用户名: 密码: 验证码:
上调Intermedin基因对大鼠肾脏缺血再灌注保护作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     Intermedin(IMD)是新近发现的降钙素基因相关肽家族(calcitanin gene-related peptide, CGRP)新成员。既往研究表明IMD对离体心脏缺血再灌注(I/R)损伤具有保护作用,但目前IMD对肾脏I/R的病理生理作用尚不清楚。
     目的:
     本实验拟以IMD基因为研究靶点,构建编码大鼠IMD基因的真核表达载体,通过超声微泡基因转染技术将其转染至大鼠肾脏,观察上调IMD基因对大鼠肾脏缺血再灌注(I/R)的作用,并对其作用机制进行探讨。
     方法:
     1.编码大鼠IMD基因的真核表达质粒构建与鉴定
     检索Gene bank中大鼠IMD的cDNA全长,合成克隆质粒pGH-IMD-X1491GIMD并测序鉴定。pGH-IMD-X1491G经HindⅢ、EcoRⅠ双酶切线性化,与真核表达载体pCDNA3.1(+)连接,酶切鉴定。将构建的IMD真核表达质粒命名为IMD-pCDNA 3.1。
     2.观察上调IMD基因表达对大鼠肾脏I/R的作用
     健康雄性Wistar大鼠24只,随机分为4组,每组6只。I组:假手术组,行右肾切除术并饲养1周后单纯分离左侧肾蒂及肾动脉关腹。II组:肾脏I/R模型组,行右肾切除术并饲养1周后行左肾I/R术。III组:IMD基因转染+I/R模型组,行右肾切除后稳定10min,左肾施予超声微泡介导的IMD-pCDNA3.1(+)质粒转染术,术后饲养1周再行左肾I/R术。IV组:空白质粒+I/R模型组,行右肾切除后稳定10min,左肾施予超声微泡介导的pCDNA3.1(+)质粒转染术,术后饲养1周再行左肾I/R术。所有行I/R术大鼠缺血45min再灌注24h杀检,留取血清及肾组织。Beckman全自动生化仪检测血清丙氨酸转氨酶(ALT)、天门冬氨基转移酶(AST)、尿素氮(BUN)、肌酐(SCr)浓度;半定量RT-PCR法检测肾组织IMD mRNA表达;Western blotting测定肾组织IMD的蛋白质表达;肾组织切片行HE、PAS两种染色后,半定量分析各组肾脏病理组织学变化。
     3.上调IMD基因对大鼠肾脏I/R保护作用的机制
     半定量RT-PCR检测假手术组、肾脏I/R模型组、IMD基因转染+I/R模型组、空白质粒+I/R模型组中肾组织内皮型NOS(eNOS)、诱导型NOS(iNOS)及神经元型NOS(nNOS) mRNA表达,Western blotting半定量分析以上四组大鼠肾组织eNOS、iNOS、nNOS、内皮素-1(ET-1)、肿瘤坏死因子a(TNF-α)蛋白质表达。
     结果:
     1.大鼠IMD基因的真核表达质粒构建与鉴定
     经酶切、测序鉴定,MD-pCDNA3.1(+)真核表达质粒构建成功。
     2.上调IMD基因表达对大鼠肾脏I/R的作用
     IMD转基因+I/R模型组较单纯I/R模型组以及空质粒+I/R模型组BUN和Scr水平显著降低(P<0.05);而各组大鼠ALT、AST水平无显著差异。半定量RT-PCR结果显示:IMD转基因+I/R模型组肾组织IMD mRNA表达较单纯I/R模型组及空质粒+I/R模型组明显上调,相对含量分别增加了60.7%、66.1%;Western Blotting检测结果显示:IMD转基因+I/R模型组肾组织IMD蛋白质表达量较单纯I/R模型组及空质粒+I/R模型组分别增加了51.4%、55.9%。PAS、HE染色显示:单纯I/R模型组、空质粒+I/R模型组除有肾小管上皮细胞空泡变性外,尚有刷状缘脱落、上皮细胞坏死、管型形成、炎细胞浸润;IMD +I/R模型组虽可见上述病理改变,但程度较单纯I/R模型组以及空质粒+I/R模型组明显减轻(P<0.05)。
     3.上调IMD基因对大鼠肾脏I/R保护作用的机制
     半定量RT-PCR及Western Blotting检测结果显示,IMD转基因+I/R模型组肾组织eNOS mRNA及其蛋白质表达水平较单纯I/R模型组显著升高、iNOS mRNA及其蛋白质表达水平显著降低(P<0.05);而nNOS mRNA及其蛋白质在各组间表达量无显著性差异(P>0.05)。此外,与单纯I/R模型组相比,IMD转基因+I/R模型组肾组织ET-1、TNF-α蛋白质表达显著降低(P<0.05)。
     结论:
     1.成功构建了以大鼠IMD基因为靶位的真核表达质粒IMD-pCDNA 3.1(+)。
     2.利用超声微泡技术可将真核表达质粒IMD-pCDNA 3.1(+)成功转染至大鼠肾组织,使其在肾组织局部表达上调,此方法安全有效。
     3.在大鼠肾脏I/R前上调IMD表达可显著保护肾脏病理结构并减轻肾功能受损。
     4.大鼠肾脏IMD可通过促进肾脏局部eNOS高表达、抑制iNOS、ET-1以及TNF-α表达,最终发挥对肾脏IRI的保护作用。
Background
     Intermedin (IMD) is a newly discovered peptide that belongs to calcitonin gene-related peptide(CGRP). It has been proved that IMD has protective effects on ischemia/reperfusion (I/R) in isolated rat hearts, whereas patho-physiology function of IMD in renal I/R is not clear.
     Objective
     In the present study, we aim to design and construct eukaryotic expression vector encoding rat IMD gene and to transfect it into kidney tissue with ultrasound-mircobubbles in order to observe effects of IMD on renal I/R in rat models and to investigate the mechanisms of IMD protective function in renal I/R.
     Methods
     1. Construction and identification of eukaryotic expression plasmid encoding rat IMD gene
     Firstly, full-length rat IMD gene in gene bank was retrieved. The cloning plasmid named as pGH-IMD-X1491G was synthetized and then sequencing analysis was performed. Secondly, pGH-IMD-X1491G was linearrizated by HindⅢand EcoRI enzyme digestion and then was ligated to pCDNA3.1(+) eukaryotic expression vector. Finally, the recombinant plasmid designated as IMD-pCDNA 3.1 was confirmed by restrictive enzyme digestion.
     2. Effects of IMD in renal I/R rat models
     A total of 24 rats were divided into four groups each consisting of six animals. GroupⅠunderwent right nephrectomy one week prior to the exposure of left renal pedicles, but did not receive any ischemia/reperfusion. GroupⅡunderwent right nephrectomy one week prior to left renal I/R surgeries. GroupⅢunderwent right nephrectomy and left renal IMD-pCDNA3.1(+) transfection by ultrasound-mircobubbles and renal I/R surgeries were performed one week after gene transfection. Group IV animals were treated the same way as group III except that empty control vector was transfected. All the animals were killed at the end of 24 h of reperfusion before the sera and kidney tissues were kept for detection. Serum levels of ALT, AST, BUN and creatinine were detected by Beckman automatic biochemistry analyzer. The mRNA expressions of IMD in the kidneys were determined by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). The protein expressions of IMD in the kidneys were detected by Western blotting. Kidney formaldehyde-fixed paraffin sections were stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) by standard methods and then histological changes were analyzed semiquantitatively.
