氧化锆基复合陶瓷纺织剪刀材料的研制及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对氧化锆基陶瓷材料的缺点,研制了高性能氧化锆基复合陶瓷纺织剪刀材料。选择高弹性模量的TiN和Al_2O_3颗粒作为3Y-TZP的添加相,采用热压烧结制备工艺,研制成功了氧化锆基复合陶瓷纺织剪刀材料ZrO_2-TiN和ZrO_2-TiN-Al_2O_3,并对其常温力学性能、低温老化性能、摩擦磨损性能以及电加工性能进行了研究,系统研究了其增韧机理和摩擦磨损机理,在应力诱导相变老化机理的基础上,分析了其抗低温老化机理。
     在优化的热压烧结工艺下,制备出了ZrO_2-TiN和ZrO_2-TiN-Al_2O_3复合陶瓷材料,并对其常温力学性能进行了研究。结果表明,TiN、Al_2O_3和ZrO_2相互之间具有良好的物理和化学相容性;TiN对3Y-TZP具有非常显著的增韧补强作用,当TiN的添加量为30%(质量百分比)时,其抗弯强度和断裂韧性均比基体3Y-TZP提高了约70%;大粒径TiN颗粒可提高其增韧作用。少量的Al_2O_3可显著提高ZrO_2-TiN复合材料的烧结致密度,起到增韧作用;过量的Al_2O_3对材料致密度及力学性能不利。研制成功了具有优良综合力学性能的氧化锆基复合陶瓷纺织剪刀材料ZY30T、ZY40T和ZY30T5A,其平均抗弯强度分别为:1410MPa、1390MPa和1346MPa;其平均断裂韧性分别为13.3MPa·m~(1/2)、13.8MPa·m~(1/2)和14.4MPa·m~(1/2);其维氏显微硬度分别为15.1GPa、15.7GPa和15.3GPa。
     系统研究了ZrO_2-TiN和ZrO_2-TiN-Al_2O_3复合陶瓷材料的增韧机理。研究认为,除了相变增韧和颗粒增韧外,其主要增韧机理是位错对裂纹的屏蔽作用和晶间非晶相的增韧作用。高弹性模量的TiN和Al_2O_3颗粒可提高基体的弹性应变能和t-m相变阻力,从而减弱了基体的相变增韧作用。由于TiN晶粒具有面心立方结构而出现大量位错,当裂纹穿过TiN颗粒扩展时,位错对裂纹具有屏蔽作用。晶界上的非晶相可显著提高复合材料的烧结致密度和力学性能。
     研究了ZrO_2-TiN和ZrO_2-TiN-Al_2O_3复合材料的低温老化性能和抗低温老化机
Aiming at the disadvantages of zirconia matrix ceramic materials, a new kind of zirconia matrix composite ceramic materials with high mechanical properties has been successfully developed. Under the hot-pressing technology, the zirconia matrix composite ceramic materials, ZrO_2-TiN and ZrO_2-TiN-Al_2O_3, were fabricated by adding the particles TiN and Al_2O_3 with high elastic modulus into 3Y-TZP. The mechanical properties, the low temperature degradation properties, friction and wear performance and the electrical discharge machining performance of the ziconia matrix composite ceramic materials were studied. The toughening mechanisms and the wear mechanisms were also studied. Based on the stress-induced transformation mechanism, the low temperature degradation mechanisms of the zirconia matrix composite ceramic materials were analyzed.The composite ceramic materials, ZrO_2-TiN and ZrO_2-TiN-Al_2O_3, were fabricated by the optimized hot-pressing technology, and its mechanical properties at room temperature were studied. It is shown that there is a good physical and chemical compatibility among ZrO_2, TiN and Al_2O_3. The TiN particles paly an obvious role in toughening and strengthening 3Y-TZP, and the flexural strength and fracture toughness of the composite ceramic materials are all 70% higher than those of 3Y-TZP when the addition content of TiN is 30wt%. The TiN of bigger grain size can improve the toughening effect. A small amount of Al_2O_3 can distinctly improve the density and toughness of ZrO_2-TiN composite ceramic material, but more content of Al_2O_3 is not beneficial to improving the density and the mechanical properties of the composite material. The zirconia matrix composite ceramic materials for spinning and weaving scissors, ZY30T, ZY40T and
    ZY30T5A, were fabricated successfully. Their average flexural strength are 1410MPa, 1390MPa and 1346MPa, the average fracture toughness are 13.3MPa?m1/2, 13.8 MPa?m1/2 and 14.4 MPa?m1/2, and the average Vickers microhardness are 15.1GPa, 15.7GPa and 15.3GPa, respectively.The toughening mechanisms of ZrC^-TiN and ZrC^-TiN-AhCh were investigated. It is considered that the main toughening mechanisms are the crack shielding effect caused by dislocations and toughening effect caused by the glassy phase among the grain boundaries except the phase transformation toughening and particle toughening effect. The particles TiN and AI2O3 with high elastic modulus can increase the elastic strain energy of the matrix and the resistance of phase transformation t-m, and decrease the phase transformation toughening effect of the matrix 3 Y-TZP. There are a great deal of