聚酰胺6和聚碳酸酯及其与K树脂共混体系拉伸力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在简要回顾聚合物的应力应变特性、屈服行为、脆韧转变现象以及断裂行为基本理论的基础上,从温度活化的分子活动性、应力活化的分子活动性、热历史的影响以及聚合物、聚合物共混物体系的力学行为的形态结构依赖性等方面综述了聚合物的力学行为的影响因素,进而提出了本论文工作的基本思路。
     首先考察了聚酰胺6(PA6)/K树脂(K)及聚碳酸酯(PC)/K共混物在不同组成、不同的测试条件下的拉伸应力应变行为。PA6/K共混物的拉伸应力应变行为随共混组成的变化很复杂;而PC/K共混物均表现出典型的非晶聚合物应力应变特性。在一定的温度范围内,PA6/K共混物的应力应变行为均表现出良好的相似性,但随着拉伸温度的提高,PA6/K共混物应力应变曲线形状有所变化;而PC/K共混物的应力应变行为在测试温度范围内均表现出良好的相似性。在很宽的应变速率范围内,随着应变速率增大,PA6/K和PC/K共混物应力应变行为的基本特征基本不变,但应力应变曲线整体上有所提升,表现为屈服应力提高。
     根据实验结果,应用Eyring方程研究了应变速率对共混物应力应变行为的影响,结果表明K树脂相的引入使PA6或PC基质比较容易达到屈服所需要的活化体积,反映了变形机理的改变。相容剂马来酸酐接枝K树脂共聚物(K-g-MAH)的加入,使得共混物应力集中因子变小,表明相容剂K-g-MAH对PA6/K和PC/K共混体系均有较好的增容作用。
     以实验结果为依据,通过计算探讨了共混物拉伸过程的总成颈变形能,认为它反应了共混物组分间相容性,并应用动态力学分析(DMTA)、扫描电镜(SEM)等测试手段进行了进一步证实。
     其次,观察到二次屈服现象并讨论了其形成原因与影响因素。拉伸形变过程中,含有50wt.%及70wt.%的K树脂的PA6/K共混物试样应力应变曲线上经历第一屈服点后,应力下降,然后成颈,在应变硬化过程中应力应变曲线达到第二个局部极大值点,并经过一个应力平台,发生了第二次屈服,而PA6/K其他组成的共混物则表现出普通的应力应变行为。相同组成的PA6/PS在相同的实验条件下,均未发现相似的现象。据差示扫描量热分析(DSC),大角X-射线衍射(WAXD),DMTA等测试结果,初步认为PA6/K共混物的第一次屈服是K树脂基体的屈服所致,而第二次屈服应归因于与PA6缠结的K树脂分子链中的软相(PS-co-PB)的永久塑性变形。提高拉伸温度,PA6/K共混物二次屈服现象弱化。拉伸速度提高到一定程度(200mm/min)后,不再表现出二次屈服现象。吸水率过低或过高,均不利于PA6/K共混物二次屈服行为的出现。
     第三,研究了PA6/K和PC/K共混物在高速拉伸条件下的脆韧转变行为。对于PA6/K共混物,随着K树脂含量的增加,PA6/K体系将发生脆韧转变,并且体系的脆韧转变速率也越高,脆韧转变温度越低。共混物脆韧转变随应变速率变化的效应可以用相应的温度变化效应表述。对于PC/K共混物,改变K树脂的含量并未明显导致PC/K共混物脆韧转变的发生。对简支梁缺口冲击样品的细微变形过程分析表明,缺口冲击变形实际上就是一种缺口尖端附近的高速拉伸变形,在这两种方法下发生脆韧转变的机理实质上是一致的。
     第四,利用单边缺口拉伸实验方法,研究了应变速率对PA6/K和PC/K共混物断裂行为的影响。测试速率对PA6/K和PC/K共混物断裂最大应力影响相似,最大应力均随着K树脂含量的增加而减小,随测试速率的对数值的增加而增加。测试速率对PA6/K和PC/K共混物断裂初始位移的影响都不大,但测试速率对PA6/K和PC/K共混物断裂扩展位移和断裂能量的影响有明显的不同。对PA6/K 80/20与PC/K 80/20共混物在不同温度下的应变速率影响研究进一步表明,温度显著地影响PA6/K与PC/K共混物的变形过程,低应变速率下聚合物共混物的断裂行为更易受相态结构的影响,高应变速率下聚合物共混物的断裂行为不是低应变速率下行为的简单外推。
     第五,对带有预制裂纹试样在低应变速率下的拉伸断裂特性的研究发现,此时试样的应力应变行为与常规试样有着显著的区别,弹性形变和屈服过程之后,均表现出较为明显的成颈和撕裂特征。研究表明,对于PA6/K体系,K树脂能显著地改善PA6材料的抗裂纹扩展能力,K-g-MAH的加入可以进一步使PA6/K共混物的裂纹阻力和塑性变形能量吸收能力均得到了提高。能量拆分的结果表明, PA6/K共混材料断裂行为的差异主要决定于材料屈服阶段的行为。对于PC/K体系,K树脂的加入并不能显著地影响PC断裂的裂纹扩展与塑性变形过程。能量拆分的结果表明,K-g-MAH的加入对PC/K共混物韧性的提高主要来自于屈服阶段抗裂纹扩展能力的改善。
On the basis of a brief introduction of the theory of stress-strainbehavior, yielding characteristics including the unusual double yieldingphenomenon, brittle–ductile transition and fracture behavior of polymers,this thesis reviewed the influencing factors of deformation behavior ofpolymers from the temperature activated molecular mobility, stressactivated molecular mobility, effect of heating history and dependence ofmechanical behavior of polymers, polymer blends on the structures andmorphology and forward the purpose and arrangement of this study.
     Firstly the dependence of tensile stress-strain behavior of polyamide6 (PA6) /K resin (K) blends and Polycarbonate (PC) /K resin blends atvarious composition on the test conditions was investigated. The resultsshowed that PC/K blends presented the typical stress strain behavior ofnoncrystalline polymers in a wide range of composition, while the PA6/Kblends presented the varied tensile stress-strain behavior at variouscompositions. In a certain range of tensile temperatures, the stress strainbehaviors of PA6/K blends studied showed good similarity. With thetensile temperature increasing, the stress strain curves changed in a sort ofway. While the stress-strain behaviors of PC/K blends studied showed goodsimilarity in all test temperatures. In a wide range of tensile velocities,with the tensile velocity increasing, the basic characteristics of thesestress stain behavior of PA6/K and PC/K blends were unchanged while theoverall stress strain curves were raised and yielding stress depressed.
     According to the experimental results, the Eyring equation was usedto model the strain rate sensitivity of the stress stain behavior of PA6/Kand PC/K blends. The results showed that PA6 matrix or PC matrix wereeasy to reach the activation volume for yielding with incorporating K resin,which reflected the change of deformation mechanism. Incorporation of thecompatibilizer, maleic anhydride-grafted K resin (K-g-MAH), into PA6/Kor PC/K blends could decrease the stress concentration factors of theseblends. This implied that the compatibility between PA6/K and PC/Ksystems improved by adding K-g-MAH.
     On the basis of the experimental results, through the use of mathematical methods, the deformation energy of the tensile neckingprocess was discussed and deemed to reflect the compatibility of polymerblends, the results of Dynamic mechanical thermal analysis (DMTA) andscanning electron microscope (SEM) were applied to further confirm ourconsideration.
     Secondly the unusual double yielding was observed, and the cause offormation and the influencing factors were investigated. In the tensiledeformation of PA6/K blends containing 50wt.% and 70wt.% K resin, astress drop came after the first yield point and then the sample occurrednecking. The stress showed the second maximum with the strain hardeningprocess, then followed by a stress plateau, the second yielding occurred.But the PA6/K blends with other compositions presented usual stress-strainbehavior. No similar double yielding phenomenon was found at the PA6/PSblends with the same compositions under the same conditions. Accordingto the result of differential scanning calorimetry (DSC), wide-angle X-raydiffraction (WAXD) and DMTA analysis, it was superficially suggestedthat the first yielding of PA6/K blends might cause by the deformation ofthe K resin matrix, the second yield point might be correlated to thepermanent plastic deformation of the entanglement of PA6 chains and softphase of K resin (PS-co-PB). The double yielding phenomenon for PA6/Kblends depressed with the increasing of tensile temperature. When thetensile velocity increased to a certain velocity (200mm/min), the stressstrain behavior of PA6/K blends transformed from double yielding to usualstress strain behavior. Too high or too low moisture absorption all madeagainst the occurring of double yielding of PA6/K blends.
     Thirdly, the brittle–ductile transition (BDT) behaviors of PA6/K andPC/K blends in high speed tensile tests were studied. For the PA6/K blends,BDT occurred with the increase of the K resin content in high speed tensiletests. The more the K resin content was, the higher the BDT tensile speedwas and the lower the BDT tensile temperature was. The effect of tensilespeed on the BDT of polymer blends can be characterized by thecorresponding effect of tensile temperature. For the PC/K blends, BDT didnot occurr with K resin content. The micro deformation process analysis ofthe notched Charpy impact samples in impact test showed that the notchedimpact deformation was really a high speed tensile deformation at the narrow region near notch tips, The BDTs in both Charpy impact and highspeed tensile tests shared the same mechanism.