     3. Researches into the mechanism of IMD protective function of rat renal I/R
     The mRNA expressions of endothelial NOS (eNOS), inducible NOS (iNOS) and neuronal NOS (nNOS) in the kidneys of the four groups were determined by RT-PCR. The protein expressions of eNOS, iNOS, nNOS, ET-1 and TNF-a in the kidneys were semiquantitatively analyzed by Western blotting.
     Results
     1. Construction and identification of eukaryotic expression plasmid encoding rat IMD gene
     Restriction enzyme digestion and sequencing analysis showed that eukaryotic expression plasmid of IMD-pCDNA3.1(+) had been constructed successfully.
     2. Effects of IMD in renal I/R rat models
     The serum levels of BUN and Cr in rats of group III were obviously lower than those of groupⅡand groupⅣ(P<0.05), while the differences of ALT and AST levels among the four groups were not evident. Compared with group II and group IV, the mRNA expressions of IMD in kidneys of group III were up-regulated significantly by 60.7%,66.1% and the protein expressions of IMD in kidneys increased significantly by 51.4%、55.9%. I/R animals in groupⅡ&IV exhibited serious tubular cellular vacuolization and necrosis, loss of brush border, cast formation and tubular dilatation, which were significantly lessened in the ultrasound-mediated IMD gene transfer group. When compared with IMD-treated I/R group, rats in groupⅡandⅣproduced a significant increase in total severity score (P<0.05)
     3. Researches into the mechanism of IMD protective function of rat renal I/R
     Compared with those in groupⅡ, we noticed higher mRNA and protein expressions of eNOS in groupⅢ, while the mRNA and protein expressions of iNOS in groupⅢwere obviously lower compared with those in group of I/R without IMD gene treatment (P<0.05). Meanwhile, there were no significant differences in the mRNA and protein expressions of nNOS among groupⅡ,ⅢandⅣ. Moreover, the protein expressions of ET-1 and TNF-αin groupⅢwere obviously lower compared with those in group of I/R without IMD gene treatment (P<0.05)
     Conclusions
     1. Eukaryotic expression plasmid of IMD-pCDNA3.1(+) was constructed successfully.
     2. It is safe and effective to transfect IMD-pCDNA3.1(+) eukaryotic expression plasmid into kidney tissue with ultrasound-mircobubbles as it could lead to the up-regulation of IMD in the local site of kidney tissue.
     3. Up-regulation of IMD prior to renal I/R could protect kidney against tubulointerstitial damage and renal dysfunction in I/R rat models.
     4. IMD gene in kidneys of rats can promote the expressions of eNOS and attenuate over-expressions of iNOS, ET-1 and TNF-αfollowing I/R, thus protect kidneys against severe damages in I/R rat models.
引文
[1]Smith LH Jr, Post RS, Teschan PE, et al. Post-traumatic renal insufficiency in military casualties. Ⅱ. Management, use of an artificial kidney, prognosis. Am J Med,1955,18(2): 187-198
    [2]Schrier RW, Wang W, Poole B, et al. Acute renal failure:definitions, diagnosis, pathogenesis, and therapy. J Clin Invest,2004,114(1):5-14
    [3]Lameire N, Van Biesen W, Vanholder R. The rise of prevalence and the fall of mortality of patients with acute renal failure:what the analysis of two databases does and does not tell us. J Am Soc Nephrol,2006,17(4):923-925
    [4]Chen H, Xing B, Liu X, et al. Similarities between ozone oxidative preconditioning and ischemic preconditioning in renal ischemia/reperfusion injury. Arch Med Res,2008, 39(2):169-178
    [5]Dorweiler B, Pruefer D, Andrasi TB, et al. Ischemia-reperfusion injury pathophysiology and clinical implications. Eur J Trauma Emerg Surg,2007,33:600-612
    [6]Mark LA, Robinson AV, Schulak JA. Inhibition of nitric oxide synthase reduces renal ischemia/reperfusion injury. J Surg Res,2005,129(2):236-241
    [7]Mitterbauer C, Schwarz C, Hauser P, et al. Impaired tubulointerstitial expression of endothelin-1 and nitric oxide isoforms in donor kidney biopsies with postischemic acute renal failure. Transplantation,2003,76(4):715-720
    [8]Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol, 2006, (176/I):213-254
    [9]Roczniak A, Levine DZ, Burns KD. Localization of protein inhibitor of neuronal nitric oxide synthase in rat kidney. Am J Physiol,2000,278:F702-F707
    [10]Kone BC. Nitric oxide in renal health and disease. Am J Kidney Dis,1997,30:311-333
    [11]Mattson DL, Wu F. Nitric oxide synthase activity and isoforms in rat renal vasculature. Hypertension,2000,35:337-341
    [12]Bae EH, Cho HJ, Kim IJ, et al. Altered regulation of renal nitric oxide, atrial natriuretic peptide and cyclooxygenase systems in aldosterone escape in rats. Regul Pept,2010,159(1-3): 117-122
    [13]Victor VM, Nunez C, D'Ocon P, et al. Regulation of oxygen distribution in tissues by endothelial nitric oxide. Circ Res,2009,104(10):1178-1183
    [14]Tojo A, Bredt DS, Wilcox CS. Distribution of postsynaptic density proteins in rat kidney: relationship to neuronal nitric oxide synthase. Kidney Int,1999,55(4):1384-1394
    [15]Rezkalla SH, Kloner RA. No reflow phenomenon. Circulation,2002,105(5):656-6626
    [16]Hou XL, Li BL, Zhao L, et al. Effects of Xuefu Zhuyu Capsule on endothelin-1 release in myocardium and vascular endothelium and nitric oxide/nitric oxide synthase system of swines after acute myocardial infarction and reperfusion. Zhong Xi Yi Jie He Xue Bao,2008,6(4): 381-386
    [17]McLaughlin R, Kelly CJ, Kay E, et al. The role of apoptotic cell death in cardiovascular disease. Ir J Med Sci,2001,170(2):132-140
    [18]Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury:a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol, 2007,376(1-2):1-43
    [19]Chen CH, Chuang JH, Liu K, et al. Nitric oxide triggers delayed anesthetic preconditioning-induced cardiac protection via activation of nuclear factor-kappaB and upregulation of inducible nitric oxide synthase. Shock,2008,30(3):241-249
    [20]Lozano FS, Lopez-Novoa JM, Rodriguez JM, et al. Exogenous nitric oxide modulates the systemic inflammatory response and improves kidney function after risk-situation abdominal aortic surgery. J Vasc Surg,2005,42(1):129-139
    [21]Sedoris KC, Ovechkin AV, Gozal E, et al. Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem, 2009,115(1):34-46
    [22]Kadkhodaee M, Zahmatkesh M, Sadeghipour HR, et al. Proteinuria is reduced by inhibition of inducible nitric oxide synthase in rat renal ischemia-reperfusion injury. Transplant Proc,2009, 41(7):2907-2909
    [23]Chen H, Xing B, Liu X, et al. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury:the role of nitric oxide. J Surg Res,2008,149(2):287-95
    [24]Katada K, Bihari A, Badhwar A, et al. Hindlimb ischemia/reperfusion-induced remote injury to the small intestine:role of inducible nitric-oxide synthase-derived nitric oxide. J Pharmacol Exp Ther,2009,329(3):919-927
    [25]Wilhelm SM, Simonson MS, Robinson AV, et al. Endothelin up-regulation and localization following renal ischemia and reperfusion. Kidney Int,1999,55:1011-1018