dislocations in TiN grains due to the face-centered cubic microstructure. The dislocations can shield the cracks when the cracks go through the TiN grains. The glassy phase can greatly improve the density and the mechanical properties.The low temperature degradation properties and the mechanisms of degradation resistance for the materials ZrC^-TiN and ZrCh-TiN-AkOa were investigated. It is shown that TiN and AI2O3 can inhibit the low temperature degradation of 3 Y-TZP, and the inhibition function of TiN is better than AI2O3. And the low temperature degradation of the composites doped by the two particles is better than that of the composite doped by the single one. ZY30T, ZY40T and ZY30T5A have an excellent low temperature degradation resistance. Based on the low temperature degradation mechanism of the stress-induced transformation, it is considered that there are two different tetragonal phase, i.e., metastable tetragonal phase with stress restriction and metastable tetragonal phase without stress restriction. It is shown that the glassy phase among the grain boundaries can prevent the nucleation of phase transformation, which is the main mechanism for improving the low temperature degradation properties of the composites.The friction and wear performance of ZrCVTiN and ZrC^-TiN-AbOs are studied. It is shown that TiN can improve the wear resistance of 3 Y-TZP, and the wear resistance of
    ZrO2-TiN will be improved with an increase in the content of TiN. ZY40T, ZY30T and ZY30T5Ahave a good wear resistance, among which ZY40T is the best.The wear mechanism analysis model of the zirconia matrix composite ceramic materials for spinning and weaving scissors is put forward in the present research. The layer-shape microstructure model of the friction surface for zirconia matrix composite ceramic materials is built. It is considered that the wear pattrn is slight wear when the wear depth lies in the interface between the soft covered layer and the plastic deformation layer, and the wear pattern is severity wear when the wear chipping are separated from the plastic deformation layer. The soft covered layer can decrease the friction. It is also considered that the severity wear mechanism of zirconia ceramic material is the surface fatigue wear, which is caused by the cracks originated from the surface and the subsurface of the materials. The cracks can result in spalling of friction surface.The electrical discharge machining machinability of ZrC^-TiN is experimentally studied. It is shown that the electrical discharge machining of ZY30T and ZY40T is feasible.
引文
1 张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计.北京:国防科技大学出版社,2001
    2 1999年6月18日英国伦敦举行的ISO/TC206精细陶瓷委员会情况简介.现代技术陶瓷.2000,(1):39-41
    3 佐藤次雄,岛田昌彦.精细陶瓷技术.译文.1998
    4 张国军,金宗哲.颗粒增韧陶瓷的增韧机理.硅酸盐学报.1994,22 (3):259-269
    5 赵宏,金宗哲.颗粒增强复相陶瓷残余应力和增韧机制分析.硅酸盐学报.1996,24 (5):491-497
    6 刘玲,殷宁等.晶须增韧复合材料机理的研究.材料科学与工程.2000,18 (2):116-119
    7 邓建新,李兆前,艾兴.晶须增韧陶瓷基复合材料的进展.材料导报.1994,(5):72-75
    8 徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望(Ⅰ)——二组元陶瓷复合材料的研究与开发.硅酸盐通报.1996,(5):43-48
    9 周玉,雷廷权.陶瓷材料学.哈尔滨:哈尔滨工业出版社,1995
    10 穆柏春,陶瓷材料的强韧化.北京:冶金工业出版社,2002
    11 K.Niihara, Nakabira and T.Sekino. Mat. Res. Soc. Symp. Proc. 1993, 286: 405
    12 J. Zhao, L. C. Stearns and M. P. Harmer. J. Am. Ceram. Soc. 1993, 76 (2): 503
    13 黄传真.新型复相陶瓷刀具材料的研制及切削可靠性研究.山东工业大学博士论文1994.
    14 徐利华,丁子上,黄勇.先进复相陶瓷的研究现状和展望(Ⅰ)——高组元陶瓷复合材料的研究进展.硅酸盐通报.1996,(6):42-46
    15 司文捷.相变增韧与颗粒弥散协同增韧复相陶瓷的研究.清华大学博士论文.1992.
    16 肖诗纲.现代刀具材料.重庆:重庆大学出版社,1992
    17 许崇海,冯衍霞,艾兴.现代陶瓷刀具材料的研究.陶瓷学报.2000,21 (3):166-169
    18 严东生.发动机用先进陶瓷.北京:科学出版社,1993
    19 王零森.二氧化锆陶瓷(一).陶瓷工程.1997,31 (1):40-44