     Fourthly, the effect of strain rate on the PA6/ K resin and PC/K resinblends were investigated using the Single Edge Notch Tensile (SENT) test.The similar effect of test speed on the fracture maximum stress was foundin both PA6/K and PC/K blends. The maximum stress of both PA6/K andPC/K blends decreased with increasing K resin content, and increased withthe logarithm of test speed. Test speed seemed to slightly influence theinitiation phase of fracture. However, the influences of test speed onfracture propagation displacement and fracture energy for the PA6/K andPC/K blend presented distinct difference. The PA6/K and PC/K blendcontaining 20wt.% K resin was investigated further. SENT tests were doneat different temperatures over the complete test speed range. Testtemperature apparently affects plastic deformation process of both PA6/Kand PC/K blend. The fracture behaviors of polymer blends at low testspeeds was more easily affected by the morphology, the fracture behaviorsat high test speeds could not be simply expected based on the low speedsresults.
     Finally, the tensile fracture characteristic of PA6/K and PC/K blendssamples with pre-crack under the low strain rate were studied. The resultsshowed that with a pre-crack, the stress strain differ a lot from conventionaltensile samples: after the elastic deformation and yielding process, theyshowed marked necking and tearing process. The results showed adding Kresin to PA6 could significantly enhance the crack resistance of PA6, thefurther improvement of crack resistance and the energy absorbing abilityfor plastic deformation of PA6/K blends appeared when K-g-MAH wasincorporated. The energy partition results showed the difference of thefracture behavior was mainly from the yielding process. While adding Kresin to PC could not significantly affect the crack propagation or plasticdeformation process of PC, and the energy partition results showed theeffect of K-g-MAH on the fracture toughness for the PAC/K blends wasmainly achieved through its influence on the specific essential of fracture inthe yielding process.
引文
[1] 傅政. 高分子材料强度及破坏行为[M]. 北京: 化学工业出版社,2005:20-80.
    [2] 何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000:34-112.
    [3] 何平笙. 高聚物的力学性能[M]. 合肥: 中国科学技术大学出版社,1997:134-156.
    [4] 焦剑, 雷渭媛. 高聚物结构性能与测试[M]. 北京: 化学工业出版社,2003:11-56.
    [5] R. N. Haward, R. J. Young. The Physics of Glassy Polymers.London :Chapman & Hall, 1997:13-56.
    [6] S. Hillmansen, R.N. Haward. Adiabatic failure in polyethylene.Polymer, 2001,42:9301-9312.
    [7] Y.H. Kim, R.H. Wagoner. An Analytical Investigation ofDeformation-Induced Heating in Tensile Testing. Int. J. Mech. Sci.,1987,29:179-194.
    [8] S.W. Allison, I.M. Ward, J. Brit, The cold drawing of polyethyleneterephthalate. Appl. Phys., 1967,18:1151-1164.
    [9] 杨伟. 半晶聚合物的应力应变行为及其与形态结构的关系[D] , 四川大学博士学位论文,2006.
    [10] C.G’Sell, J.M. Hiver, A. Dahoun, et al. Video-controlled tensile testingof polymers and metals beyond the necking point. J. Mat. Sci., 1992,27, 5031– 5039.
    [11] E.M. Arruda, M.C. Boyce. Evolution of Plastic Anisotropy inAmorphous Polymers During Finite Straining. Int. J. Plast., 1993, 9:697–720.
    [12] M.C.Boyce, E.M.Arruda, R. Jayachandran. Polym. Eng. Sci.,1994,34:716–725.
    [13] J.D. Ferry. Viscoelastic Properties of Polymers. New York: JohnWiley& Sons Inc.,1980:130-145.
    [14] N.W. Tschoegl. The Phenomenological Theory of Linear ViscoelasticBehaviour: an Introduction. Berlin: Springer-Verlag,1989:45-80.
    [15] W.N. Findley , J.S. Lai , K. Onaran. Creep and Relaxation ofNonlinear Viscoelastic Materials: With an Introduction to LinearViscoelasticity. Amsterdam: 18 t h Applied Mathematics and Mechanics,1976:23-40.
    [16] H.Leaderman. Elastic and Creep Properties of FilamentousMaterials and Other High Polymers. The Textile Foundation,Washington D.C. 1943
    [17] G. Spathis, E. Kontou. Nonlinear Viscoelastic Model for the Predictionof Double Yielding in a Linear Low-Density Polyethylene Film. J. Appl.Polym. Sci., 2004, 91:3519-3527.
    [18] K. C. Valanis. A theory of viscoplasticity without a yield surface.Part I.theory, Arch. Mech., 1971,23:517-533.
    [19] R. A. Schapery. On the characterization of nonlinear viscoelasticmaterials. Polym. Eng. Sci., 1969,9:295-310.
    [20] I. M. Ward. Mechanical Properties of Solid Polymers. Chichester:John Wiley & Sons, 1983:76-89.
    [21] P. K. Mallick, Y. Zhou. Yield and fatigue behavior of polypropyleneand polyamide-6 nanocomposites. J. Mater. Sci., 2003,38:3183-3190.
    [22] A. S. Argon. A theory for the low-temperature plastic deformation ofglassy polymers. Phil. Mag., 1973,28:839-865.
    [23] R. Haward,G. Thackray. The use of a mathematical model to describeisothermal stress-strain curves in glassy thermoplastics. Proc. Roy. Soc.A, 1968,302:453-472.
    [24] M. C. Boyce, D. M. Parks, A. S. Argon. Large inelastic deformation ofglassy polymers: rate dependent Ⅰ ndent constitutive model. Mech. Mat.,1988,7:15- 33.
    [25] C. P. Buckley, D. C. Jones. Glass-rubber constitutive model foramorphous polymers near the glass transition . Polymer, 1995,36:3301-3312.
    [26] L. E. Govaert, P. J. de Vries , P. J. Fennis, et al. Influence of strain rate,temperature and humidity on the tensile yield behaviour of aliphaticpolyketone. Polymer, 2000,41:1959-1962.
    [27] R. Popli, L. Mandelkern . Influence of Structural and MorphologicalFactors on the Polyethylenes. J. Polym. Sci. B, Polym. Phys.,1987,25-33:441-483.
    [28] P.J. Flory, D.Y. Yoon, Molecular morphology in semicrystallinepolymers. Nature, 1978, 272 (5650): 226-229.
    [29] V. Balsamo, A. J. Müller, The phenomenon of double yielding undertension in low-density polyethylene, linear low-density polyethyleneand their blends. J. Mater. Sci. Lett., 1993,12:1457-.
    [30] A. J. Müller, V. Balsamo, F. Dasilva, et al. Shear and ElongationalBehavior of Linear Low-Density and Low-Density Polyethylene BlendsFrom Capillary Rheometry. Polym. Eng. Sci., 1994, 34:1455-1463.
    [31] R. Seguela, O. Darras. Phenomenological aspects of the double yield ofpolyethylene and related copolymers under tensile loading. J. Mater.Sci. 1994, 29:5342-5352.
    [32] N. W. Brooks, A. P. Unwin, R. A. Duckett, et al. Double yield points inpolyethylene: structural changes under tensile deformation. J.Macromol. Sci. B, 1995, 34:29-54.
    [33] H. Springer, A. Hengse, G. Hinrichsen. An investigation of the yieldbehavior of ethylene-1-octene copolymer fractions . Colloid. Polym.Sci.,1993,271:523-528.
    [34]. Valérie Gaucher-Miri, Roland Séguéla, Tensile Yield of Polyethyleneand Related Copolymers: Mechanical and Structural Evidences of TwoThermally Activated Processes. Macromolecules, 1997, 30:1158-1167
    [35] J. C. Lucas, M. D. Failla, F. L. Smith, et al. The double yield in thetensile deformation of the polyethylenes. Polym. Eng. Sci., 1995,35:1117-1123.
    [36] M. F. Butler, A.M. Donald, A.J. Ryan. Time resolved simultaneoussmall- and wide-angle X-ray scattering during polyethylenedeformation. 1. Cold drawing of ethylene-alpha-olefin copolymers.Polymer, 1997, 28:5521–5538.
    [37] N.W. Brooks, R. A. Duckett, I. M.Ward. Modeling of double yieldpoints in polyethylene: Temperature and strain-rate dependence . J.Rheology, 1995, 39:425-436.
    [38] X. R. Xu, J. T. Xu, L. X. Feng. Tensile behaviour of homogeneousethylene copolymers . Polym. Int. 2002, 51:458-463.
    [39] K. Hoashi , N. Kawasaki, R. D. Andrews. Structure and Properties ofPolymer Films. New York: Plenum Press, 1973:283-286.
    [40] S. Muramatsu, J. B. Lando. Double Yield Points in Poly(Tetramethylene Terephthalate) and Its Copolymers Under TensileLoading . Polym. Eng. Sci.,1995,35:1077-1085.