    [26]韩树海.rhKD/APP对大鼠肾缺血再灌注损伤的保护作用及机制的研究:[博士学位论文].吉林:吉林大学,2007
    [27]Meldrum KK, Meldrum DR, Meng X, et al. TNF-alpha-dependent bilateral renal injury is induced by unilateral renal ischemia-reperfusion. Am J Physiol Heart Circ Physiol,2002,282(2): H540-546
    [28]Serteser M, Koken T, Kahraman A, et al. Changes in hepatic TNF-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injuryinmice. J Surg Res,2002, 107(2):234-240
    [29]韩述岭,于立新,马俊杰.抗肿瘤坏死因子-α单克隆抗体减轻肾脏缺血再灌注损伤的实验研究.第一军医大学学报,2003,23(4):332-334
    [30]Suyani E, Derici UB, Sahin T, et al. Effects of everolimus on cytokines, oxidative stress, and renal histology in ischemia-reperfusion injury of the kidney. Ren Fail,2009,31(8):698-703
    [31]Donnahoo KK, Meng X, Ao L, et al. Differential cellular immunolocalization of renal tumour necrosis factor-alpha production during ischaemia versus endotoxaemia. Immunology, 2001,102(1):53-58
    [32]Lee HT, Kim M, Jan M, et al. Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Am J Physiol Renal Physiol,2006, 291(1):F67-78
    [33]韩述岭,于立新.抗肿瘤坏死因子-α单克隆抗体减轻大鼠移植肝缺血再灌注损伤的实验研究.广东医学,2006,27(2):169-171
    [34]Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem,2004,79(8):7264-7274
    [35]Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals:a potent cardiovascular and renal regulator. FEBS Lett,2004,556(1-3):53-58
    [36]Zhang HY, Jiang W, Liu JY, et al. Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model. Hypertens Res,2009,32(10):861-868
    [37]Song JQ, Teng X, Cai Y, et al. Activation of Akt/GSK-3β signaling pathway is involved in intermedin1-53 protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis,2009,14:1299-1307
    [38]Bell D, McDermott BJ. Intermedin (adrenomedullin-2):a novel counter-regulatory peptide in the cardiovascular and renal systems. Br J of Pharmacol,2008,153:S247-S262
    [39]Hagiwara M, Bledsoe G, Yang ZR, et al. Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress. Am J Physiol Renal Physiol,2008,295:F1735-F1743
    [40]Sinn PL, Sauter SL, McCray PB. Gene Therapy Progress and Prospects:Development of improved lentiviral and retroviral vectors-design, biosafety, and production. Gene Ther,2005, 12(14):1089-1098
    [41]Lu QL, Liang HD, Partridge T, et al. Microbubble ultrasound improves the efficiency of gene transduction in skeletal muscle in vivo with reduced tissue damage. Gene Ther,2003,10(5): 396-405
    [42]Hou CC, Wang W, Huang XR, et al. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-beta signaling and fibrosis in rat remnant kidney. Am J Pathol,2005,166(3):761-771
    [43]Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible Smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol,2003, 14(6):1535-1548
    [44]Newman CMH, T Bettinger. Gene therapy progress and prospects:Ultrasound for gene transfer. Gene Therapy,2007,14:465-475
    [45]Tsutsui JM, Xie F, Porter RT. The use of microbubbles to target drug delivery. Cardiovascular Ultrasound,2004,2:23-30
    [46]Takahashi T, Matsubara H. New Targeted Angiogenic Strategy Bursting Bubbles. Circ Res, 2007,101:232-233
    [47]李承科,霍钢.超声微泡携基因治疗现状及在中枢神经系统的应用前景展望.重庆医科大学学报,2006,21:40-42
    [1]Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem,2004,279(8):7264-7274
    [2]Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals:a potent cardiovascular and renal regulator. FEBS Lett,2004,556(1-3):53-58
    [3]Takei Y, Hyodo S, Katafuchi T, et al. Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides,2004,25(10):1643-1656
    [4]Taylor MM, Bagley SL, Samson WK. Intermedin/adrenomedullin-2 acts within central nervous system to elevate blood pressure and inhibit food and water intake. Am J Physiol Regul Integr Comp Physiol,2005,288(4):R919-927
    [5]Hagiwara M, Bledsoe G, Yang ZR, et al. Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress. Am J Physiol Renal Physiol,2008,295:F1735-F1743
    [6]Charles CJ, Rademaker MT, Richards AM. Hemodynamic, hormonal, and renal actions of adrenomedullin-2 in normal conscious sheep. Endocrinology,2006,147(4):1871-1877
    [7]Chauhan M, Ross GR, Yallampalli U, et al. Adrenomedullin-2, a novel calcitonin/calcitonin-gene-related peptide family peptide, relaxes rat mesenteric artery:influence of pregnancy. Endocrinology,2007,148(4):1727-1735
    [8]Kandilci HB, Gumusel B, Lippton H. Intermedin/adrenomedullin-2 (IMD/AM2) relaxes rat main pulmonary arterial rings via cGMP-dependent pathway:Role of nitric oxide and large conductance calcium-activated potassium channels (BK(Ca)). Peptides,2008,29(8):1321-1328
    [9]Fujisawa Y, Nagai Y, Miyatake A, et al. Renal effects of a new member of adrenomedullin family, adrenomedullin2, in rats. Eur J Pharmacol,2004,497(l):75-80
    [10]Imai E, Isaka Y. Perspectives for gene therapy in renal diseases. Intern Med,2004,43(2): 85-96
    [11]Halama A, Kulinski M, Librowski T, et al. Polymer-based non-viral gene delivery as a concept for the treatment of cancer. Pharmacol Rep,2009,61(6):993-999
    [12]Boeckle S, Wagner E. Optimizing targeted gene delivery:chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J,2006,8(4):E731-742
    [13]Cartier R, Reszka R. Utilization of synthetic peptides containing nuclear localization signals for nonviral gene transfer systems. Gene Ther,2002,9(3):157-167
    [14]Sinn PL, Sauter SL, McCray PB. Gene Therapy Progress and Prospects:Development of improved lentiviral and retroviral vectors-design, biosafety, and production. Gene Ther,2005, 12(14):1089-1098
    [15]陈彦祥,乔卫红,刘栋良等.靶向性基因治疗载体.大连医科大学学报,2007,29(4):400-403
    [16]Kapturczak MH, Chen S, Agarwal A. Adeno-associated virus vector-mediated gene delivery to the vasculature and kidney. Acta Biochim Pol,2005,52(2):293-299
    [17]刘志红.基因治疗在肾脏疾病中的应用.肾脏病与透析肾移植杂志,1998,7(3):255-258
    [18]EI-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release,2004,94(1):1-14
    [19]Melo LG, Gnecchi M, Pachori AS, et al. Endothelium-targeted gene and cell-based therapies for cardiovascular disease. Arterioscler Thromb Vasc Biol,2004,24(10):1761-1774
    [20]黄云剑,杨唐俊.基因转移在肾脏疾病中的应用.国外医学泌尿系统分册,2000,20(6):241-243
    [21]Pluta K, Kacprzak MM. Use of HIV as a gene transfer vector. Acta Biochim Pol,2009, 56(4):531-595
    [22]许勇之,刘华峰,陈孝文.基因治疗在肾脏疾病中应用研究进展.国外医学泌尿系统分册,2001,21(6):260-262
    [23]Imai E. Gene therapy for renal diseases:its potential and limitation. J Am Soc Nephrol, 2003,14(4):1102-1104
    [24]Park F. Lentiviral vectors:are they the future of animal transgenesis? Physiol Genomics, 2007,31(2):159-73
    [25]Prem Seth. Vector-mediated cancer gene therapy:an overview. Cancer Biol Ther,2005, 4(5):512-517
    [26]Jeong JH, Kim SH, Christensen LV, et al. Reducible poly (amido ethylenimine)-based gene delivery system for improved nucleus trafficking of plasmid DNA. Bioconjug Chem,2010,21(2): 296-301
    [27]Wells DJ. Electroporation and ultrasound enhanced non-viral gene delivery in vitro and in vivo. Cell Biol Toxicol,2010,26(1):21-28
    [28]Nezhadi SH, Choong PF, Lotfipour F, et al. Gelatin-based delivery systems for cancer gene therapy. J Drug Target,2009,17(10):731-738.