    20 M.V.斯温.材料科学技术丛书(第11卷)—陶瓷的结构与性能.郭景坤 等.北京:科学出版社.1998:92-102
    21 A. G. Evans, R. M. Canon. Toughening of Brittle Solids by Martensitic Transformations. Acta. Metll. 1986, 34(5): 761-800
    22 F.F. Lange. J. Mater. Sci. 1982, 17: 240, 235
    23 邓建新,李兆前,艾兴.晶须增韧陶瓷基复合材料的进展.材料导报.1994,(5):72-75
    24 K. T. Faber. advances in Ceramics. Vol. 12. Sci. Tech. Zirconia-Ⅱ, Am. Ceram. Soc. Oh, 1984: 293
    25 马亚鲁,谈家琦,朱宣惠.Y-TZP陶瓷材料的近期研究动态.陶瓷学报.1996,17 (4):48-52
    26 金志浩,高积强,乔冠军.工程陶瓷材料.西安:西安交通大学出版社,2000
    27 Hou Yao-Yong et al.Effect Of Al_2O_3 On Retaining Tetragonal Particles in Y-TZP Ceramic Matrix. J. Mater. Sci. Lett. 1987, 6: 246-248
    28 申云军 等.氧化钇含量对Al_2O_3/Y-TZP复相陶瓷的影响.无机材料学报.1996,11 (2):259-263
    29 毛飙风等.氧化钇稳定四方氧化锆陶瓷的性能老化研究.材料导报.1997,11 (5):3
    30 M. Marmach et al. Ceramics in Engines——Long Term Stability of Transformation Toughened Zirconia. In: Proceedings of the Third International Pacific Conference on Automotive Engineering, Vo 12. Indonesia: Society of Automobile Engineers. 1985:245
    31 吴建锋,徐晓虹,孙淑珍,任永光.(MgO-Y_2O_3)稳定ZrO_2的研究.硅酸盐通报.1999,(5):69-71
    32 马亚鲁,张国亮,王树强等.湿化学法制备微晶(Y,Mg)-PSZ/MgAl_2O_3陶瓷的研究.硅酸盐学报.1996,24 (1):38-44
    33 尹邦跃,王零森,林健凉.YCe-TZP陶瓷的低温时效.中南工业大学学报.2000,31 (4):335-338
    34 Koji Tsukuma. Masahiko Shimada. Strength, Fracture Toughness and Vickers Hardness of CeO_2-stabilized Tetragonal ZrO_2 Polycrystals (Ce-TZP), J Mater Sci, 1985, 20:1178-1184
    35 S. R. Jansen, A. J. A. Winnubst. Effects of Grain Size and Ceria Addition on Ageing Behaviour and Tribological Properties of Y-TZP Ceramics. J. of the Eur. Ceram. Soc. 1998, 18:557-563
    36 T. Sato and M. Shimada. Control of the Tetragonal-to Monoclinic Phase Transformation of Yttria Partially Stabilized Zirconia in Hot Water, J. Mater. Sci. 1985, 20:3988-3992
    37 Boutz M M R, Winnubst W J A, Langerak B V et al. The effect of ceria co-doping on chemical and fracture toughness of Y-TZP. J Mater Sci. 1995, 30: 1854-1862
    38 Duh Jenq-gong, Dai Hsing-tao. Sintering, Microstructure, Hardness and Fracture Toughness Behavior of Y_2O_3-CeO_2-ZrO_2. J Am Ceram Soc.1988, 71 (10): 813-819
    39 马亚鲁,孙小兵,谈家琪 等.Y_2O_3、MgO复合稳定微晶PSZ陶瓷热处理过程的研究.硅酸盐通报.2000,(1):43-46
    40 Zhang Q, Chen Y, Wu H et al. The Role of Y_2O_3 in Fine-grained (Y, Mg)-PSZ/MgAl_2O_4 During Long Term Heat Treatment. Ceramics International. 1998, 24: 175-179
    41 靳喜海,丁湘,姜文博 等.五价钽、铌掺杂对Y-TZP微观结构和性能的影响.硅酸盐通报.1999,(2):52-54
    42 Kim D J, Jung H J, Jang J W et al. Fracture Toughness, Ionic Conductivity and Low-temperature Phase Stability of Tetragonal Zirconia Codoped with Yttria and Niobium Oxide. J Am Ceram Soc. 1998, 81 (9): 2309-2314.
    43 Lee D Y, Lee D J, Cho D H. Low-temperature Phase Stability and Mechanical Properties of Y_2O_3 and Nb_2O_5 Co-doped Tetragonal Zirconia Polycrystal Ceramics. J Mater Sci Lett. 1998, 17: 185-187
    44 H. Watanabe and M. Chigasaki. The Effect of Al_2O_3 or SiO_2 Addition on the Thermal Shock Resistance of Y_2O_3-stabilized ZrO_2. Yogyo Kyokaishi. 1986,94:255-60
    45 T. Sato, M. Shimada, Crystalline Phase change in yttria-partially-stabilized zirconia by low-temperature annealing. J. Am. Ceram. Soc., 1984, 67 (10):c-212-c-213.
    46 徐明霞 段仁官.Al_2O_3添加量对Y-TZP陶瓷烧结及力学性能的影响.硅酸盐通报.1997 (4):40-42
    47 Tsukuma K, Ueda K, Shimada M. Strength and Fracture Toughness of Isostatically Hot-pressed Composite and its Toughening Mechanism. J. Mater. Sci. 1993, 28: 4019-
    48 Mikio F. Properties of [Y]ZrO_2-Al_2O_3 and [Y]ZrO_2-Al_2O_3-[Ti or Si]C Composition. J. Am. Ceram. Soc. 1989, 72(2): 236-241
    49 Sato T., Fujishiro H., Endo T, et al. Thermal Stability and Mechanical Properties of Yttria-doped Tetragonal Zirconia Polycrystals with Dispersed Alumina and Silicon Carbide Particles. J. Mater. Sci. 1987, 22:882-886