    [41] Gui-Fang Shan, Wei Yang, Bang-hu Xie, et al. Double yieldingbehaviors of polyamide 6 and glass bead filled polyamide 6 composites.Polym. test., 2005,24(6):704-711.
    [42] R. Adhikari, M. Buschnakowski, S. Henning, et al. Double Yielding ina Styrene/Butadiene Star Block Copolymer. Macromo1. Rapid Comm.,2004, 25(5): 653-658.
    [43] Z.M. Li, B.H. Xie, S. Yang, et al.. Morphology-tensile behaviorrelationship in injection molded poly(ethylene terephthalate)/polyethylene and polycarbonate/polyethylene blends. (II) Part IITensile behavior. J. Mater. Sci., 2004, 39(2): 433-443.
    [44] 杨伟, 单桂芳, 杨鸣波等, 玻璃微珠填充改性PA6 的研究[J], 中国塑料, 2005, 19(1):22-26
    [45]朱锡雄, 朱国瑞. 高分子材料强度学( 变形和断裂行为) [M].杭州:浙江大学出版社, 1992:267-277.
    [46]赵世琦, 吕水周. 不饱和聚酯树脂的脆韧转变现象[J] , 树热固性树脂,1995, 4:11-14.
    [47] Z. Bartczak, A.S. Argon, R.E. Cohen, et al. Toughness mechanism insemi-crystalline polymer blends:I.High-density polyethylene toughenedwith rubbers. Polymer,1999;40:2331-2346.
    [48] W. Jiang, C.H. Liu, Z.G. Wang, et al. Brittle-tough transition inPP/EPDM blends: effects of interparticle distance and temperature.Polymer, 1998;39:3285-3288.
    [49] A. van der Wal, R. Nijhof, R.J. Gaymans. Polypropylene–rubber blends:2. The effect of the rubber content on the deformation and impactbehaviour. Polymer, 1999;40:6031-6044.
    [50] J.P.F. Inberg, A. Takens, R.J. Gaymans .Strain rate effects inpolycarbonate and polycarbonate/ABS blends. Polymer, 2002, 43:2795-2802.
    [51] Jiang W, Tjong SC, Li RKY. Brittle–tough transition in PP/EPDMblends: effects of interparticle distance and tensile deformation speed.Polymer, 2000;41:3479-3482.
    [52] R. Gensler, C.J.G. Plummer, C. Grein, et al. Influence of the loadingrate on the fracture resistance of isotactic polypropylene and impactmodified isotactic polypropylene. Polymer, 2000;41: 3809-3819.
    [53] S.Wu. Phase structure and adhesion in polymer blends: A criterion forrubber toughening. Polymer, 1985, 26: 1855-1863
    [54] A.Margolina, S. Wu. Percolation model for brittle-tough transition innylon/rubber blends. Polymer, 1988,29(12):2170-2173.
    [55] S. Wu. Control of Intrinsic Brittleness and Toughness of Polymers andBlends by Chemical Structure: a Review. Polym. Int., 1992,29(3):229-247.
    [56] S. Wu. A Generalized Criterion for Rubber Toughening: The CriticalMatrix Ligament Thickness . J. Appl. Polym. Sci., 1988, 35:549-561.
    [57] S. Wu. Chain Structure, Phase Morphology, and ToughnessRelationships in Polymers and Blends . Polym. Eng. Sci., 1990,30(13):753-761.
    [58] Xuanzheng Wu, Xiaoguang Zhu, Zongneng Qi . The 8th InternationalConference on Deformation, Yield and Fracture of Polymers.London: 1991, 78/1.
    [59] R.J.M. Borggreve, R.J. Gaymans, J. Schijer, et al. Brittle-toughtransition in nylon-rubber blends: effect of rubber concentration andparticle size. Polymer,1987, 28, 1489-1496.
    [60] D.J. Gilbert, A.M. Donald. Toughening mechanisms in high impactpolystyrene . J. Mater. Sci., 1986,21:1819-1823.
    [61] M.C.M. van der Sanden, J.M.M. de Kok, H.E.H. Meijer. Deformationand toughness of polymeric systems: 7. Influence of dispersed rubberyphase. Polymer, 1994,35, 2995-3004.
    [62] Q. Fu, G. Wang, J. Shen. Polyethylene Toughened by CaCO3 Particle:Brittle-Ductile Transition of CaCO3 Toughened HDPE. J. Appl. Polym.Sci., 1993,49:673-677.
    [63] K. Dijkstra, J. Laak.ter, R.J. Gaymans, Nylon-6/rubber blends: 6.Notched tensile impact testing of nylon-6/(ethylene-propylene rubber)blends. Polymer, 1994, 35, 315-322.
    [64] 姜伟,李海东,梁好均等. 聚合物共混体增韧机理的研究:增塑剂和形变速率的影响[J]. 高分子材料科学与工程,1998,14(6):102-104.
    [65]刘浙辉,朱晓光,张学东等. 聚合物共混物脆韧转变性能研究——形态参数对聚氯乙烯/丁睛橡胶共混物脆韧转变性能的影响[J].高分子学报,1996, 4:468-474.
    [66]刘浙辉,朱晓光,张学东等. 聚合物共混物脆韧转变性能研究:Ⅱ.准韧性聚合物共混物脆韧转变的几何模型[J].高分子学报,1998,1:1-7.
    [67]刘浙辉,朱晓光,张学东等. 聚合物共混物脆韧转变性能研究:Ⅲ.分散相形态参数之间的关系[J].高分子学报,1998,1:32-38.
    [68]刘浙辉,朱晓光,张学东等.聚合物共混物脆韧转变性能研究: Ⅳ.橡胶粒子的分布对PVC/NBR 共混物脆韧转变的影响[J]. 高分子学报,1997,5:565-572.
    [69]刘浙辉,朱晓光,张学东等.聚合物共混物脆韧转变性能研究:V.橡胶粒子的分布对聚氯乙烯/丁腈橡胶共混物韧性刚性关系的影响[J]. 高分子学报,1998,3:355-359.
    [70] Z. H. Liu, X. D. Zhang, X. G. Zhu, et al. Effect of morphology on thebrittle ductile transition of polymer blends: 1. A new equation forcorrelating morphological parameters. Polymer,1997, 38:5267-5273.
    [71] 张宇东,姜文博,金日光.分散相对高分子合金增韧及脆/韧转变的影响[J].材料研究学报,2000,14(4):349-354。
    [72] Y.D. Zhang, R.G. Jing. Proceeding of the Third National Symposiumon Deformation, Damage and Fracture of Polymers.Chengdu1994:53.
    [73] 张宇东,武得珍,张立群等.聚氯乙烯(PVC)共混合金(Ⅱ)聚合物共混改性的增韧理论[J].化工进展,1994,4:49-54.
    [74] 张宇东,金日光.共混合金力学性能的研究Ⅰ.双组分合金力学性能的研究[J].高分子材料科学与工程,1997,13(6):93-97.
    [75] 张宇东,金日光.共混合金力学性能的研究: Ⅱ.CPE,ACR 对PVC 共混体系力学性能的影响[J]. 高分子材料科学与工程, 1998, 14(5):64-66.
    [76] 张 宇 东 ,金 日 光 . 共 混 合 金 力 学 性 能 的 研 究 : Ⅲ .CPP对 PVC 共 混 体系 力 学 性 能 的 影 响[J].高 分 子 材 料 科 学 与 工 程 ,1998,14(6):92-95.
    [77] T.L. Anderson. Fracture Mechanics: Fundamentals and Applications, Boca Raton, FL, 2 nd Ed., CRC Press, 1995:1-20.
    [78] D. R. 保 罗 , C. B. 巴 克 纳 尔 . 聚 合 物 共 混 物 :组 成 与 性 能 [M].北 京 :科 学 出 版 社,2005:3-6.
    [79] 徐 振 兴 .断 裂 力 学 [M].长 沙 :湖南大 学出版社 ,1987:56-79.
    [80] D. Broek. Elementary Engineering Fracture Mechanics. Dordrecht, The Netherlands, Martinus Nijhoff Pubishers, 1986:1-65.
    [81] J. F. Knott. Fundamentals of Frature Mechanics. London, Butterworths, 1973:3-48.
    [82] J. G. Williams. Frature Mechanics of Polymer, Ellis Horwood, Chichester, Untied Kingdon, 1987:13-78.
    [83] J. K. Kim, Y. W. Mai. Engineering Interfaces in Fiber-reinforced Composites. Oxford, Elsevier Science, 1998:1-30.
    [84] S P Shah, S E Swartz, C Ouyang. Fracture Mechanics of Concrete, John Wiley, New York, 1995:45-89.
    [85] J. Wu, Y.W. Mai. The essential fracture work concept for toughness measurement of ductile polymers . Polym. Eng. Sci., 1996,36:2275- 2288.