    [29]Dutta T, Jain NK, McMillan NA, et al. Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine,2010,6(1):25-34
    [30]姜政,余剑平,王新渝等.人幽门螺杆菌外膜蛋白18000 DNA疫苗的构建及表达.中国免疫学杂志,2005,21:134-138
    [31]代芳,王佑民,王长江等.人过氧化物酶体增殖体激活受体Y2基因克隆及真核表达载体的构建与鉴定.安徽医科大学学报,2004,39(6):426-428
    [32]王小芳.重组肾上腺髓质素真核表达载体的构建及实验研究:[博士学位论文].上海:复旦大学,2004
    [1]Smith LH Jr, Post RS, Teschan PE, et al. Post-traumatic renal insufficiency in military casualties. Ⅱ. Management, use of an artificial kidney, prognosis. Am J Med,1955,18(2): 187-198
    [2]Schrier RW, Wang W, Poole B, et al. Acute renal failure:definitions, diagnosis, pathogenesis, and therapy. J Clin Invest,2004,114(1):5-14
    [3]Lameire N, Van Biesen W, Vanholder R. The rise of prevalence and the fall of mortality of patients with acute renal failure:what the analysis of two databases does and does not tell us. J Am Soc Nephrol,2006,17(4):923-925
    [4]Roh J, Chang CL, Bhalla A,et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem,2004,279(8):7264-7274
    [5]Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals:a potent cardiovascular and renal regulator. FEBS Lett,2004,556(1-3):53-58
    [6]Yang JH, Qi YF, Jia YX, et al. Protective effects of intermedin/adrenomedullin2 on ischemia/reperfusion injury in isolated rat hearts. Peptides,2005,26(3):501-507
    [7]Yang JH, Jia YX, Pan CS, et al. Effects of intermedin(1-53) on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochem Biophys Res Commun,2005,327(3): 713-719
    [8]Melnikov VY, Faubel S, Siegmund B, et al. Neutrophil-independent mechanisms of caspase-1-and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest,2002, 110(8):1083-1091
    [9]叶琨,李瑛,刘伏友.超声微泡介导靶向治疗在肾脏病中的作用.中国临床康复,2006,10(45):148-151.
    [10]刘爱平,许红梅.超声微泡破碎技术与基因转染研究进展.检验医学与临床,2008,5(7):420-422
    [11]罗渝昆.超声联合脂质体微气泡介导反义寡核昔酸转染的实验研究:[博士学位论文].北京:中国人民解放军军医进修学院,2006
    [12]Newman CM, Bettinger T. Gene therapy progress and prospects:Ultrasound for gene transfer. Gene Therapy.2007,14(6):465-475
    [13]Tsutsui JM, Xie F, Porter RT. The use of microbubbles to target drug delivery. Cardiovascular Ultrasound,2004,2:23-30
    [14]Takahashi T, Matsubara H. New targeted angiogenic strategy bursting bubbles. Circ Res, 2007,101(3):232-233
    [15]宫琳,王志刚,冉海涛,等.超声微泡造影剂介导小鼠骨骼肌基因转染实验研究.中国医学影像技术,2004,20(3):346-348
    [16]张萍,高云华.靶向微泡造影剂评价血管内皮功能的研究进展.高血压杂志.2004,12(4):287-289
    [17]李承科,霍钢.超声微泡携基因治疗现状及在中枢神经系统的应用前景展望.重庆医科大学学报,2006,21:40-42
    [18]郑颖,王文平.超声及微泡造影剂在基因转染中的应用与发展.中华医学超声杂志,2008,5(1):93-98
    [19]Unger EC, Hersh E, Vannan M, et al. Gene delivery using ultrasound contrast agent. Echocardiography,2001,18(4):355-361
    [20]张雪娇,程永清,李丽君,等.包膜微泡超声造影剂的研究进展.中国医学影像技术,2005,21(5):819-821
    [21]王兴华,于晓玲,董宝玮.超声介导超声造影剂在分子影像与基因治疗领域中的应用.中华超声影像学杂志,2004,13(11):865-867
    [22]Hamilton A, Huang SL, Warnick D, et al. Left ventricular thrombus enhancement after intravenous injection of echogenic immunoliposomes, studies in a new experimental model. Circulation,2002,105(4):2772-2778
    [23]Cosyns B, Weytjens C, Vanderhoogstrate M, et al. Tissue Doppler imaging does not show infraclinical alteration of myocardial function after contrast echocardiography. Eur J Echocardiogr,2005,6(4):238-242
    [24]王建华,史京萍,沈历宗,等.超声介导SonoVue微泡破裂促进报告基因在肝脏中表达的实验研究.南京医科大学学报(自然科学版),2006,26(4):249-252
    [25]王兴华.超声造影剂SonoVue介导质粒绿色荧光蛋白转染小鼠骨骼肌细胞的实验研究.中华超声影像学杂志,2006,15(4):312-314
    [26]Koike H, Tomita N, Azuma H,et al. An efficient gene transfer method mediated by ultrasound and microbubbles into the kidney. Gene Med 2005,7 (1):108-16
    [27]Wang XH, Liang HD, Dong B, et al. Gene transfer with microbubble ultrasound and plasmid DNA into skeletal muscle of mice:comparison between commercially available microbubble contrast agents.Radiology,2005,237(1):224-229
    [28]Lan HY, Mu W, Tomita N, et al. Inhibition of renal fibrosis by gene transfer of inducible smad7 using ultrasound-microbubble system in rat UUO model. J Am Soc Nephrol,2003,14: 1535-1548
    [29]Sun Y, Zhu F, Yu X, et al. Treatment of established peritoneal fibrosis by gene transfer of Smad7 in a rat model of peritoneal dialysis. Am J Nephrol,2009,30(1):84-94
    [30]Guo H, Leung JC, Lam MF, et al. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. J Am Soc Nephrol,2007,18(10):2689-2703
    [31]Nie J, Hao W, Dou X, et al. Effects of Smad7 overexpression on peritoneal inflammation in a rat peritoneal dialysis model. Perit Dial Int,2007,27(5):580-588
    [32]Ka SM, Huang XR, Lan HY, et al. Smad7 gene therapy ameliorates an autoimmune crescentic glomerulonephritis in mice. J Am Soc Nephrol,2007,18(6):1777-1788
    [33]王志刚.超声微泡造影剂在疾病诊断与治疗中的研究进展.中国医学影像技术,2005,21(8):1148-1150
    [34]Klotz AR, Lindvere L, Stefanovic B, et al. Temperature change near microbubbles within a capillary network during focused ultrasound. Phys Med Biol,2010,55(6):1549-1561
    [35]Hugon J, Barthelemy L, Rostain JC, et al. The pathway to drive decompression microbubbles from the tissues to the blood and the lymphatic system as a part of this transfer. Undersea Hyperb Med,2009,36(4):223-236
    [36]修建成.微泡空化对大鼠微血管组织结构的影响及其意义:[博士学位论文].广州:第一军医大学,2004
    [37]刘中华,刘贻尧,杨红.超声空化效应和超声微泡在生物医学中的应用.生物技术通讯,2008,19(3):475-478
    [38]马强,吴镝,孙雪峰.超声微泡介导大鼠肾脏β-半乳糖苷酶基因转导.中国医学影像技术,2009,25(4):547-550
    [39]冯若.超声空化与超声医学.中华超声影像学杂志,2004,13(1):63-65
    [40]劳翼,修建成.超声微泡造影剂携带基因和药物靶向治疗的研究进展.医学影像学杂志,2007,17(12):1359-1361
