一系列不对称镍酞菁:合成、近红外及自组装特性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、我们首次利用提高温度的策略合成了一系列不对称的镍酞菁。与传统的合成不对称酞菁方法相比,我们仅从一种邻苯二甲腈出发,合成A3B-type酞菁和A4-type酞菁,极大地节约原材料的使用,且两种产物的分离比传统方法更容易。
     2、制备的镍酞菁,除了酞菁传统的B带和Q带吸收,更重要的是在近红外区1110-1240nm有一个比较宽的吸收带,研究结果表明:这主要是由于酞菁分子间氢键作用产生的电荷转移带。我们采用KBr压片方法,在He-Cd激光器激发下研究这些酞菁的光致发光特性,研究结果表明:它们分别在近红外区865和1650nm有两个发光带。近红外特性使得这些酞菁可以潜在的应用在太阳能电池材料,理论上可以把目前器件的光电转化率提高一倍,相关工作正在进行。
     3、我们采用简单的溶剂扩散方法,制备了这些酞菁的1D纳米材料。结果表明:这些镍酞菁在氯仿和甲醇溶液界面处自组装成六棱纳米管,这是关于金属酞菁六棱纳米管的首次报道。另外,结合纳米材料的XRD和吸收光谱,我们合理推测出六棱纳米管的形成过程,这为以后自组装材料的研究奠定了基础。
     4、我们合成了一种铜酞菁,利用上面的溶解扩散方法研究材料的自组装特性。结果表明:铜酞菁在氯仿和甲醇溶液界面处自组装成双螺旋纳米棒,这一独特的性质使得这类材料可以潜在的应用在分子识别方面。另外,这是关于酞菁自组装双螺旋纳米材料的首次报道。
Since accidentally discovered by the Braun and Tchemiac in1907, phthalocyanines(Pcs) have been greatly developed from the early of dye materials to nowmultifunctional materials, and widely be used in photodynamic therapy, dyesensitization solar cells, photosynthesis, organic solar cells, light storage and organiclight-emitting diodes. Pcs, as “tomorrow material”, not only behave the characteristicsof organic materials (good flexibility, low price and easy processing, etc.), but alsohave many unique advantages, such as: high light and heat stability, the strongabsorption in visible light, various modifiers and supramolecular interactions.
     Recently, for example, Pcs with near infrared (NIR) absorption, have attractedmore and more attentions from Pc’s scientists. Research on NIR material andtechnology is motivated by curiosity in the fundamental study and practicalapplications in a number of important sectors such as energy, communication,bio-imaging, sensing, and advanced optoelectronics. However, Pcs with absorptionbeyond1.0μm is rarely reported. It is mainly due to the difficultly synthesis of nearinfrared material. There are commonly two methods to synthesize near infraredmaterials:1) the materials with a push-pull structure, but the yield of Pcs are generallylow in this way;2) π-π conjugated materials: the synthesized phthalocyanine isgenerally not stable and poor solubility by this method. Therefore, the development ofnew synthetic strategies to synthsize Pcs with NIR absorption are facing challengesfor phthalocyanine scientists.
     Hydrogen bonding interaction generally existing in biological enzymes and proteins,we here report a series of asymmetric Pcs, which have a benzyl oxygen and threephenoxy. These Pcs not only have the traditional B and Q absorption, but also have awide absorption band in1100-1200nm. This is mainly due to the strong hydrogenbond interactions in-between them, and lead to form a charge transfer band. The synthesized Pcs have been characterazition with1H NMR,13C NMR,1H-13C NMR,IR, HR-MS and UV/Vis/NIR, and confirm the structure of the compounds. These Pcswith NIR-absotption can be potentially application in organic solar cells, opticalstorage, photodynamic therapy, light catalysis, nonlinear optical and near infraredlight emitting. We also research the electrochemical of these Pcs. The result show thatthe energy gap of the Pcs are around1.10eV, which is rarely reported in the organicmaterials.
     Near infrared light emitting diodes have been applications in sensors and opticalcommunication. Rencently, the used materials in near infrared light emitting diode aremost trivalent rare earth ions (Er3+, Tm3+and Yb3+). However, because these rareearth complexes have the first resonant or more order resonance vibration (resultfrom-OH) and near infrared luminescent quenching, and the4f-4f transition in rareearth complexes is parity prohibition, which lead to low luminous efficiency. It isimportant to synthesize some near infrared luminescent materials, which do notcontain organic rare earth ions. We here prepared the asymmetric Pcs with nearinfrared absorption band in1110-1120nm. When these Pcs in KBr are excited, theyshowed strong NIR luminescence at840-860nm and1600-1650nm, respectively.glow of these features make phthalocyanine application near-infrared light. These Pcscan be potential application in near-infrared light.