    [86] A. Arkhireyeva, S. Hashemi, M. Obrien. Factors affecting work of fracture of uPVC film . J. Marer. Sci., 1999,34: 5961-5974
    [87] M. L. Lu, K. C. Chiou, F. C. Chang. Fracture Toughness Characterization of a PC/ABS Blend Under Different Strain Rates By Various J-Integral Methods. Polym. Eng. Sci., 1996, 36,18:2289-2295
    [88] S.C. Tjong, S.A. Xu, R.K.Y. Li. Work of Fracture of Polystyrene/High Density Polyethylene Blends Compatibilized by Triblock Copolymer. J. Appl. Polym. Sci., 2000,77:2074-2081
    [89] C.Y.C. Emma , K.Y. P. Wendy , K.Y.L. Robert ,et al. Effect of Strain Rate on the Fracture Toughness of Some Ductile Polymers Using the Essential Work of Fracture (EWF) Approach. Polym. Eng. Sci., 2000,12:2558-2568
    [90] H. Swei, B. Crist, S.H. Carr. The J Integral Fracture Toughness and Damage Zone Morphology in Polyethylenes. Polymer, 1991,32: 1440-1446.
    [91] R. G. Hill. The fracture properties of glass polyalkenoate cements as a function of cement age. J. Mater. Sci., 1993,14:3851-3858.
    [92] K. B. Broberg. Critical review of some theories in fracture mechanics. Int. J. Fract.,1968,4,11-18.
    [93] B. Cotterell, J.K. Reddel. The essential work of plane stress ductile fracture. Int. J. Fract., 1977, 13, 267-277
    [94] Y.W. Mai, P. Powell. Essential Work of Fracture and J-Integral Measurements for Ductile Polymers. J. Polym. Sci.: Part B, 1991, 29(7): 785-793.
    [95] J. Wu, Y.W. Mai, B. Cotterell. Fracture toughness and fracture mechanisms of PBT/PC/IM blend. J. Mater. Sci., 1993, 28:3373-3384.
    [96] J.S.S. Wong, D. Ferrer-Balas, R.K.Y. Li, et al. On tearing of ductile polymer films using the essential work of fracture (EWF) method. Acta Mater., 2003,51:4929-4938
    [97] D. Ferrer-Balas, Y.W. Mai. Fracture behaviour of polypropylene films at different temperatures: assessment of the EWF parameters. Polymer, 2001, 42: 2665-2674.
    [98] B.K. Satapathy, R. Lach, R. Weidisch, et al.Morphology and crack toughness behaviour of nanostructured block copolymer/homopolymer blends. Eng. Fract. Mech., 2006, online.
    [99] J. Karger-Kocsis, T. Barany, E.J. Moskala. Plane stress fracture toughness of physically aged plasticized PETG as assessed by the essential work of fracture (EWF) method. Polymer, 2003, 44:5691- 5699
    [100] J. Karger-Kocsis, T. Barany. Plane-stress fracture behavior of syndiotactic polypropylenes at various crystallinity as assessed by the essential work of fracture method. Polym. Eng. Sci., 2002, 42:1410 -1419.
    [101] Y. Bokoi, C. Ishiyama , M. Shimojo. Effects of sorbed water on crack propagation in poly(methyl methacrylate) under static tensile stress. J. Mater. Sci., 2000, 35: 5001-5011.
    [102] L. Rey, N. Poisson, A. Maazouz. Enhancement of crack propagation resistance in epoxy resins by introducing poly(dimethylsiloxane) particles. J. Mater. Sci., 1999, 34: 1775-1781.
    [103] B. Fennell, R.G. Hill, A. Akinmade. Failure and fracture characteristics of glass poly(vinylphosphate) cement. Dent. Mater., 1998, 14: 358-364.
    [104] S.C. Wong, Y.W. Mai, Y. Leng. Fiber Reinforcement and Fracture Resistance of PC/PBT/LCP Ternary In Situ Composite. Polym. Eng. Sci., 1998,38:156-168.
    [105] R. A. Pearson, A. F. Yee. Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J. mater. Sci., 1991,26:3828-3844.
    [106] H. J. Sue. Study of Rubber-Modified Brittle Epoxy Systems. II: Toughening Mechanisms Under Mode-I Fracture. Polym. Eng. Sci.,1991, 31:44, 275-288.
    [107] A. J. Kinloch, M. L. Yuen, S. D. Jenkins. Thermoplastic-toughened epoxy polymers. J. Mater. Sci.,1994,9:3781-3790.
    [108] B. Geisler, F. N. Kelley. Rubbery and Rigid Particle Toughening of Epoxy Resins. J. Appl. Polym. Sci.,1994,54:177-179.
    [109] S. V. Nair, S. C. Wong, L. A. Goettler. Fracture resistance of polyblends and polyblend matrix composites: Part I Unreinforced and fibre-reinforced nylon 6,6/ABS polyblends. J. mater. Sci.,1997,32: 5335 -5346.
    [110] S. V. Nair, A. Subramaniam, L. A. Goettler. Fracture resistance of polyblends and polyblend. matrix composites: Part II: Role of the rubber phase in nylon 6,6/ABS alloys. J. mater. Sci., 1997,32: 5347–5354.
    [111] D. M. Otterson, B. H. Kim, R. E. Lavengood. The effect of compatibilizer level on the mechanical properties of a nylon 6/ABS Polymer blend. J. mater. Sci., 1991,26:1478-1484.
    [112] D. M. Otterson, B. H. Kim, R. E. Lavengood. Effect of testing speed on the crack growth resistance properties of nylon 6/ABS polymer blends. J. mater. Sci., 1991,26:4855-4860.
    [113] B. H. Kim, C. R. Joe. On the Resistance to Crack Initiation and Growth.Eng. Fract. Mech., 1989,34:11, 221-231.
    [114] C. B. Lee, M. L. Lu, F. C. Chang. Fracture Toughness of High-Impact Polystyrene Based on Three J-Integral Methods. J. Appl. Polym. Sci., 1993,47:1867-1880.
    [115] M.L. Lu, C.B. Lee, F.C. Chang. Fracture Toughness of Acrylonitrile- Butadiene-Styrene by J-Integral Methods. Polym. Eng. Sci., 1995,35: 1433-1439.
    [116]M. L. Lu, K. C. Chiou, F. C. Chang. Fracture Toughness Characterization of a PC/ABS Blend Under Different Strain Rates By Various J-Integral Methods. Polym. Eng. Sci.,1996, 36:2289-.
    [117]M. L. Lu, F. C. Chang. Fracture toughness of a PC/ABS blend by the ASTM E813 and hysteresis energy J integral methods: effect of specimen thickness and side groove. Polymer, 1995,36:2541-2552.
    [118] J. Wu, Y. W. Mai, A. F. Yee. Fracture toughness and fracture mechanisms of polybutylene-terephthalate/ polycarbonate/ impact-modifier blends. J. mater. Sci., 1994,29: 4510-4522.
    [119] S. Hashemi. Work of Fracture of PBT/PC Blend: Effect of Specimen Size, Geometry, and Rate of Testing. Polym. Eng. Sci., 1997,37:912- 921.
    [120] M. Heino, P. Hietaoja, J. Sepp?l?,et al. Studies on Fracture Behavior of Tough PA6/PP Blends. J. Appl. Polym. Sci.,1997,66:2209-2220.
    [121] D. E. Mouzakis, F. Stricker, R. Mülhaupt, et al. Fracture behaviour of polypropylene/glass bead elastomer composites by using the essential work-of-fracture method. J. mater. Sci.,1998,33:2551-2562.
    [122] Y. W. Mai, On the plane-stress essential fracture work in plastic failure of ductile materials. Int. J. Mech. Sci., 1993,35:995-1005.
    [123] Y. W. Mai. On the tear resistance of paper. Appita,1983,36:461-465.
    [124] F. R. Schwarzl, A. J. Staverman. Time-temperature dependence of linear viscoelastic behavior. J. Appl. Phys., 1952, 23: 838–843.
    [125] J.M. Hutchinson. Relaxation processes and physical aging, In: R.N. Haward and R.J. Young, Eds., The Physics of Glassy Polymers, Chapman & Hall. 1997.
    [126] R.A. Schapery. On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci., 1969, 9: 295-310.
    [127] H. Nakayasu, H. Markovitz, D.J. Plazek. The frequency and tem-. perature dependence of the dynamic mechanical properties of a high density polyethylene. Trans. Soc. Rheol., 1961,5:261-283.
    [128] R.H. Boyd. Relaxation processes in crystalline polymers: experimental behaviour, a review. Polymer, 1985, 26:323–347.
    [129] C. Bauwens-Crowet, J.C. Bauwens, G. Homès. Tensile yield-stress behavior of glassy polymers . J. Polym. Sci. A, 1969, 7:735–742.
    [130] J.A. Roetling. Yield stress behavior of polymethylmethacrylate. Polymer, 1965, 6: 311–317.
    [131] Y. Liu, R.W. Truss. A study of tensile yielding of isotactic polypropylene. J. Polym. Sci. B, 1994, 32: 2037–2047.
    [132] L.C.E. Struik. Physical Aging in Amorphous Polymers and Other Materials. Amsterdam: Elsevier, 1978:103-165.
    [133] A.S. Argon, R.E. Cohen. Crazing and toughness of block copolymers and blends. Adv. Polym. Sci., 1990, 92: 301-351.