    [41]晏春根,夏国园.超声微泡造影剂与靶向治疗.现代实用医学,2005,17(11):723-725
    [42]李奇林,全学模.超声微泡造影剂的临床应用及研究进展.国外医学临床放射学分册,2006,29(6):419-421
    [43]贾彩霞,周力学.治疗性超声介导微泡造影剂实现靶向性治疗的研究进展.医学综述,2007,13(8):630-632
    [44]王志刚.超声分子影像学研究进展.中国医学影像技术,2009,25(6):921-924
    [45]张世卿,苟欣.肾缺血再灌注损伤细胞凋的分子生物学研究.国外医学泌尿系统分册,2005,25(2):201-204
    [46]Yeung KK, Tangelder GJ, Fung WY, et al. Open surgical repair of ruptured juxtarenal aortic aneurysms with and without renal cooling:Observations regarding morbidity and mortality. J Vasc Surg,2010,51(3):551-558
    [47]Thuillier R, Tillement JP, Hauet T. Renal protective effect of metabolic therapy in patients with coronary artery disease and diabetes:from bench to bed side. Curr Pharm Des,2009,15(8): 863-882
    [48]Clark DL, Connors BA, Evan AP, et al. Localization of renal oxidative stress and inflammatory response after lithotripsy. BJU Int,2009; 103(11):1562-1568
    [49]寇敏,李荣山,周芸,等.大鼠肾脏缺血再灌注损伤中Intermedin及其受体表达的变化.医学研究杂志,2009,38(2):25-28
    [50]于桂花,李荣山,乔晞,等.大鼠肾脏缺血再灌注损伤中垂体中叶素及降钙素受体样受体的表达.中华肾脏病杂志,2009,25(5):387-391
    [1]Devarajan P. Update on Mechanisms of Ischemic Acute Kidney Injury. J Am Soc Nephrol, 2006,17(6):1503-1520
    [2]Kinsey GR, Li L, Okusa MD.Inflammation in acute kidney injury. Nephron Exp Nephrol, 2008,109(4):e102-107
    [3]Chander V, Chopra K. Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning. J Vasc Surg,2005,42(6):1198-1205
    [4]Myers SI, Wang L, Liu F, et al. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping. J Vasc Surg,2006,43(3):577-586
    [5]Myers SI, Wang L, Liu F, et al. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis. J Vasc Surg,2005,42(3):524-531
    [6]Moncada S, Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol, 2006, (176/Ⅰ):213-254
    [7]Roczniak A, Levine DZ, Burns KD. Localization of protein inhibitor of neuronal nitric oxide synthase in rat kidney. Am J Physiol,2000,278(5):F702-F707
    [8]Kone BC. Nitric oxide in renal health and disease. Am J Kidney Dis,1997,30(3):311-333
    [9]Mattson DL, Wu F. Nitric oxide synthase activity and isoforms in rat renal vasculature. Hypertension,2000,35(1 Pt 2):337-341
    [10]Mark LA, Robinson AV, Schulak JA. Inhibition of nitric oxide synthase reduces renal ischemia/reperfusion injury. J Surg Res,2005,129(2):236-241
    [11]Chen H, Xing B, Liu X, et al. Similarities between ozone oxidative preconditioning and ischemic preconditioning in renal ischemia/reperfusion injury. Arch Med Res,2008,39(2): 169-178
    [12]Dorweiler B, Pruefer D, Andrasi TB, et al. Ischemia-reperfusion injury pathophysiology and clinical implications. Eur J Trauma Emerg Surg,2007,33:600-612
    [13]Mitterbauer C, Schwarz C, Hauser P, et al. Impaired tubulointerstitial expression of endothelin-1 and nitric oxide isoforms in donor kidney biopsies with postischemic acute renal failure. Transplantation,2003,76(4):715-720
    [14]王新良,黄善生.肾脏缺血再灌注损伤中肾小球的改变与NO的作用.国外医学·生理、病理科学与临床分册,2001,21(2):154-156
    [15]朱同玉,欧阳嘉慧.肾脏缺血再灌注损伤后一氧化氮合酶的变化.复旦学报:医学版,2004,31(3):221-224
    [16]陈高亮,费继光.肾移植缺血再灌注损伤与一氧化氮和一氧化氮合酶.中国组织工程 研究与临床康复,2007,11(47):9553-9555
    [17]Yamasowa H, Ogata M, Itoh M; et al. Role of nitric oxide in the renal protective effects of ischemic preconditioning. J Cardiovasc Pharmacol,2003,42(3):419-427
    [18]. Goligorsky MS, Noiri E. Duality of nitric oxide in acute renal injury. Semin Nephrol,1999, 19(3):263-271
    [19]Yamasowa H, Shimizu S, Inoue T, et al. Endothelial nitric oxide contributes to the renal protective effects of ischemic preconditioning. J Pharmacol Exp Ther,2005,312(1):153-159
    [20]Rezkalla SH, Kloner RA. No reflow phenomenon. Circulation,2002,105(5):656-662
    [21]Hou XL, Li BL, Zhao L, et al. Effects of Xuefu Zhuyu Capsule on endothelin-1 release in myocardium and vascular endothelium and nitric oxide/nitric oxide synthase system of swines after acute myocardial infarction and reperfusion. Zhong Xi Yi Jie He Xue Bao,2008,6(4): 381-386
    [22]McLaughlin R, Kelly CJ, Kay E, et al. The role of apoptotic cell death in cardiovascular disease. Ir J Med Sci,2001,170(2):132-140
    [23]Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem,2004,79(8):7264-7274
    [24]Bell D, McDermott BJ. Intermedin (adrenomedullin-2):a novel counter-regulatory peptide in the cardiovascular and renal systems. Br J of Pharmacol,2008,153(suppl 1):S247-S262
    [25]Takei Y, Hyodo S, Katafuchi T, et al. Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides,2004,25(10):1643-1656
    [26]Nagae T, Mukoyama M, Sugawara A, et al. Rat receptor activity-modifying proteins (RAMPs) for adrenomedullin/CGRP receptor:cloning and upregulation in obstructive nephropathy. Biochem Biophys Res Commun,2000,270(1):89-93
    [27]Oliver KR, Wainwright A, Edvinsson L, et al. Immunohistochemical localization of calcitonin receptor-like receptor and receptor activity-modifying proteins in the human cerebral vasculature. J Cereb Blood Flow Metab,2002,22(5):620-629
    [28]Yang JH, Qi YF, Jia YX, et al. Protective effects of intermedin/adrenomedullin2 on ischemia/reperfusion injury in isolated rat hearts. Peptides,2005,26(3):501-507
    [29]Kanwar S, Kubes P. Nitric oxide is an antiadhesive molecule for leukocytes. New Horiz, 1995,3(1):93-104
    [30]Kubes P, Kurose I, Granger DN. NO donors prevent integrin-induced leukocyte adhesion but not P-selectin-dependent rolling in postischemic venules. Am J Physiol,1994,267(3 Pt 2): H931-937