    50 J. L. Shi, B. S. Li, T. S. Yen. Mechanical Properties of Al_2O_3 Particle-Y-TZP Matrix Composite and its Toughening Mechanism, J. Mater. Sci. 1993, (23): 4019-4022
    51 Li J. F., Watanabe R. Fracture Toughness of Al_2O_3-patricle-dispersed Y_2O_3-partially Stabilized Zirconia. J. Am. Ceram. Soc. 1995, 78:1079-1083
    52 S. Rajendran, M. V. Swain, H. J. Rossell. Mechanical Properties and Microstructures of Co-precipitation Derived Tetragonal Y_2O_3-ZrO_2-Al_2O_3 Composites, J. Mater. Sci. 1988, (23): 1805-1812
    53 Tsubakino H., Nozato R., Effect of Alumina Addition on the Tetragonal-to-monoclinic Phase Transformation in Zirconia 3mo1% Yttria, J. Am. Ceram. Soc. 1991, 74(2): 440-443
    54 Li J. F, Ryuzo W. Influence of a Small Amount of Al_2O_3 Addition on the Transformation of Y_2O_3-partially Stabilized Zirconia, J. Mater. Sci. 1997, 32:1149-1153
    55 Zhang B., Isobe T., Satani S. et al. The Effect of Alumina Addition on Phase Transformation and Mechanical Properties in Partially Stabilized Zirconia, Key Eng. Mater. 1999, 161-163:307-310
    56 李远强,盛绪敏,徐洁 等.添加Al_2O_3对ZrO_2(Y_2O_3)粉末性能的影响.硅酸盐通报.1994(6):1-16
    57 尹邦跃,王零森.3Y-TZP/Al_2O_3复合粉末的相变研究.硅酸盐学报.2001,29 (1):1-7
    58 李廷凯,沈志坚,丁子上.ZrO_2-Al_2O_3陶瓷复合材料力学性质.硅酸盐学报.1990,18 (1):39-46
    59 余明清,范仕刚,孙淑珍,雷家珩.Al_2O_3增强ZrO_2陶瓷的制备及性能研究.硅酸盐通报.2001(2):7-10
    60 周振君,关长斌.ZrO_2-Al_2O_3质陶瓷轧辊材料性能的研究.机械工程材料.1997,21 (3):37-39
    61 Z. Ding, R. Oberacker et al. J. of the Eur. Ceram. Soc.1993, (12): 337
    62 司文捷,黄勇,江作昭.SiC颗粒弥散对相变增韧陶瓷高温蠕变性能的影响.硅酸盐学报.1993,21 (3):208-214
    63 N. Bamba, Y. H. Choa, T. Sekino, K. Nihara. Microstructure and Mechanical Properties of Yttria Stabilized Zirconia/silicon Carbide Nanocomposites. J. Eur. Ceram. Soc. 1998, 18:693-699
    64 沈志坚,李廷凯,SiC_w/Y-TZP复合材料的增韧机理及其力学性能.硅酸盐学报.1992,20(3):223-229
    65 张玉锋,郭景坤.SiC晶须/Y-TZP复合材料的研究.无机材料学报.1991,6 (2):172-176
    66 司文捷 等.SiC(W)/TZP+Mullite陶瓷复合材料界面和组成设计与力学性能.硅酸盐学报.1993,21 (3):208
    67 刘维跃,杨正方.TiN晶须对Y-TZP材料力学性能的影响.硅酸盐通报.1989,8(4):49-53
    68 K. H, Heussner N. Claussen. Yttria-and Ceria-stabilized Tetragonal Zirconia Polycrystals (Y-TZP, Ce-TZP) Reinforced with Al_2O_3 Platelets. Journal of the European Ceramic Society. 1989, 5: 193-199
    69 洪金生,黄校先,高濂.添加Al_2O_3对SiC板粒/Y-TZP复合材料力学性能的影响.无机材料学报.1995,10 (1):49-54
    70 申云军,黄校先,石南云.TiC/(Al_2O_3/P-TZP/)复相陶瓷的制备与性能.无机材料学报.1996,11 (3):552-556
    71 K. Kobayashi, H. Kuwajima, T. Masaki. Phase Change and Mechanical Properties of ZrO_2-Y_2O_3 Solid Electrolyte after Aging. Solid State Ionics. 1981, 3/4:489-493
    72 Lu H, Chen S. Low-temperature Aging of T-ZrO_2 Polycrystals with 3 mol% Y_2O_3. J. Am. Ceram. Soc. 1987, 70(8): 537-541
    73 San-Yuan Chen, Hong-Yang Lu. Sintering of 3 mol% Y_2O_3-TZP and its Fracture after Ageing Treatment. J Mater Sci. 1988, 23:1195-1200
    74 F. F. Lange, G. L. Dunlop, B. I. Davis. Degradation During Aging of Transformation-toughened ZrO_2-Y_2O_3 Materials at 250℃, J. Am. Ceram. Soc. 1986, 69(3): 237-240
    75 Simon Lawson. Environmental Degradation of Zirconia Ceramics. J. Eur. Ceram. Soc. 1995, 15: 485-502
    76 毛骏飙,陈楷.氧化钇稳定四方氧化锆陶瓷的性能老化研究.材料导报.1997,11 (5):38-41
    77 林健凉,王零森,张金生,樊毅,尹邦耀.Y-TZP低温老化现象的研究现状.硬质合金.1999,16 (2):79-82
    78 郑秀华.ZrO_2陶瓷中t—m等温相变.材料科学与工程.1999,17 (1):75-79
    79 K. Yasuda, S. Arai, M. Itoh, K. Wada. Influence of Y_2O_3 Distribution on the Rate of Tetragonal to Monoclinic Phase Transformation of Yttria-stabilized Zirconia During Hydrothermal Aging. J Mater Sci.1999, 34:3597-3604