    [134] A.Galeski. Dynamic mechanical properties of crystalline polymer blends. The influence of interfaces and orientation. e-Polymers, 1990,026:1-29.
    [135] 吴 培 熙 , 张 留 成 . 聚 合 物 共 混 改 性 [M]. 北 京 : 中 国 轻 工 业 出 版社.1996
    [136] 陈 民 杰 ,张 军 . 聚 酰 胺 共 混 改 性 研 究 进 展 [J].合 成 树 脂 及 塑 料 ,2003, 20(1):72-77.
    [137] 王 云 芳 . 聚 碳 酸 酯 共 混 体 系 的 研 究 进 展 [J]. 应 用 化 工 ,2005,34 (12) :726-730
    [1] I. M. Ward. Review: The yield behaviour of polymers. J. Mater. Sci., 1971, 6: 1397-1417.
    [2] R. M. Christensen. Theory of Viscoelasticify. New York: Academic Press,1971:1-200.
    [3] C. Bauwens-Crowet, J. C. Bauwcns, G. Homes. J. Mater. Sci.,1972, 7:176-
    [4] P. B. Bowden, J. A. Jukes. The plastic flow of isotropic polymers . J. Mater. Sci., 1972,7:52-63.
    [5] N. Brown, IM Ward. The Yield Behavior of Oriented Polyethylene Terephthalate. Phil Mag., 1968,18: 483 -502.
    [6] S. Rabinowitz, I.M. Ward, J.S.C. Parry. The effect of hydrostatic pressure on the shear yield behaviour of polymers. J. Mater. Sci., 1970, 5:29-39.
    [7] J. Richeton, S. Ahzi, K.S. Vecchio. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Sol. Struct.,2006,43:2318-2335.
    [8] A. S. Argon.A theory for the los temperature plastic deformation of glassy polymers. Phil Mag.,1973,28:839- 865.
    [9] M. Kitagawa, D. Zhou, J. Qiu, Stress-strain curves for solid polymers. Polym. Eng. Sci., 1995, 35(22):1725-1732.
    [10] 梁 基 照 . PP/LDPE 共 混 物 的 拉 伸 力 学 性 能 [J]. 塑 料 工 业 ,1994,5:41 -44.
    [11] 田 际 波 ,戴 文 利 ,邹 晓 轩 等 . PA6/K-MAH 共 混 物 的 制 备 与 性 能 [J].高 分 子 材 料 科 学 与 工 程 , 2006, 22 (1): 226-229.
    [12] 潘 吉 林 , 杨 伟 , 李 忠 明 等 . 聚 合 物 的 二 次 屈 服 现 象 [J]. 中 国 塑 料 , 2005, 19(9): 20-27.
    [13] 何 曼 君 , 陈 维 孝 , 董 西 侠 . 高 分 子 物 理 [M],上 海 : 复 旦 大 学 出 版社 , 2000: 306-318.
    [14] 宋 谋 道 , 张 邦 华 , 郝 广 杰 等 . CPE 增 容 PVC/SBS 共 混 体 系 的 研 究[J]. 高 分 子 材 料 科 学 与 工 程 , 1994, 9: 60-65.
    [15] 过 梅 丽 . 高 聚 物 与 复 合 材 料 的 动 态 力 学 热 分 析( 第 一 版 )[M],北京: 化 学 工 业 出 版 社 ,2002:34.
    [16] S. Cimmino, I. D. Orazio, R. Greco, et al. Morphology properties relationgships in binary polyamide 6/rubber blends: influence of the addition of a functionalized rubber. Polym. Eng. Sci., 1984, 24(1): 48-56 .
    [17] F. Ide, A. Hasegawa. Studies on polymer blend of nylon6 and polypropylene or nylon6 and polystrene using the reaction of polymer. J Appl. Polym. Sci. Eng., 1974,18(4): 963-974 .
    [18] 韩 艳 春 , 杨 宇 明 , 李 滨 耀 等 . 酞 侧 基 聚 芳 醚 酮 拉 伸 屈 服 行 为 的 研究[J]. 塑 料 工 业 , 1995, 2: 22-25.
    [19] L.S. Dong, R.H. Ollley, D.C. Bassett. On morphology and the competition between crystallization and phase separation in polypropylene–polyethylene blends.J. Mater. Sci.,1998,33: 4043-4048.
    [20] E. Kontou. Effect of Thermal Treatments on the Yielding of Polycarbonate. J. Appl. Polym. Sci., 2005, 98:796-805.
    [21] J.S. Lazurkin. Cold-drawing of glass-like and crystalline polymers. J. Polym. Sci., 1958, 30:595–604.
    [22] R. E. Robertson. On the Cold-Drawing of Plastics. J. Appl. Polym. Sci.,1963,7:443-450.
    [23] J. Roetling. Yield stress behaviour of poly (methyl methacrylate). Polymer,1965,6:311-317.
    [24] R. W. Truss, A. C. Lee. Yield behaviour of a melt-compounded polyethylene–intercalated montmorillonite nanocomposite. Polym. Int., 2003,52:1790–1794.
    [25] P. K. Mallick, Yuanxin Zhou. Yield and fatigue behavior of polypropylene and polyamide-6 nanocomposites. J. Mater. Sci., 2003;38:3183-3190.
    [26] I. M. WARD. Mechanical Properties of Solid Polymers. John Wiley and Sons, 1983:1-43.
    [27] A. Dasari, S. Sarang, R.D.K. Misra. Strain rate sensitivity of homopolymer polypropylenes and micrometric wollastonite-filled polypropylene composites. Mater. Sci. Eng. A, 2004,368:191-204.
    [28] C.B. Bucknall. Toughened plastics. Essex: Applied Science Publishers Ltd, 1977:1-43.
    [29] C.B. Bucknall. Fracture and failure of multiphase polymers and polymer composites. Adv. Polym. Sci., 1978;27:121-148.
    [30] C.B. Bucknall. Deformation mechanisms in rubber-toughened polymers in polymer blends. New York: Wiley, 2000:11-56.
    [31] C.B. Bucknall. A. Lazzeri. Rubber toughening of plastics Part XIII Dilatational yielding in PA66/EPR blends. J. Mater. Sci., 2000,35:427-435.
    [1] 吕 锡 慈 . 高 分 子 材 料 的 强 度 与 破 坏 [M]. 成 都 : 四 川 教 育 出 版 社 , 1988: 1-10.
    [2] 潘 道 成 , 鲍 其 鼎 , 于 同 隐 . 高 聚 物 及 其 共 混 物 的 力 学 性 能 [M]. 上 海 : 上 海 科 学 技 术 出 版 社 , 1988:23-78.
    [3] 潘 吉 林 , 杨 伟 , 李 忠 明 等 . 聚 合 物 的 二 次 屈 服 现 象 [J]. 中 国 塑 料 , 2005, 19(9): 20-27.
    [4] R, Popli, L. Mandelkern. Influence of Structural and Morphological Factors on the Polyethylenes. J. Polym. Sci. B, Polym. Phys., 1987,25-33:441-483.
    [5] R. Séguéla, F. Rietsch. Double yield point in polyethylene under tensile loading. J. Mater. Sci. Lett., 1990,9(1): 46-47.
    [6] R. Seguela, O. Darras. Phenomenological aspects of the double yield of polyethylene and related copolymers under tensile loading. J. Mater. Sci. 1994, 29:5342-5352.
    [7] G. M. Valérie, R. Séguéla. Tensile Yield of Polyethylene and Related Copolymers: Mechanical and Structural Evidences of Two Thermally Activated Processes. Macromolecules,1997, 30(4): 1158-1167.
    [8] N. W. Brooks, R. A. Duckett, Ward I M. Investigation into double yield points in polyethylene. Polymer, 1992, 33(9):1872-1880.
    [9] R.O. Sirotkin, N.W. Brooks. The effects of morphology on the yield behaviour of polyethylene copolymers. Polymer, 2001, 42: 3791-3797.
    [10] N.W. Brooks, R. A. Duckett, I. M.Ward. Modeling of double yield points in polyethylene: Temperature and strain-rate dependence. J. Rheology, 1995, 39:425-436.
    [11] V. Balsamo, A. J. Müller. The phenomenon of double yielding under tension in low-density polyethylene, linear low-density . J. Mater. Sci. Lett., 1993, 12(18): 1457-1459.
    [12] A.R. Plaza, E. Ramos, A. Manzur, et al. Double yield points in triblends of LDPE, LLDPE and EPDM. J. Mater. Sci.,1997, 32:549–554.
    [13] X. R. Xu, J.T. Xu, L. X. Feng. Tensile behaviour of homogeneous ethylene copolymers. Polym. Int., 2002, 51(5): 458-463.
    [14] H. Springer, A. Hengse, G. Hinrichsen. An investigation of the yield behavior of ethylene-1-octene copolymer fractions. Colloid Polym. Sci., 1993, 271(6): 523-528.
    [15] M. Niaounakis, E. Kontou. Effect of LDPE on the Thermomechanical Properties of LLDPE-Based Films. J. Polym. Sci. B, 2005, 43:1712 -1727.