    [31]Otani H. The role of nitric oxide in myocardial repair and remodeling. Antioxid Redox Signal,2009,11(8):1913-1928
    [32]Satake A, Takaoka M, Nishikawa M, et al. Protective effect of 17beta-estradiol on ischemic acute renal failure through the PI3K/Akt/eNOS pathway. Kidney Int,2008,73(3):308-317
    [33]Liu X, Chen H, Zhan B, et al. Attenuation of reperfusion inury by renal ischemic postconditioning. Biochem Biophys Res Commun,2007,359(3):628-634
    [34]Milsom AB, Patel NS, Mazzon E, et al. Role for endothelial nitric oxide synthase in nitrite-induced protection against renal ischemia-reperfusion injury in mice. Nitric Oxide,2010, 22(2):141-148
    [35]Mariotto S, de Prati AC, Cavalieri E, et al. Extracorporeal shock wave therapy in inflammatory diseases:molecular mechanism that triggers anti-inflammatory action. Curr Med Chem,2009,16(19):2366-2372
    [36]Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury:a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol, 2007,376(1-2):1-43
    [37]Cuzzocrea S, Chatterjee PK, Mazzon E, et al. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock,2002,18(2):169-176
    [38]Chen CH, Chuang JH, Liu K, et al. Nitric oxide triggers delayed anesthetic preconditioning-induced cardiac protection via activation of nuclear factor-kappaB and upregulation of inducible nitric oxide synthase. Shock,2008,30(3):241-249
    [39]Lozano FS, Lopez-Novoa JM, Rodriguez JM, et al. Exogenous nitric oxide modulates the systemic inflammatory response and improves kidney function after risk-situation abdominal aortic surgery. J Vasc Surg,2005,42(1):129-139
    [40]Goligorsky MS, Brodsky SV, Noiri E. Nitric oxide in acute renal failure:NOS versus NOS. Kidney Int,2002,61(3):855-861
    [41]Chatterjee PK, Patel NS, Sivarajah A, et al. GW274150, apotent and highly selective inhibitor of iNOS, reduces experimental renal ischemia/reperfusion injury. Kidney Int,2003, 63(3):853-865
    [42]Sedoris KC, Ovechkin AV, Gozal E, et al. Differential effects of nitric oxide synthesis on pulmonary vascular function during lung ischemia-reperfusion injury. Arch Physiol Biochem, 2009,115(1):34-46
    [43]Kadkhodaee M, Zahmatkesh M, Sadeghipour HR, et al. Proteinuria is reduced by inhibition of inducible nitric oxide synthase in rat renal ischemia-reperfusion injury. Transplant Proc,2009, 41(7):2907-2909
    [44]Chen H, Xing B, Liu X, et al. Ozone oxidative preconditioning protects the rat kidney from reperfusion injury:the role of nitric oxide. J Surg Res,2008,149(2):287-95
    [45]Katada K, Bihari A, Badhwar A, et al. Hindlimb ischemia/reperfusion-induced remote injury to the small intestine:role of inducible nitric-oxide synthase-derived nitric oxide. J Pharmacol Exp Ther,2009,329(3):919-927
    [46]Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol,2002, 13(12):3005-3015
    [47]Wartiovaara J, Ofverstedt LG, Khoshnoodi J, et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J Clin Invest,2004,114(10): 1475-1483
    [48]韩树海.rhKD/APP对大鼠肾缺血再灌注损伤的保护作用及机制的研究:[博士学位论文].吉林:吉林大学,2007
    [49]Ersoz N, Guven A, Cayci T, et al. Comparison of the efficacy of melatonin and 1400W on renal ischemia/reperfusion injury:a role for inhibiting iNOS. Ren Fail,2009,31(8):704-710
    [50]Tojo A, Bredt DS, Wilcox CS. Distribution of postsynaptic density proteins in rat kidney: relationship to neuronal nitric oxide synthase. Kidney Int,1999,55(4):1384-1394
    [51]Wilhelm SM, Simonson MS, Robinson AV, et al. Endothelin up-regulation and localization following renal ischemia and reperfusion. Kidney Int,1999,55(3):1011-1018
    [52]Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals:a potent cardiovascular and renal regulator. FEBS Lett,2004,556(1-3):53-58
    [53]Zhang HY, Jiang W, Liu JY, et al. Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model. Hypertens Res,2009,32(10):861-868
    [54]Song JQ, Teng X, Cai Y, et al. Activation of Akt/GSK-3β signaling pathway is involved in intermedin(1-53) protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis,2009,14(11):1299-1307
    [55]Hagiwara M, Bledsoe G, Yang ZR, et al. Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress. Am J Physiol Renal Physiol,2008,295(6):F1735-F1743
    [56]Fujisawa Y, Nagai Y, Miyatake A, et al. Effects of adrenomedullin 2 on regional hemodynamics in conscious rats. Eur J Pharmacol,2007,58(1-3):128-132
    [57]Fujii T, Takaoka M, Ohkita M, et al. Tempol protects against ischemic acute renal failure by inhibiting renal noradrenaline overflow and endothelin-1 overproduction. Biol Pharm Bull,2005, 28(4):641-645
    [58]Ohkita M, Takaoka M, Kobayashi Y, et al. Involvement of proteasome in endothelin-1 production in cultured vascular endothelial cells. Jpn J Pharmacol,2002,88(2):197-205
    [59]Meldrum KK, Meldrum DR, Meng X, et al. TNF-alpha-dependent bilateral renal injury is induced by unilateral renal ischemia-reperfusion. Am J Physiol Heart Circ Physiol,2002,282(2): H540-546
    [60]Serteser M, Koken T, Kahraman A, et al. Changes in hepatic TNF-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injuryinmice. J Surg Res,2002, 107(2):234-240
    [61]韩述岭,于立新,马俊杰.抗肿瘤坏死因子-α单克隆抗体减轻肾脏缺血再灌注损伤的实验研究.第一军医大学学报,2003,23(4):332-334