    80 Jing-Feng Li, Ryuzo Watanabe. Phase Transformation in Y_2O_3-partially-stabilized ZrO_2 Polycrystals of Various Grain Sizes During Low-temperature Aging in Water, J. Am. Ceram. Soc. 1998, 81(10): 2687-2691
    81 Masaki. T. Mechanical Properties of Y-PSZ after Aging at Low Temperature. Int. J. High. Tech. Ceram. 1986, 2:237-240
    82 H. Schubter, G. Petzow. Advances in Ceramics. Science and Technology of Zirconia Ⅲ, Edited by S. Somiya. N. Yamanoto and H. Hanayoda. Vol, 24
    83 Yoshimura M., Noma T., Kawabata K., Somiya S. Role of H_2O on the Degradation Process of Y-TZP, J. Mater. Sci. Lett. 1987, 6 (4): 465-467
    84 Sato T, Shimada M. Transformation of Yttria-doped Tetragonal ZrO_2 Polycrystals by Annealing in Water, J. Am. Ceram. Soc. 1985, 68 (6): 356-359
    85 Schmauder S., Schubert H. Significance of Internal Stresses for the Martensitic Transformation in Yttria-stabilized Tetragonal Zirconia Polycrystals During Degradation, J. Am. Ceram. Soc. 1986, 69(7): 534-540
    86 N. Nakanishi, T. Shigematsu, T. Furukawa and N. Mechida. Metall. and Mater.Trans. 1994, 25A (10): 2647
    87 Dae-Joon Kim. Influence of Aging Environment on Low-temperature Degradation of Tetragonal Zirconia Alloys. J. Eur. Ceram. Soc. 1997, 17:897-903
    88 X. Guo. Low Temperature Degradation Mechanism of Tetragonal Zirconia Ceramics in Water: Role of Oxygen Vacancies. Solid State Ionics. 1998, 112:113-116
    89 X. Guo. Hydrothermal Degradation Mechanism of Tetragonal Zirconia, J Mater Sci, 2001, 36: 3737-3744
    90 M. Watanabe, S. Iio, I. Fukuura. Aging Behaviour of Y-TZE In Advances in Ceramics. Science and Technology of Zirconia Ⅱ, ed. N. Claussen, M. Ruhle and A. H. Heuer, The American Ceramic Society. Inc., Columbus, Ohio, 1984:391-398
    91 Sato T, Shimada M. Control of the Tetragonal-to-monoclinic Phase Transformation Yttria Partially Stabilized Zirconia in Hot Water. J Mater Sci. 1985, 20: 3988-3992
    92 Dae-Joon Kim, Hyung-Jin Jung, Duk-Ho Cho. Phase Transformations of Y_2O_3 and Nb_2O_5 Doped Tetragonal Zirconia During Low Temperature aging in Air. Solid State Ionics. 1995, 80:67-73
    93 A.E. Hughes, H. St John, P. Kountouros, H. Schubert. Moisture Sensitive Degradation in TiO_2- Y_2O_3-ZrO_2, J. Mater. Sci. Lett. 1995, 15:1125-1134
    94 S. Lawson, C. Gill, G. P. Dransfield, The Effect of Copper and Iron Oxide Addition on the Sintering and Properties of Y-TZP. J. Mater. Sci. 1995, 30:3057-3060
    95 S. Ramesb, C. Gill, S. Lawson. The Effect of Copper Oxide on Sintering, Microstructure, Mechanical Properties and Hydrothermal Ageing of Coated 2.5Y-TZP ceramics. J. Mater. Sci. 1999, 34:5457-5467
    96 Ju-woong Jang, Dae-joon Kim, Deuk-yong Lee. Size Effect of Trivalent Oxides on Low Temperature Phase Stability of 2Y-TZP. J. Mater. Sci. 2001, 36:5391-5395
    97 Susumu Nakayama, Shinji Imai, Masatomi Sakamoto. Effect of La_2O_3 Addition on Thermal-stability of Y-TZP, J. Mater. Sci. Lett. 1999, 18:1139-1141
    98 A. Feder, J. Alcala, L. Llanes, M. Anglada. Microstructure, Mechanical Properties and Stability of Nitrided Y-TZP. J. Eur. Ceram. Soc. 2003, 23:2955-2962
    99 赵振波,刘澄,于晓东,倪国年.表面掺杂CeO_2对2Y-TZP陶瓷抗低温水热腐蚀的影响.稀有金属材料与工程.1997,26 (3):50-52
    100 Whalen P. J., Reidinger F, Autrim R. F. Prevention of Low-temperatur Surface Transformation by Surface Recrystallization in Yttria-dopped Tetragonal Zirconia, J. Am. Ceram. Soc., 1989, 72(2): 319-321
    101 K.-H.哈比希著.严立译.材料的磨损与硬度.北京:机械工业出版社,1987:378
    102 A. G. Evans. D. B. Marshsll. Wear Mechanism in Ceramics. Proc. of Int. Conf. on Fundaments of Friction and Wear of Materials. Pittsburgh: AMSE, 1980:439-452
    103 陈志刚.Ce-TZP/Al_2O_3陶瓷的摩擦学研究.硅酸盐通报.1990,9 (4):9-16
    104 V. Aronov, T. Mesyef. Wear in Ceramic/ceramic and Ceramic/metal Reciprocating Sliding Contact. Journal of Tribology. 1986,108:16-22