    [16] J. C. Lucas, M. D. Failla, F. L. Smith, A. J. Peacock. The double yield in the tensile deformation of the polyethylenes. Polym. Eng. Sci., 1995, 35(13): 1117-1123
    [17] J. L. Feijoo, J. J. Sanchez, A. J. Mueller. The phenomenon of double yielding in oriented high density polyethylene films. J. Mater. Sci. lett., 1997,16:1721-1724.
    [18] S. Muramatsu, J. B. Lando. Double Yield Points in Poly (Tetramethylene Terephthalate) and Its Copolymers Under Tensile Loading. Polym. Eng. Sci.,1995,35:1077-1085. [l9] R. W. Lenz, R. W. Stein. Structure and Properties of Polymer Film. New York: Plenum Press, 1973: 283-287.
    [20] R. Adhikari, M. Buschnakowski, S. Henning, et al. Double Yielding in a Styrene/Butadiene Star Block Copolymer. Macromo1. Rapid Comm., 2004, 25(5): 653-658.
    [21] R. W. Truss, A. C. Lee. Yield Be haviour of a Met-compounded Polyethylene-Intercalated Montmorillonite Nanocomposite. Polym. Int., 2003, 52(11): 1790-l794.
    [22] Z. M. Li, C. G. Huang, W. Yang, M. B. Yang, R. Huang. MorphologyDependent Double Yielding in Injection Molded Polycarbonate/ Polyethylene Blend. Macromol. Mater. Eng., 2004, 289: l004-l0l1.
    [23] Z.M. Li, B.H. Xie, S.Y. Yang, et al. Morphology-Tensile Behavior Relationship in Injection Molded Poly(Ethylene Terephthalate) /Polyethylene and Polycarbonate/Polyethylene Blends(II). J. Mater. Sci., 2004, 39(2): 433-443.
    [24] D. Y. Yoon. Small-angle neutron scattering by semicrystalline polyethylene. Polymer, 1977,18(5): 509-513.
    [25] E. I. Thonlas, S. L. Sass, Kramer E J. A Search for the Mosaic Block Structure in Polyethylene Single Crystals. J. Polym. Sci. B, 1974, 12(5): 1015-1022.
    [26] I. R. Harrison, A. Keller, D. M. Sadler, et al. A Reexamination of the Necessity of the Mcxsaic Concept in polymer Crystals.Polymer,1976, 17(8): 736-739.
    [27] D. L. Dorset. Evaluation of the Mosaic Model for Polymer Single Crystals. J. Polym. Sci. B,1979, l7(10): 1797-1806.
    [28] G.F. Shan, W. Yang, B.H. Xie, et al. Double yielding behaviors of Polyamide 6 and glass bead filled Polyamide 6 composites, Polym. test., 2005,24(6):704-711.
    [29] 成 煦 ,何 其 佳 ,张 爱 民 .尼 龙 6/ 氯 化 钙 复 合 材 料 受 限 结 构 研 究 [J].高 分子 材 料 科 学 与 工 程 ,2002,18:137-140.
    [30] M. Psarskia, M. Pracellab, A. Galeskia. Crystal phase and crystallinity of polyamide 6 / functionalized polyolefin blends. Polymer, 2000,41: 4923-4932.
    [31] I. Campoy, M.A. Gomez, C. Marco. Structure and thermal properties of blends of nylon 6 and a liquid crystal copolyester. Polymer, 1998,39:6279-6288.
    [32] 马 德 柱 , 何 平 笙 , 徐 种 德 等 . 高 聚 物 的 结 构 与 性 能 (第 二 版 ) [M].北京 : 科 学 出 版 社 ,1995: 139-298.
    [33] J.C. Ho, K.H. Wei. Induced γ to α Crystal Transformation in Blends of Polyamide 6 and Liquid Crystalline Copolyester. Macromolecules, 2000, 33:5181-5186.
    [34] J.M. Samona, J.M. Schultza, B.S. Hsiao. Study of the cold drawing of nylon 6 fiber by in-situ simultaneous small- and wide-angle X-ray scattering techniques. Polymer, 2000,41:2169-2182.
    [35] 何汉宏. SPET离聚物与尼龙6共混纤维结构性能的研究[J].合成纤维,2002,31:8-10.
    [36] 冯榕荫,张金红,梁国眉等. PVF和CaHPO4对Nylon 6的热行为和晶型的影响[J]. 中山大学学报(自然科学版), 1996,35(1):58-63.
    [37] A. Galeski. Toughening of crystalline polymer systems, in: (w:)Proceedings of the Third Nordic Meeting on Materials and Mechanics,8–11 May, 2000: 37-44.
    [38] Y.P. Khanna. Evaluation of thermal history of polymeric films andfibers using DSC/TMA/DMA techniques. J. Appl. Ploym. Sci., 1990,40:569-579.
    [39] 钱保功,余赋生,许观藩. 高聚物的转变与松弛[M].北京:科学出版社.1986, 212-223.
    [40] 杨始堃, 陈玉君, 吴险峰. PA6/PET共混体系的动态力学性能[J]. 合成纤维工业, 1999, 22: 5-8.
    [41] 朱锡雄, 朱国瑞. 高分子材料强度学( 变形和断裂行为) [M].杭州:浙江大学出版社, 1992:170-175.
    [42] 张昕,蔡盛全.尼龙6工程塑料及发展趋势[J]. 塑料,1996,25(1): 13-17.
    [1] L. Corte, F. Beaume, L. Leibler. Crystalline organization and toughening: example of polyamide-12. Polymer, 2005, 46:2748- 2757.
    [2] K.L. Fung, K.Y. Li. Robert. A study on the fracture characteristics of rubber toughened poly(ethylene terephthalate) blends. Polym. Test., 2005, 24: 863–872.
    [3] S.L. Zhang, D. Wang, S.W. Guan, et al. Toughening mechanism of PA1010/ester-based TPU blends. Mater. Lett., 2006, 267-273.
    [4] O. K. Muratoglu, A. S. Argon, R. E. Cohen.Toughening mechanism of rubber-modified Polyamides. Polymer, 1995,36: 921-930.
    [5] N. M. Larocca, E. Hage Jr, L.A. Pessan. Toughening of poly(butylene terephthalate) by AES terpolymer. Polymer,2004, 45:5265–5277.
    [6] S. Wu. Phase structure and adhesion in polymer blends: A criterion for rubber toughening. Polymer, 1985, 26: 1855-1863.
    [7] S. Wu. A Generalized Criterion for Rubber Toughening: The Critical Matrix Ligament Thickness. J. Appl. Polym. Sci., 1988, 35:549-561.
    [8] R.J.M. Borggreve, R.J. Gaymans, J. Schijer, et al. Brittle-tough transition in nylon-rubber blends: effect of rubber concentration and particle size. Polymer,1987, 28, 1489-1496.
    [9] Z. Bartczak, A.S. Argon, R.E. Cohen, et al. Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer, 1999;40:2331-2346.
    [10] Z. Bartczak, A.S. Argon, R.E. Cohen, et al. Toughness mechanism in semi-crystalline polymer blends: II High-density polyethylene toughened with calcium carbonate filler particles. Polymer, 1999,40:2347-2365.
    [11] W. Jiang, C.H. Liu, Z.G. Wang, et al. Brittle-tough transition in PP/EPDM blends: effects of interparticle distance and temperature. Polymer, 1998;39:3285-3288.
    [12] A. van der Wal, R. Nijhof, R.J. Gaymans. Polypropylene–rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour. Polymer, 1999;40:6031-6044.
    [13] A. van der Wal , R.J. Gaymans. Polypropylene- rubber blends: 3.The effect of the test speed on the fracture behaviour. Polymer, 1999, 40:6045-6055.
    [14] W. Jiang, S.C. Tjong, R.K.Y. Li. Brittle–tough transition in PP/EPDM blends: effects of interparticle distance and tensile deformation speed. Polymer, 2000, 41:3479-3482.
    [15] R. Gensler, C.J.G. Plummer, C. Grein, et al. Influence of the loading rate on the fracture resistance of isotactic polypropylene and impact modified isotactic polypropylene. Polymer, 2000;41: 3809-3819.
    [16] J. Yang, Y. Zhang, Y. Zhang. Brittle–ductile transition of PP/POE blends in both impact and high speed tensile tests. Polymer, 2003,44:5047–5052.
    [17] A.A. Collyer. Rubber toughened engineering plastics. London: Chapman and Hall,1994: 45-60.
    [18] S. Newman, S. Strella. Stress-strain behaviour of rubber-reinforced glassy polymers. J. Appl. Polym. Sci., 1965,9:2297 -2310.
    [19] R.J.M. Borggreve, R.J. Gaymans, H. M. Eichenwald. Impact behaviour of nylon-rubber blends: 6. Influence of structure on voiding processes; toughening mechanism. Polymer,1989,30:78-83.
    [20] A.F. Yee, R.A. Pearson. Toughening mechanisms in elastomer- modified epoxies: Part 1 Mechanical studies. J. Mater. Sci., 1986, 21: 2462-2474.