    [62]Suyani E, Derici UB, Sahin T, et al. Effects of everolimus on cytokines, oxidative stress, and renal histology in ischemia-reperfusion injury of the kidney. Ren Fail,2009,31(8):698-703
    [63]Donnahoo KK, Meng X, Ao L, et al. Differential cellular immunolocalization of renal tumour necrosis factor-alpha production during ischaemia versus endotoxaemia. Immunology, 2001,102(1):53-58
    [64]Lee HT, Kim M, Jan M, et al. Anti-inflammatory and antinecrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Am J Physiol Renal Physiol,2006, 291(1):F67-78
    [65]韩述岭,于立新.抗肿瘤坏死因子-α单克隆抗体减轻大鼠移植肝缺血再灌注损伤的实验研究.广东医学,2006,27(2):169-171
    [1]Roh J, Chang CL, Bhalla A, et al. Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem,2004,279(8):7264-7274
    [2]Takei Y, Hyodo S, Katafuchi T, et al. Novel fish-derived adrenomedullin in mammals: structure and possible function. Peptides,2004,25(10):1643-1656
    [3]Takei Y, Inoue K, Ogoshi M, et al. Identification of novel adrenomedullin in mammals:a potent cardiovascular and renal regulator. FEBS Lett,2004,556(1-3):53-58
    [4]杨靖辉,马存根,米亚英.中叶素在心血管系统的生物学效应.雁北师范学院学报,2007,23(2):63-67
    [5]Yang JH, Jia YX, Pan CS, et al. Effects of intermedin(1-53) on cardiac function and ischemia/reperfusion injury in isolated rat hearts. Biochem Biophys Res Commun,2005,327(3): 713-719
    [6]Chang CL, Roh J, Hsu SY. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals:a comparison with other calcitonin/intermedin family peptides in vertebrates. Peptides,2004,25(10):1633-1642
    [7]Poyner DR, Sexton PM, Marshall I, et al. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev,2002,54(2):233-246
    [8]Takahashi K, Kikuchi K, Maruyama Y, et al. Immunocytochemical localization of adrenomedullin 2/intermedin-like immunoreactivity in human hypothalamus, heart and kidney. Peptides,2006,27(6):1383-1389
    [9]Pan CS, Yang JH, Cai DY, et al. Cardiovascular effects of newly discovered peptide intermedin/adrenomedullin-2. Peptides,2005,26(9):1640-1646
    [10]Zhao Y, Bell D, Smith LR, et al. Differential effects of components of the cardiomyocyte adrenomedullin/intermedin receptor system following blood pressure reduction in nitric oxide-deficient hypertension. J Pharmacol Exp Ther,2006,316(3):1269-1281
    [11]Morimoto R, Satoh F, Murakami O, et al. Expression of adrenomedullin2/intermedin in human brain, heart, and kidney. Peptides,2007,28(5):1095-1103
    [12]Kindt F, Wiegand S, Loser C, et al. Intermedin:a skin peptide that is downregulated in atopic dermatitis. J Invest Dermatol,2007,127(3):605-613
    [13]McLatchie LM, Fraser NJ, Main MJ, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature,1998,393 (6683):333-339
    [14]齐永芬,唐朝枢.降钙素基因相关肽家族的受体活性修饰蛋白.生理科学进展,2001,32(3):251-253
    [15]冯敏艳,冯娟,李素梅.降钙素基因相关肽家族受体及其受体活性修饰蛋白.中国生物工程杂志,2004,24(8):9-13
    [16]Frayon S, Cueille C, Gnidehou S, et al. Dexamethasone increases RAMP1 and CRLR mRNA expression in human vascular smooth muscle cells. Biochem Biophys Res Commun, 2000,270(3):1063-1067
    [17]Nagac T, Mukoyama M, Sugawara A, et al. Rat receptor-activity-modifying proteins(RAMPs) for adrenomedullin/CGRP receptor:cloning and regulation in obstructive nephropathy. Biochem Biophys Res Commun,2000,270(1):89-93
    [18]李泽楠,齐永芬,曾强.降钙素基因相关肽家族的新成员-intermedin/adrenomedullin2的生物学效应.武警医学,2006,17(5):369-371
    [19]曾强,范利.肾上腺髓质素2的研究进展.中华老年心脑血管病杂志,2006,8(12):854-856
    [20]贾闪闪,吴小脉,龚永生.新的小分子活性肽intermedin/adrenomedullin-2.国际病理——科学与临床杂志,2006,26(1):39-42
    [21]Hilairet S, Belanger C, Bertrand J, et al. Agonist-promoted internalization of a ternary complex between calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 1 (RAMP1) and beta-arrestin. J Biol Chem,2001,276(45):42182-42190
    [22]徐琳,谭颖徽.受体活性修饰蛋白的研究进展.国外医学·生理、病理科学与临床分册,2005,25(1):18-20
    [23]Fraser NJ, Wise A, Brown J, et al. The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation staste and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol,1999,55(6):1054-1059
    [24]潘春水,齐永芬,唐朝枢.受体表型调节蛋白-受体活性修饰蛋白.国外医学·生理、病理科学与临床分册,2003,23(3):226-229
    [25]Flahaut M, Rossier BC, Firsov D. Respective roles of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMP) in cell surface expression of CRLR/RAMP heterodimeric receptors. J Biol Chem,2002,277(17):14731-14737.
    [26]Foord SM, Marshall FH. RAMPs:accessory proteins for seven transmembrane domain receptors. Trends Pharmacol Sci,1999,20(5):184-187
    [27]Zumpe ET, Tilakaratne N, Fraser NJ, et al. Multiple ramp domains are required for generation of amylin receptor phenotype from the calcitonin receptor gene product. Biochem Biophys Res Commun,2000,267(1):368-372
    [28]冯敏艳,刘晓黎,李素梅.降钙素受体家族的受体活性修饰蛋白的研究进展.四川生理科学杂志,2004,26(2):82-84
    [29]Yang JH, Qi YF, Jia YX, et al. Protective effects of intermedin/adrenomedullin2 on ischemia/reperfusion injury in isolated rat hearts. Peptides,2005,26(3):501-507
    [30]Jia YX, Yang JH, Pan CS, et al. Intermedinl-53 protects the heart against isoproterenol-induced ischemic injury in rats. Eur J Pharmacol,2006,549(1-3):117-123
    [31]Beltowski J, Jamroz A. Adrenomedullin-what do we know 10 years since its discovery. Pol J Pharmacol,2004,56(1):5-27
    [32]苏家林,汪丽蕙,张继峰,等.肾上腺髓质素前体不同肽段的心血管效应.基础医学与临床,1999,19(1):33-37
    [33]Terata K, Miura H, Liu Y, et al. Human coronary arteriolar dilation to adrenomedullin:role of nitric oxide and K(+) channels. Am J Physiol Heart Circ Physiol,2000,279 (6):H2620-2626.