     Since supramolecular chemistry as an independent discipline, the nanostructurematerials through self-assembling methods have more and more attentions byscientists, because lots of the functional building blocks existing in nature isassembled by small building blocks. Pcs, as one of the important building blocks inself-assembled materials, can be self-organization into many functional materials bynon covalent bond interaction, such as hydrogen bonding, π–π stacking, andmetal-ligand coordination. The self-organization abilities of functional chromophoreshave been widely exploited to generate supramolecular architectures with improvedphotophysical and (opto)electronic properties as a result of excitonic interactionsbetween the dyes. Recently, some special supramolecular structures based onphthalocyanine and other materials have been reported, such as:1) Nolte and co-workers reports on the formation of helical, micrometer-long f bers in achloroform solution of a Pc molecule peripherally substituted with four crown ethermoieties and eight chiral, long alkyl chains;2) Long, extremely well-organizednanorods are formed in aqueous solution of the amphiphilic ZnPc–C60salt. TEMimages showed that the nanotubules are composed of many other nanorod-likesubstructures. These1-D, Pc-based micelle-like structures display remarkablephotophysical properties as a result of their nanometric organization, namely, animpressive stabilization of the charge separated state (ZnPc–C60) lifetime.
     Our previous research work on designing and synthesizing metallo-Pcs and1Dtubular structure of Pcs, help us find and obtain these asymmetrical Pcs. ThroughH-bonding interaction, these asymmetrical Pcs are inclined to self-assemble intohelical nanorods and hexrod nanotubes in the interface of CHCl3and CH3OH. Ourresults provide further insights into the interaction in molecular dimer, and mean thatthese Pcs have potential application in magnets and supramolecular architectures.
引文
[1] Braun A, Tchemiac J. Products of the action of acetic anhudride on phthalamide[J].Ben,1907,40:2709-2714.
    [2] de Diesbach H, Schimidt V, Decker E, Helv A. Simple preparation of pyromelliticacid[J]. chim. Acta,1923,6:548-549.
    [3] Dandrige A G, Drescher H A, Thomas J. Improvements in and relating to themanufacture and use of colouring matters[J]. British patent,1929,322:169.
    [4] Linstesd R P, Brit A. Adnance. Sci, Rep,1933,465-466.
    [5] a) Linstesd R P, Robertson J M. The stereochemistry of metallic phthalocyanine[J].Chem. Soc,1936,1736-1738; b) Ibid. Quantitative structure determination of themetao free compound[J].1936,1195-1209.
    [6] de la Torre, Torres T. Phthalocyanine: synthesis, supramolecular organization andphysical properties[J].2001, by academic Press.
    [7] Smykalla L, Shukrynau P, Hietschold M, Investigation of ultrathin layers ofbis(phthalocyanine) lutetium (Ⅲ) on graphite[J]. J. Phys. Chem. C,2012,116:8008-8013.
    [8] Lim B, Margulis G Y, Sellinger A, et al. Silicon-naphthalo/phthalocyanine-hybridsensitizer for efficient red response in DSSC[J]. Org. Lett,2013,15:784-787.
    [9] Huang X, Zhang F, Tung C. Self-Assembled Nanowire Networks of Aryloxy ZincPhthalocyanines Based on Zn O Coordination[J]. Langmuir,2007,23:5167–5172.
    [10] Venuti E, Geerts Y H. Absorption, photoluminescence and polarized ramanspectra of a fourfold alkoxy-substituted phthaocyanine liquid crystal[J]. J. Phys.Chem. C,2011,115:12150-12157.
    [11] Zimcik P, Vachova L, Lang k, et al. Effect of intramolecular charge transfer onfluorescence and singlet oxygen production phthalocyanine analogues[J]. Inorg.Chem,2012,51:4215-4223
    [12] Wu L, Zhang X, et al. Helical nanostructures self-assembled from opticallyactive phthalocyanine bearing four optically active binaphthyl moieties[J].Langmuir,2010,26:7489-7497.
    [13] Mikhalenko S A, Lukyanets E A, et al. Supramolecular photosensitive andelectroactive materials[J]. Zh. Obshch. Khim,1969,39:2129.
    [14] Li L, Luo Z, Huang M, et al. Enhanced photodynamic efficacy of zincphthalocyanine by conjugating to heptalysine[J]. Bioconjugate Chem,2012,23:2168-2172.