    [21] R. A. Pearson, A. F. Yee. Toughening mechanisms in elastomer- modified epoxies: Part 2 Microscopy studies. J. Mater. Sci., 1986, 21: 2475-2488.
    [22] Parker DS, Sue HJ, Huang J, Yee AF. Toughening mechanisms in core-shell rubber modified polycarbonate. Polymer, 1990, 31: 2267 -2277.
    [23] H.J. Sue, A.F. Yee. Micromechanical Modeling on Effects of Crack Tip Particle Cavitational Process in Polymer Toughening. Polym. Eng. Sci., 1996,36:2320-2326.
    [24] A. Margolina, S. Wu. Percolation model for brittle-tough transition in nylon/rubber blends. Polymer, 1988,29(12):2170-2173.
    [25] H.G.H. van Melick, L.E. Govaert, H.E.H. Meijer. Prediction of brittle-to-ductile transitions in polystyrene. Polymer, 2003, 44: 457- 465.
    [26] T. Vu-Khanh, Z. Yu. Mechanisms of brittle-ductile transition in toughened Thermoplastics. Theor. Appl. Fract. Mech., 1997, 26: 177- 183.
    [27] 黎 学 东 ,陈 鸣 才 ,黄 玉 惠 .与 断 裂 临 界 特 征 长 度 有 关 的 聚 合 物 脆 韧 转变 判 据 [J].广 州 化 学 ,1997,2: 47-51.
    [28] D.J. Gilbert, A.M. Donald. Toughening mechanisms in high impact polystyrene. J. Mater. Sci., 1986,21:1819-1823.
    [29] M.C.M. van der Sanden, J.M.M. de Kok, H.E.H. Meijer. Deformation and toughness of polymeric systems: 7. Influence of dispersed rubbery phase. Polymer, 1994,35, 2995-3004.
    [30] Q. Fu, G. Wang, J. Shen. Polyethylene Toughened by CaCO3 Particle: Brittle-Ductile Transition of CaCO3 Toughened HDPE. J. Appl. Polym. Sci., 1993,49:673-677.
    [31] K. Dijkstra, J. Laak.ter, R.J. Gaymans, Nylon-6/rubber blends: 6. Notched tensile impact testing of nylon-6/(ethylene-propylene rubber) blends. Polymer, 1994, 35, 315-322.
    [32] 姜 伟 ,李 海 东 ,梁 好 均 等 . 聚 合 物 共 混 体 增 韧 机 理 的 研 究 :增 塑 剂 和形 变 速 率 的 影 响[J]. 高 分 子 材 料 科 学 与 工 程 ,1998,14(6):102-104.
    [33] T. Kurauchi, T. Ohta. Energy absorption in blends of polycarbonate with ABS and SAN. J. Mater. Sci., 1984,18:1699-1709.
    [34] H.J. Sue, R.A. Pearson, A.F. Yee. Mechanical Modeling of Initiation of Localized Yielding Under Plane Stress Conditions in Rigid-Rigid Polymer Alloys. Polym. Eng. Sci., 1991,31(11): 793-802.
    [35] Y.D. Zhang, R.G. Jing. Proceeding of the Third National Symposium on Deformation, Damage and Fracture of Polymers, Chengdu, 1994:53-56.
    [36] 张 宇 东 ,武 得 珍 ,张 立 群 等 .聚 氯 乙 烯 (PVC)共 混 合 金 ( Ⅱ )聚 合 物 共混 改 性 的 增 韧 理 论[J].化 工 进 展 ,1994,4:49-54.
    [37] 张 宇 东 ,金 日 光 .共 混 合 金 力 学 性 能 的 研 究 Ⅰ .双 组 分 合 金 力 学 性 能的 研 究 [J].高 分 子 材 料 科 学 与 工 程 ,1997,13(6):93-97.
    [38] 张 宇 东 ,金 日 光 .共 混 合 金 力 学 性 能 的 研 究 :Ⅱ .CPE,ACR对 PVC 共混 体 系 力 学 性 能 的 影 响 [J].高 分 子 材 料 科 学 与 工 程 , 1998, 14(5): 64-66.
    [39] 张 宇 东 ,金 日 光 . 共 混 合 金 力 学 性 能 的 研 究 : Ⅲ .CPP对 PVC 共 混体 系 力 学 性 能 的 影 响 [J].高 分 子 材 料 科 学 与 工 程 ,1998,14(6):92-95.
    [40] 吕素平, 朱晓光, 漆宗能. 聚合物共混体脆韧转变的损伤竞争理论:聚合物脆韧转变的分子链参数判据[J], 科学通报, 1995, 40: 523-525.
    [41] 朱锡雄, 朱国瑞. 高分子材料强度学( 变形和断裂行为) [M]. 杭州: 浙江大学出版社, 1992:250-273.
    [42] 朱国瑞,朱锡雄. 玻璃态高聚物PMMA 粘弹性力学行为的率温等效关系[J]. 力学学报, 1993, 25: 226-231.
    [1] E. M. Arruda, M. C. Boyce, R. Jayachandran. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater., 1995, 19: 193-212.
    [2] H. Azman, H. Barry. Impact properties of acrylate rubber-modified PVC: Influence of temperature. J. Mater. Proc. Tech., 2006, 172: 341-345.
    [3] C. Bauwens-Crowet. The compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strainrates. J. Mater. Sci., 1973, 8: 968-979.
    [4] C. Bauwens-Crowet, J.C. Bauwens, G. Homes. The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. J. Mater. Sci., 1972, 7: 176-183.
    [5] M. C. Boyce, E. M. Arruda. An experimental and analytical investigation of the large strain compressive and tensile response of glassy polymers. Polym. Eng. Sci., 1990, 30: 1288-1298.
    [6] B. J. Briscoe, R. W. Nosker. The flow stress of high density polyethylene at high rates of strain. Polym. Commun., 1985, 26: 307-308.
    [7] S. C. Chou, K. D. Robertson, J. H. Rainey. The effect of strain rate and heat developed during deformation on the stress-strain curve of plastics. Experim. Mech., 1973, 13: 422-432.
    [8] A. Van der Wal, R.J. Gaymans. Polypropylene–rubber blends: 3. The effect of the test speed on the fracture behaviour. Polymer 1999, 40:6045–6055.
    [9] K. Dijkstra, J. Ter Laak, R.J. Gaymans. Nylon-6/rubber blends: 6. Notched tensile impact testing of nylon-6/(ethylene-propylene rubber) blends. Polymer, 1998,35(2):315–322.
    [10] I.M. Ward. Mechanical properties of solid polymers. New York: Wiley, 1993:12-87.
    [11] J. Richeton, S. Ahzi, K.S. Vecchio ,et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Sol. .Struct.,2006,43:2318–2335.
    [12] J.C. Bauwens. Relation between the compression yield stress and the mechanical loss peak of bisphenol-A-polycarbonate in the β transition range. J. Mater. Sci., 1972, 7: 577-584.
    [13] C. Bauwens-Crowet, J. C. Bauwens, G. Homes. Tensile yield stress behavior of glassy polymers. J. Polym. Sci.:A-2, 1969, 7: 17-25.
    [14] C. B. Bucknall. Polymer blends. New York: Wiley, 2000:200-561.
    [15] J.A. Roetling. Yield stress behaviour of polymethylmethacrylate. Polymer, 1965, 6:311-317.
    [16] Y. K. Godovsky. Thermophysical properties of polymers. New York: Springer, 1992: 149-165.
    [17] A. Van Der Wal, J.J. Mulder, H.A. Thijs,et al. Fracture of polypropylene 1. The effect of molecular weight and temperature at low and high test speed. polymer, 1998, 39(22): 5467-5475.
    [18] 方 钦 志 ,李 慧 敏 ,欧 阳 小 东 .加 载 速 率 对 PC/ABS 拉 伸 性 能 的 影 响 [J]. 高 分 子 材 料 科 学 与 工 程 . 2006,22(1):131-134
    [19] J.P.F. Inberg, A. Takens, R.J. Gaymans. Strain rate effects in polycarbonate and polycarbonate/ABS blends. Polymer, 2002,43: 2795-2802.
    [1] 施 良 和 ,胡 汉 杰 .高 分 子 科 学 的 今 天 与 明 天 [M],北 京 :化 学 工 业 出 版 社 , 1994: 146-152.
    [2] 吕 锡 慈 .高 分 子 材 料 的 强 度 与 破 坏 [M], 四 川 :教 育 出 版 社 , 1990:23- 89.
    [3] J. S. Wu, Y. W. Mai. The essential fracture work concept for toughness measurement of ductile polymers . Polym. Eng. Sci., 1996, 36 (18): 2275-2288.
    [4] A. Arkhireyeva, S. Hashemi and M. OBrien. Factors affecting work of fracture of uPVC film. J. Mater. Sci., 1999, 34 (24): 5961-5974.
    [5] 尹 双 增 . 断 裂 、 损 伤 理 论 及 应 用 [M], 北 京 : 清 华 大 学 出 版 社 , 1992, 162-185.