    [34]Sata M, Kakoki M, Nagata D, et al. Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP-independent mechanism. Hypertension,2000,36 (1): 83-88
    [35]Yang JH, Pan CS, Jia YX, et al. Intermedinl-53 activates L-arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Biochem Biophys Res Commun,2006,341(2): 567-572
    [36]Simmons WW, Closs EI, Cunningham JM, et al. Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and no production by CAT-1, CAT-2A and CAT-2B. J Biol Chem,1996,271 (20):11694-11702
    [37]Chauhan M, Ross GR, Yallampalli U, et al. Adrenomedullin-2, a novel calcitonin/calcitonin-gene-related peptide family peptide, relaxes rat mesenteric artery:influence of pregnancy. Endocrinology,2007,148(4):1727-1735
    [38]Dong F, Taylor MM, Samson WK, et al. Intermedin (adrenomedullin-2) enhances cardiac contractile function via a protein kinase C-and protein kinase A-dependent pathway in murine ventricular myocytes. J Appl Physiol,2006,101(3):778-784
    [39]Kandilci HB, Gumusel B, Lippton H. Intermedin/adrenomedullin-2 (IMD/AM2) relaxes rat main pulmonary arterial rings via cGMP-dependent pathway:Role of nitric oxide and large conductance calcium-activated potassium channels (BK(Ca)). Peptides,2008,29(8):1321-1328
    [40]Charles CJ, Rademaker MT, Richards AM. Hemodynamic, hormonal, and renal actions of adrenomedullin-2 in normal conscious sheep. Endocrinology,2006,147(4):1871-1877
    [41]Rademaker MT, Charles CJ, Nicholls MG, et al. Hemodynamic, hormonal, and renal actions of adrenomedullin 2 in experimental heart failure. Circ Heart Fail,2008,1(2):134-142
    [42]Taylor MM, Bagley SL, Samson WK. Intermedin/adrenomedullin-2 acts within central nervous system to elevate blood pressure and inhibit food and water intake. Am J Physiol Regul Integr Comp Physiol,2005,288(4):R919-927
    [43]Fujisawa Y, Nagai Y, Miyatake A, et al. Roles of adrenomedullin 2 in regulating the cardiovascular and sympathetic nervous systems in conscious rats. Am J Physiol Heart Circ Physiol,2006,290(3):H1120-1127
    [44]Kobayashi Y, Liu YJ, Gonda T, et al. Coronary vasodilatory response to a novel peptide, adrenomedullin 2.Clin Exp Pharmacol Physiol,2004,31 Suppl 2:S49-50
    [45]Kandilci HB, Gumusel B, Wasserman A, et al. Intermedin/adrenomedullin-2 dilates the rat pulmonary vascular bed:dependence on CGRP receptors and nitric oxide release. Peptides,2006, 27(6):1390-1396
    [46]Abdelrahman AM, Pang CC. Effect of intermedin/adrenomedullin-2 on venous tone in conscious rats. Naunyn Schmiedebergs Arch Pharmacol,2006,373(5):376-380
    [47]Abdelrahman AM, Pang CC. Vasodilator mechanism of intermedin/adrenomedullin-2 in anesthetized rats. Proc West Pharmacol Soc,2007,50:43-46
    [48]Bell D, McDermott BJ. Intermedin (adrenomedullin-2):a novel counter-regulatory peptide in the cardiovascular and renal systems. Br J Pharmacol,2008,153:S247-S262
    [49]Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev,2004,84(3):903-934
    [50]Ren YS, Yang JH, Zhang J, et al. Intermedin 1-53 in central nervous system elevates arterial blood pressure in rats. Peptides,2006,27(1):74-79
    [51]Fujisawa Y, Nagai Y, Miyatake A, et al. Effects of adrenomedullin 2 on regional hemodynamics in conscious rats. Eur J Pharmacol,2007,58(1-3):128-132
    [52]贾月霞,潘春水,耿彬等.Intermedin 1-53保护异丙基肾上腺素诱导的心肌损伤.中国药理学通报,2005,21(12):1454-1459
    [53]贾月霞,李桂忠,杨靖辉等.急性心力衰竭大鼠心肌intermedin受体的变化.宁夏医学院学报,2005,27(5):337-342
    [54]Hirose T, Totsune K, Mori N, et al. Increased expression of adrenomedullin 2/intermedin in rat hearts with congestive heart failure. Eur J Heart Fail.2008,10(9):840-849
    [55]Looi YH, Kane KA, McPhaden AR, et al. Adrenomedullin acts via nitric oxide and peroxynitrite to protect against myocardial ischaemia-induced arrhythmias in anaesthetized rats. Brit J Pharmacol,2006,148:599-609
    [56]Nagaya N, Goto Y, Satoh T, et al. Intravenous adrenomedullin in myocardial function and energy metabolism in patients after myocardial infarction. J Cardiovasc Pharmacol,2002,39: 754-760
    [57]Bell D, Zhao Y, McCoy FP, et al. Differential effects of an anti-oxidant intervention on cardiomyocyte expression of adrenomedullin and intermedin and their receptor components in chronic nitric oxide deficiency. Cell Physiol Biochem,2007,20(5):269-282
    [58]Bell D, Zhao Y, Devine AB, et al. Influence of atenolol and nifedipine on nitric-oxide deficient cardiomyocyte hypertrophy and expression of the cardio-endocrine peptide intermedin and its receptor components. Cell Physiol Biochem,2008,21(1-3):203-214
    [59]Bell D, Zhao Y, McCoy FP, et al. Expression of the counter-regulatory peptide intermedin is augmented in the presence of oxidative stress in hypertrophied cardiomyocytes. Cell Physiol Biochem,2008,21(5-6):409-420
    [60]Zhang HY, Jiang W, Liu JY, et al. Intermedin is upregulated and has protective roles in a mouse ischemia/reperfusion model. Hypertension Research,2009,32(10):861-868
    [61]Song JQ, Teng X, Cai Y, et al. Activation of Akt/GSK-3beta signaling pathway is involved in intermedinl-53 protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis,2009,14(11):1299-1307
    [62]Song JQ, Teng X, Cai Y, et al. Activation of Akt/GSK-3beta signaling pathway is involved in intermedinl-53 protection against myocardial apoptosis induced by ischemia/reperfusion. Apoptosis,2009,14(9):1061-1069
    [63]Fujisawa Y, Nagai Y, Miyatake A, et al. Renal effects of a new member of adrenomedullin family, adrenomedullin2, in rats. Eur J Pharmacol,2004,497(1):75-80
    [64]Taylor MM, Samson WK. Stress hormone secretion is altered by central administration of intermedin/adrenomedullin-2. Brain Res,2005,1045(1-2):199-205
    [65]Yamaguchi T, Baba K, Doi Y, et al. Effect of adrenomedullin on aldosterone secretion by dispersed rat adrenal zona glomerulosa cells. Life Sci,1995,56(6):379-387
    [66]陈斌,石洪波,张雪军,等.Intermedin预处理对大鼠肾缺血离体再灌注损伤的保护作用.临床泌尿外科杂志,2008,23(5):385-388
    [67]Hagiwara M, Bledsoe G, Yang ZR, et al. Intermedin ameliorates vascular and renal injury by inhibition of oxidative stress. Am J Physiol Renal Physiol,2008,295(6):F1735-F1743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700