    105 王东方,毛志远.四方氧化锆多晶瓷的磨料磨损.硅酸盐学报.1995,23 (5):518-524
    106 折晓藜,李波,林义民.Ce-TZP陶瓷的摩擦磨损特性.兰州大学学报.1994,30 (4):36-41
    107 T. E. Fischer et al. Influence of Fracture Toughness on the Wear Resistance of Yttria-doped Zirconium Oxide. J. Am. Ceram. Soc.1989, 72 (2): 252-57
    108 刘惠文,薛群基.氧化锆陶瓷的摩擦磨损行为与机理.摩擦学学报.1996,16 (1):7-13
    109 刘惠文,薛群基,徐洮.氧化锆陶瓷在摩擦过程中的相变研究.电子显微学报.1996,15 (6):55-55
    110 谭业发,王耀华,容先辉等.Mg-PSZ陶瓷在不同环境温度下的摩擦磨损行为与机制研究.摩擦学学报.1999,19 (4):337-341
    111 Woydt M, Habig K H. High Temperature Tribology of Ceramics. Tribo. Inter. 1989, 22:75-88
    112 J.D. Oscar, Barceinas-Sanchez, W. Mark Rainforth. Transmission Electron Microscopy Study of a 3Y-TZP Worn under Dry and Water-lubricated Sliding Conditions, J. Am. Ceram. Soc. 1999,82(6): 1483-1491
    113 Soo W. Lee, Stephen M. Hsu, Ming C. Shen. Ceramic Wear Maps: Zirconia. J. Am. Ceram. Soc. 1993,76 (8): 1937-194
    114 Mukhopadhyay A K, Mai Y M. Grain Size Effect on Abrasive Wear Mechanisms in Alumina Ceramics. Wear. 1993, 162-164:258-268
    115 Chih-Chung T. Yang, Wen-Cheng J. Wei. Effect of     116 Liang H, Fischer T E et al. Effect of Grain Boundry Impurities on the Mechanical and Tribological Properties of Zirconia Surfaces. J. Am. Ceram. Soc. 1993, 76:325-241
    117 刘惠文,薛群基.TZP陶瓷在水润滑下的磨损机制转变图.摩擦学学报.1998,18 (1):13-19
    118 孙兴伟,李包顺 等.氧化锆陶瓷的摩擦磨损性能.硅酸盐学报.1996,24 (2):166-172
    119 孔勇发,龚江宏,杨正方.结构陶瓷的摩擦磨损.硅酸盐学报.1998 (5):32-38
    120 L. Esposito, R. Moreno et al. Sliding Wear Response of an Alumina-zirconia System. J. Eur. Ceram. Soc.1998, 18:15-22
    121 G. W. Stachowiak, G. B. Stachowiak. Unlubricated Wear and Friction of Toughened Zirconia Ceramics at Elevated Temperature. Wear. 1991,143: 277-295
    122 B. Basu, R. G. Vitchev, J. Vleugels, J. P. Cells, O. Van Der Biest. Infulence of Humidity on the Fretting Wear of Self-mated Tetragonal Zirconia Ceramics. Acta mater. 2000, 48:2461-2471
    123 A. Medevidlle, F. Thevenot, D. Treheux. Wear Resistance of Stabilized Zirconia. J. Eur. Ceram. Soc. 1995, 15:1193-1199
    124 田欣利,于爱兵,林彬.陶瓷磨削残余应力对表面性能的影响.机械科学与技术.2002,21(4):615-616转627
    125 张航,何泽明.机械加工对陶瓷材料性能的影响.硅酸盐通报.1998 (6):48-51
    126 H.C. Kao, F.Y. Ho, C.C. Yang, W.J. Wei. Surface Machining of Fine-grain Y-TZP, Journal of the European Ceramic Society, 2000, 20:2447-2452
    127 Hart Huang. Machining Characteristics and Surface Integrity of Yttria Stabilized Tetragonal Zirconia in High Speed Deep Grinding. Materials Science and Engineering. 2003, A345:155-163
    128 贾志新.工程陶瓷成型孔加工新技术及其机理研究.山东工业大学.博士论文.1994
    129 H. Hocheng, K. L. Kuo, J. T. Lin. Machinability of Zirconia Ceramics Ultrasonic Drilling. Materials and Manufacturing Processes. 1999, 14 (5): 713-724
    130 安富义 幸.日本陶瓷协会杂志.1989,97 (2):148-154
    131 邹红 等.添加TiN改善Si_3N_4陶瓷加工性的研究.材料导报.1999,13 (2):66-68
    132 孙兴伟,刘学建 等.(TiB_2,TiN)-Si_3N_4基复合材料的性能及显微结构.硅酸盐学报.2000,28 (1):65-67+71
    133 A. H. Jones, C. Trueman, R. S. Dobedoe, J. Huddleston, and M. H. Lewis. Production and EDM of Si_3N_4-TiB_2 Ceramic Composites. British Ceramic Transactions 2001, 100 (2): 49-54
    134 王厚亮 等.TiC/Si_3N_4导电陶瓷复合材料的制备.山东陶瓷.1999,22 (2):14-17
    135 包锡芬,试论引进设备的配件、纺专器材、电子组件国产化的开发
    136 黄建洪,剪毛机刀片的金相组织和N、M处理工艺,金属热处理,1993 (10):21-26
    137 李丰敏,陶瓷在纺织中的应用,广西纺织科技,1997,26 (3):45-46
    138 尹衍升,李嘉主编.氧化锆陶瓷及其复合材料.北京:化学工业出版社,2004:279
    139 邱福贵,丝绒剪毛机及剪毛刀,丝绸,1995,(10):17-18
    140 史庆铎.ZrO_2陶瓷刃器的研制.火花塞与特种陶瓷.1998 (4):4
    141 查培全,孙海涛,第五届中国国际纺织机械展览会,纺织器材,1997,24 (3):40-45
    142 张迎春,浅议纤维切断机的刀具调整,辽宁丝绸,1998,(2):33-34
    143 自动络筒机陶瓷纺机剪刀研制成功,经济日报,北京,1997-07-11:3
    144 自动络筒机精细陶瓷剪刀,浙江科技报,浙江,1997-11-12:2
    145 陈达谦.氧化锆陶瓷应用与展望.高技术陶瓷论坛.
