分析.华东师范大学学报(自然科学版),2008,11:14-23.
    [51]陈异晖.基于EFDC模型的滇池水质模拟.云南环境科学,2005,24(4):28-30.
    [52]姜恒志,沈永明,汪守东.瓯江口三维潮流和盐度数值模拟研究.水动力学研究与进展,2009,24(1):63-70.
    [53]钱一婧.基于遥感和数值模拟技术的河口水流及水质过程模拟研究:[硕士学位论文].南京:南京师范大学,2008.
    [54]G.L. MELLOR, L.-Y. OEY, AND T. EZER Sigma Coordinate Pressure Gradient Errors and the Seamount Problem. Journal of atmospheric and oceanic technology.1998.15:1112-1131.
    [55]GEORGE MELLOR, SIRPA HAKKINEN, TAL EZER. et al A Generalization of a Sigma Coordinate Ocean Model and an Intercomparison of Model Vertical Grids. Ocean Forecasting: Conceptual Basis and Applications.2002.55-72.
    [56]G.L.MELLOR, T. EZER, L.-Y. OEY. The Pressure Gradient Conundrum of Sigma Coordinate Ocean Models, journal of atmospheric and oceanic technology.1994:11:1126-1134.
    [57]Tetra Tech,Theoretical and Computational Aspects of the Generalized Vertical Coordinate Option in the EFDC Model,2006.
    [58]Ji Z G, Morton M R, Hamrick J M. Wetting and drying simulation of estuarine processes. Estuarine Coastal and Shelf Science,2001,53:683-700.
    [59]郑全安,吴隆业,戴惫瑛等.胶州湾遥感研究Ⅱ—动力参数计算.海洋与湖沼,1992,23(1):1-6.
    [60]Jian Shen, Jing Lin. Modeling study of the influences of tide and stratification on age of water in the tidal James River. Estuarine,Coastal and Shelf Science,2006,68:101-112.
    [61]Wenping Gong, Jian Shen,,Bo Hong.The influence of wind on the water age in the tidal Rappahannock River. Marine Environmental Research.2009,68:203-216.
    [62]Eric J.M. Delhez, Eric Deleersnijder. The concept of age in marine modelling Ⅱ. Concentration distribution function in the English Channel and the North Sea. Journal of Marine Systems,2002,31:279-297.
    [63]赵亮,魏浩,赵建中.胶州湾水交换的数值研究.海洋与湖沼,2000,33(1):23-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700