    [6] M. L. Lu,K. C. Chiou,F. C. Chang.Fracture toughness characterization of a PC/ABS blend under different strain rates by various J-integral methods. Polym. Eng. Sci., 1996, 36(18): 2289-2295.
    [7] S. C. Tjong, S. A. Xu, R.K.Y. Li. Work of fracture of polystyrene/highdensity polyethylene blends compatibilized by triblock copolymer . J. Appl. Polym. Sci., 2000, 77 (9): 2074-2081.
    [8] C.Y.Ching Emma, K.Y.Poon Wendy, K.Y.Li Robert, et al. Effect of strain rate on the fracture toughness of some ductile polymers using the essential work of fracture (EWF) approach. Polym. Eng. Sci., 2000,40(12): 2558-2568.
    [9] S. Hashemi, J. G. Williams. A Fracture Toughness Study on Low Density and Linear Low Density Polyethylenes. Polymer, 1986, 27(4): 384-392.
    [10] D.D. Huang, J.G. Williams. J testing of toughened nylons. J. Mater. Sci., 1987, 22(7), 2503-2508.
    [11] I. Narisawa, M.T. Takemori. Fracture toughness of impact-modified polymers based on the J-integral. Polym. Eng. Sci., 1990, 29(10): 671-678.
    [12] H. Swei, B. Crist, S.H. Carr. The J Integral Fracture Toughness and Damage Zone Morphology in Polyethylenes. Polymer,1991,32(8): 1440-1446.
    [13] 张 玉 风 , 肖 鸿 彦 . 断 裂 韧 性 数 据 研 究 [J]. 天 津 大 学 学 报 , 1989,3: 33-39.
    [14] R. G. Hill. The fracture properties of glass polyalkenoate cements as a function of cement age. J. Mater. Sci., 1993, 28(14): 3851-3858.
    [15] K. B. Broberg. Critical review of some theories in fracture mechanics. Int. J. Fract., 1968,4:11-18.
    [16] B. Cotterell, J. K. Reddel. The essential work of plane stress ductile fracture. Int. J. Fract., 1977, 13:267-277.
    [17] Y. W. Mai, B. Cotterell. On the essential work of ductile fracture in polymers. Int. J. Fract., 1986, 32:105-125.
    [18] Y. W. Mai, B. Cotterell, R.Horlyck, et al. The essential work of plane stress ductile fracture of linear polyethylenes. Polym. Eng. Sci., 1987, 27:804-809.
    [19] Y. W. Mai, P. Powell. Essential work of fracture and j-integral measurements for ductile polymers. J. Polym. Sci. B, 1991, 29: 785-793.
    [20] J. S. Wu, Y. W. Mai, B. Cotterell. Fracture toughness and fracture mechanisms of PBT/PC/IM blend. J. Mater. Sci., 1993, 28: 3373-3384.
    [21] J. S. S.Wong, D. Ferrer-Balas, R. K. Y. Li, Y. W. Mai, M. L. Maspoch, H. J. Sue. On tearing of ductile polymer films using the essential work offracture (EWF) method. Acta. Mater., 2003, 51: 4929-4938.
    [22] D. Ferrer-Balas, M. Ll. Maspoch, A. B. Martinez,et al. Fracture behaviour of polypropylene films at different temperatures: assessment of the EWF parameters. Polymer, 2001, 42: 2665-2674.
    [23] S.C. Tjong, S.A. Xua, Robert Kwok-Yiu Li, et al. Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glass fiber/SEBS/polypropylene hybrid composites. Compos. Sci. Tech., 2002, 62 :831-840.
    [24] J. Karger-Kocsis, T. Barany, E. J. Moskala. Plane stress fracture toughness of physically aged plasticized PETG as assessed by the essential work of fracture (EWF) method. Polymer, 2003, 44: 5691-5699.
    [25] J. Karger-Kocsis, CM Wu. Thermoset rubber/layered silicate nanocomposites. Status and future trends. Polym. Eng. Sci., 2004,44: 1083 -1093.
    [26] J. Karger-Kocsis, E. J. Moskala. Molecular dependence of the essential and non-essential work of fracture of amorphous films of poly(ethylene-2,6-naphthalate) (PEN). Polymer, 2000, 41: 6301-6310.
    [27] J. Karger-Kocsis, D. E. Mouzakis. Effects of injection molding-induced morphology on the work of fracture parameters in rubber-toughened polypropylenes.Polym. Eng. Sci.,1999,39: 1365-1374.
    [28] J. Karger-Kocsis. For what kind of polymer is the toughness assessment by the essential work concept straightforward. Polym. Bull., 1996, 37(1): 119-126.
    [29] J. Karger-Kocsis, T. Czigany. On the essential and non-essential work of fracture of biaxial-oriented filled PET film. Polymer, 1996, 37: 2433-2438.
    [30] J. Karger-Kocsis, T. Czigany, E. J. Moskala. Thickness dependence of work of fracture parameters of an amorphous copolyester. Polymer, 1997, 38:4587-4593.
    [31] J. Karger-Kocsis, T. Czigany, E. J. Moskala. Deformation rate dependence of the essential and non-essential work of fracture parameters in an amorphous copolyester. Polymer, 1998, 39:3939-3944.
    [32] J. Karger-Kocsis, E. J. Moskala. Relationships between molecular and plane-stress essential work of fracture parameters in amorphous copolyesters. Polym. Bull., 1997, 39(4):503-510.
    [33] Test Protocol for Essential Work of Fracture, Version 5, ESIS TC-4 Group, Les Diablerets, 1998.
    [34] 郑 爱 舞 . 应 用 基 本 断 裂 功 方 法 对 聚 烯 烃 材 料 断 裂 行 为 的 研 究 与 表 征[D].四 川 大 学 硕 士 毕 业 论 文 , 2005.
    [35] 杨 伟 .半 晶 聚 合 物 的 应 力 应 变 行 为 及 其 与 形 态 结 构 的 关 系 [D].四 川 大学博 士 毕 业 论 文, 2006.
    [36] Y. Bokoi, C. Ishiyama, M.Shimojo. Effects of sorbed water on crack propagation in poly(methyl methacrylate) under static tensile stress. J. Mater. Sci., 2000 (35), 5001-5011.
    [37] M. L. Lu, F. C. Chang. Fracture Toughness of PC/PBT Blend Based on J Integral Methods. J. Appl. Polym. Sci.,1995,56(9), 1065-1075.
    [38] M. L. Maspoch, D. Ferrer , A. Gordillo. Effect of the Specimen Dimensions and the Test Speed on the Fracture Toughness of iPP by the Essential Work of Fracture (EWF) Method. J. Appl. Polym. Sci., 1999 (73), 177-187.
    [39] A. Arkhireyeva, S. Hashemi. Influence of temperature on plane stress ductile fracture of poly (ethylene terephthalate) film. Plast. Rubber Compos., 2001, 30: 337-350.
    [40] S. Hashemi. Determination of the fracture toughness of polybutylene terephthalate(PBT) film by the essential work method: Effect of specimen size and geometry. Polym. Eng. Sci., 2000, 40:798-808.
    [41] 龚 关 .无 机 粒 子 填 充 聚 丙 烯 复 合 材 料 的 裂 纹 扩 展 和 断 裂 行 为 研 究 [D].四 川 大 学 硕 士 毕 业 论 文, 2005.
    [42] 田 际 波 ,戴 文 利 ,邹 晓 轩 等 . PA6/K-MAH共 混 物 的 制 备 与 性 能 [J]. 高分 子 材 料 科 学 与 工 程 , 2006, 22 (1): 226-229.
    [43] 郑 爱 舞 , 谢 邦 互 , 李 忠 明 等 . 共 聚 聚 丙 烯 材 料 的 断 裂 行 为 [J]. 高 分子 材 料 科 学 与 工 程 ,2004, 20:181-184.
    [44] R. Adhikari, R. Lach , G.H. Michler. Morphology and crack resistance behavior of binary block copolymer blends.Polymer,2002, 43:1943-1947.
    [45] 郭 天 瑛 , 沈 宁 祥 , 唐 多 强 等 . ABS/ PA6/ St-co-NPMI共 混 体 系 相 界面 特 征 研 究[J]. 南 开 大 学 学 报 (自 然 科 学 ), 2000, 33(3):112-116
    [46] R.C. Willemse, A. Speijer, A. E. Langeraar, A. Posthuma de Boer. Tensile moduli of co-continuous polymer blends. Polymer, 1999,40: 6645–6650.
    [47] G. Gong, B.H. Xie, W. Yang,et al. Essential work of fracture (EWF)analysis for polypropylene grafted with maleic anhydride modified polypropylene/calcium carbonate composites. Polym. Test., 2005,24: 410-417.
    [48] 宋 谋 道 , 张 邦 华 , 郝 广 杰 等 . CPE增 容 PVC/SBS共 混 体 系 的 研 究 [J].高 分 子 材 料 科 学 与 工 程 ,1994, 9(5): 60-65.
    [49] D. E. Mouzakis, F. Stricker, R. Mülhaupt, et al. Fracture behaviour of polypropylene/glass bead elastomer composites by using the essential work-of-fracture method. J. mater. Sci.,1998,33:2551-2562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700