    146 孟国文,陈大明.陶瓷中氧化锆的研究及应用现状.材料导报.1994 (4):43
    147 郭景坤,诸培南.复相陶瓷材料的设计原则.硅酸盐学报.1996,24 (1):7-17
    148 Paul F. Becher. Microstructural Design of Toughened Ceramics, J. Am. Ceram. Soc. 1991, 74 (2): 255-269
    149 张冰,曹传宝,翟华嶂,项顼,朱鹤荪.氮化钛复合改善堇青石材料的力学性能.硅酸盐学报.2004,32 (7):822-826
    150 贾成厂.陶瓷基复合材料导论.北京:冶金工业出版社,2002
    151 邹红,邹从沛.TiN颗粒增韧Si_3N_4复合材料氧化行为的研究.核动力工程.2002,23 (4):1-4
    152 Zbrigniew S. Rak, Jerzy Czechowski. Manufacture and Properties of Al_2O_3-TiN Particulate Composites. J. Eur. Ceram. Soc. 1998, 18: 373-380
    153 林立,薛群基,赵家政.氮化钛微粉增强镍磷化学复合镀层的组织及其摩擦磨损性能的研究.摩擦学学报.1995,15 (2):104-109
    154 梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社,1993
    155 许崇海,黄传真,艾兴,赵忠元,孙德明.复相陶瓷刀具材料的物化相容性分析.材料科学与技术.2001,20 (2):260-261+268
    156 姆纳福金 (苏.钛和钛合金及其在化学工业上的应用.1981
    157 李荣久.陶瓷—金属复合材料.北京:冶金工业出版社,2004
    158 杨刚 等.Al_2O_3-3Y-8Ce-TZP复合陶瓷材料烧结工艺研究.机械工程材料.2002,26 (5):23
    159 范润华,尹衍升,边秀房.Fe-Al基复合材料化学相容性热力学分析.复合材料学报,1998,15 (1):30-34
    160 Kim D J, Jung H J, Cho D H. Phase Transformations of Y_2O_3 and Nb_2O_5 Doped Tetragonal Zirconia During Low Temperature Aging in Air. Solid State Ionics. 1995, 80: 67-73
    161 理查德 J.布鲁克主编.材料科学与技术丛书 陶瓷工艺(第Ⅰ部分).第17A卷.北京:科学技术出版社,1999
    162 施剑林.固相烧结——Ⅲ实验:超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为.硅酸盐学报,1998,26 (1):1-13
    163 J. G. Dub, M. Y. Lee. Fabrication and Sinterability in Y_2O_3-CeO_2-ZrO_2. J. Mater. Sci. 1989, 24: 4467-4474
    164 T. J. Chung, H. Song, G. H. Kim, D. Y. Kim. Microstructure and Phase Stability of Yttria-doped Tetragonal Zirconia Polycrystals Heated in Nitrogen Atmosphere. J. Am. Ceram. Soc. 1997, 80 (10): 2607-2612
    165 金宗哲,张国军,包亦望 等.复相陶瓷增强颗粒尺寸效应.硅酸盐学报.1995,23 (5):610-617
    166 D. Y. Lee, D. J. Kim, B. Y. Kim. Influence of Alumina Particle Size on Fracture Toughness of(Y, Nb)-TZP/Al_2O_3 Composites. J. Eur. Ceram. Soc. 2002, 22:2173-2179
    167 J. K. Lee, M. J. Kim, E. G. Lee, W. S. Lee. Influence of Dispersed-alumina Particle Size on the Fracture Toughness of 3 mol% Yttria-stabilized Zirconia Polycrystals (3Y-TZP). J. Mater. Sci. Lett. 2002, 21:259-261
    168 J. F. Li, R. Watanabe, Mechanical Properties of PSZ-matrix Ceramic Composites Containing Al_2O_3 Particles of Various sizes. Key Engineering Materials. 1999, 161-163:299-302
    169 K. Tsukuma, T. Takahata, M. Shiomi. Science and Technology of Zirconia, S. Somiya, N. Yamamoto and H. Yanahida. Advance in Ceramics. Columbus. OH. 1988. American Ceramic Society. 1988:721
    170 R. W. Davidge. Mechanical Behaviour of Ceramics. Cambridge: Cambridge University Press, 1979
    171 M. Taya, S. Hayashi et al. Toughening of a Particulate-reinforced Ceramic-matrix Composite by Thermal Residule Stress. J. Am. Ceram. Soc. 1990, 73(5): 1382-1391
    172 K. T. Faber, A. G. Evans, Crack deflection Process-Ⅰ. Theory, Acta metal, 1983, 31 (4): 565~576
    173 R. P. Wahi, B. Ilschner. Fracture Behaviour of Composites Based on Al_2O_3-TiC. J. Mater. Sci. 1980, 15:875-885
    174 K.-H.,哈比希.材料的磨损与硬度.北京:机械工业出版社,1987
    175 Rice J. R., Thomson R., Phil. Mag. 1974, 29:73
    176 M. K. Sinha, S. Chatterjee, D. Basu et al. Strength Hardness and Microstructure of 2Y-PSZ-Al_2O_3 Composites Prepared from Commercial Powders. J. Mater. Sci. Lett. 1994, 13:447
    177 H. Tsubakino, T. Fujiwara, K. Satani et al, Composition of Grain Boundary Phase Formed in Zirconia-3mol% Yttria Containing Alumina. J. Mater. Sci. Lett. 1997, 16:1472
    178 T. Sato, S. Ohtaki, T. Endo, M. Shimada. Transformation of Yttria Partially Stabilized Zirconia by Low Temperature Annealing in Air, J. Mat. Sci. 1985,20 (4): 1466-1470
    179 W. Z. Zhu, X. B. Zhang. Aging Behavior of Tetragonal Zirconia Polycrystal (TZP) Ceramics in the Temperature Range of 200 to 350 in Air. Scripta Materialia. 1999, 40 (11): 1229-1233
    180 D. Basu, A. Dasgupta, M. K. Sinha, B. K. Sarkar. Low-temperature Aging of Zirconia Toughened Alumina under Humid Conditions. Ceramics International. 1995, 21:277-282
    181 H. Tsubakino, M. Hamamoto, R. Nozato. Tetragonal-to-monoclinic Phase Transformation During Thermal Cycling and Isothermal Ageing in Yttria-partially Stabilized Zirconia. J. Mat. Sci. 1991 26:5521-5526
    182 S Conoci, C Melandri, G De Portu. Wear of 3Y-TZP Containing Compressive Residual Stresses at the Surface. J. Mat. Sci. 1999 (34): 1009-1015
    183 D. Y. Lee, D. J. Kim, J. W. Jang, D. W. Choi, S. J. Lee. Phase Stability of (Y, NB)-TZP/Al_2O_3 Composites under Low Temperature Hydrothermal Conditions. Materials Letters. 1999 (39): 221-226
    184 K. Ysukuma, M. Shimada. Thermal Stability of Y_2O_3 Partically Stabilized Zirconia (Y-PSZ) and Y-PSZ/Al_2O_3 Composites. J. Mater. Sci. Lett. 1985, 4 (7):857-861
    185 A. G. Eans, R. M. Cannon. Acta Metall. 1986, 34:761
    186 M. L. Mecartney. Influence of an Amorphous Second Phase on the Properties of Yttria-stabilized Tetragonal Zirconia Polycrystals(Y-TZP). J. Am. Ceram. Soc. 1987,70(1): 54-58
    187 H. Schubert, Amisotropic thermal expansion coefficients of Y_2O_3-stabilized tetragonal zirconia, J. Am. Ceram. Soc., 1986, 69 (3): 270-271
    188 高彩桥,刘家浚编著.材料的粘着磨损与疲劳磨损.北京:机械工业出版社,1989
    189 曹通坤.自润滑陶瓷刀具的设计开发及其自润滑机理研究.山东大学博士学位论文.2005
    190 汪群拥,尹占兰,汪滔.胜似黄金,不是黄金—氮化钛(TiN),化学工程师,1995 (1):24+23
    191 温诗铸.摩擦学原理.北京:清华大学出版社,1990
    192 梁小平.Y-TZP陶瓷的摩擦磨损研究.天津大学博士学位论文,2003.
    193 A. Erdemier. A Review of the Lubrication of Ceramics with Thin Solid Films, Friction and Wear of Ceramics. S. Janhanmir (ed). Marcel Dekker, Inc., 11
    194 M. F. Ashby, J. Abulawi, H. S. Kong. Temperature Maps for Frictional Heating in Dry Sliding. Tribl. Trans. 1991, 34:577-587
    195 郭春丽,王黔明.ZrO_2增韧陶瓷中的马氏体相变.机械工程材料.1998,19(3)9-10
    196 K. Cherif, B. Gueroult, M. Rigaud. Wear Behaviour of Alumina Toughened Zirconia Materials. Wear, 1996, 199:113-121
    197 D. Ostrovoy, N. Orlovskaya. Mechanical Properties of Toughened Al_2O_3-ZrO_2-TiN Ceramics, J. Eur. Ceram. Soc., 1998, 18:381-388
    198 刘惠文,薛群基.TZP陶瓷在干摩擦条件下的磨损机制转变图.摩擦学学报.1997,17 (2):115-121
    199 A. Medevielle, F. Thevenot. Wear Resistance of Stabilized Zirconias, J. Eur. Ceram. Soc. 1995, 15:1193-1199
    200 W. Bundschuh, K H. Zum Gahr. Effect of Temperature on Friction and Oscillating Sliding Wear of Dense and Porous 3Y-TZP Zirconia Ceramics. Tribol Inter, 1994, 27:97-103
    201 Johnson K. L. Contact mechanics, Cambridge: Cambridge university publication, 1990
    202 S. S. Chiang, A. G. Evans. Infulence of a Tangential on the Fracture of Two Contacting Elastic Bodies. JAm Ceram Soc. 1983, 66 (1): 210
    203 M. T. Langier. The Surface Fracture of Alumina under a Sliding Spherical Indenter. J Mater Sci. 1986, (5): 253
    204 G. N. Morscher, P. Pirouz, A. H. Heuer, Temperature of Hardness in Yttria-stabilized Zirconia Single Crystal. J. Am. Ceram. Soc. 1991,74(3): 491-500
    205 丁锐.陶瓷材料的放电加工.中国陶瓷.1997,33 (2):38-39
    206 李崇豪,赵向东.陶瓷材料电加工后变质层厚度的研究.江苏理工大学学报.1996,17 (4):57-60
    207 Petrofes N. E, Gadalla A. M., Electrical Discharge Machining of Advanced Ceramics. Ceramic Bulletin. 1988, 67 (6): 1048-1052
    208 施平,赵万生.工程陶瓷材料的电火花加工.电加工.1990,(1):27-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700