    [15] Stranius K, Dsouza F, et al. Sequential photoinduced energy and electron transferdirected improved performance of the supramolecular solar cell of a zincporphyrin-phthalocyanine conjugate modified TiO2surface[J]. J. Phys. Chem. C,2013,117:763-773.
    [16] Yap C M, Xu G Q, Amperometric S G, et al. NIRic oxide sensor based onnanoporous platinum phthalocyanine modified electrodes[J]. Ang. Anal. Chem,2013,85:107-113.
    [17]丛方地,杜锡光,陈彬等.两种氨基酞菁异构体的简易制备及表征[J].高等学校化学学报,2002,2221-2225.
    [18] Nishida K R A, Mazur U, et al. Structural and electronic properties of columnarsupramolecular assemblies formed from ionic phthalocyanine on Au(111)[J]. J.Phys. Chem. C,2011,115:16305-16314.
    [19] Waters M, Slageren J, et al. Synthesis, charecterisation and magnetic study of acyanosubstituted dysprosium double decker single-molecule magnet[J]. DaltonTrans,2012,41:1128-1130.
    [20] Ranyuk E, van Lier J E, et al. Phthalocyanine-peptide conjugates:receptor-targeting bifunctional agents for imaging and photodynamic therapy[J]. J.Med. Chem,2013,56:1520-1534.
    [21] Mikhalenko S A, Korobkova E V, Lukyanets E A, et al. Supramolecularphotosensitive and electroactive materials[J]. Zh. Obshch. Khim,1970,40:400.
    [22] Robertson J M, Woodward L, et al. An XRD study of the phthalocyanines[J]. J.Chem. Soc,1937,219-230.
    [23] Leznoff C C, Lever A B P.“Phthalocyanines: properties and applications” Vol1-4. LSK, Cambrige,(1989,1993,1996).
    [24] a) Lau J T F, Lo P, et al. A phthalocyanine conjugated with an oxaliplatin fordual chemo and photodynamic therapy[J]. J. Med. Chem,2012,55:5446-5454; b)Kimani S G, Malakhov M V, Golding J P, et al. Fully protected glycosylatedphthalocyanine shows high uptake and photodynamic cytotoxicity in MCF-7cancer cell[J]. Photochemistry and photobiology,2013,89:139-149.
    [25] Yoon S M, Lou S J, Marks T J, et al. Correction to florinated copperphthalocyanine nanowires for enhancing interfacial electron transport in organicsolar cells[J]. Nono Letters,2013,13:854.
    [26] a) Lim B, Gratzel M, Mcgehee M D, Sellinger A, et al. Siliconnaphthalocyanie/phthalocyanine-hybrid sensitizer for efficient red response inDSSC[J]. Organic Letters,2013,15:784-787; b) Garcia-iglesias M, Yum J H,Torres T, et al. Effect of anchoring groups in phthalocyanine on the DSSCperformance and stability[J]. Chemical Science,2011,2:1145-1150; c) Li X,Wang H, Wu H, et al. Phthalocyanine and their analogs applied in DSSC[J].Structure and Bonding,2010,135:229-274.
    [27] Drobizhev M, Makarov N S, Rebane A, Spahni H, et al. Very efficienttwo-photon induced photo-tantomerization in asymmetrical phthalocyanines[J]. J.Lum,2008,128:217-222.
    [28] Ishiikawa N. Phthalocyanine-based magnets[J]. Struct Bond,2010,135:211-228.
    [29] a) L Z, Wang Q B, Zhang X M, et al. Helical nanostructures self-assembled fromoptically active phthalocyanine bearing four optically active binaphthyl moieties:effect of metal-ligand coordination on the morphology and helical pitch ofself-assembled nanostructures[J]. Langmuir,2010,26:7489-7497; b) Bandi V,Elkhouly M E, Dsouza F, et al. J. Phys. Chem. C,2013, just accepted; c) FukudaT, Hata K, Ishikawa N, et al. Observation of exceptionally low-lying π-π*tedstates in oxidized form of quadruple-decker phthalocyanine complexes[J]. J. Am.Chem. Soc,2012,134:14698-14701.
    [30] Wasielewski M R. Self-assembling Strategies for Integrating Light Harvestingand Charge Separation in Artificial Photosynthetic Systems[J]. Acc. Chem. Res,2009,42:1910–1921.
    [31] Barrett P A, Frye D A, Linstead R P. J. Chem. Soc,1938,1157-1163.
    [32] Colaitis. Compt. Rend,1956,242:1026-1027.
    [33]杜老师的书。
    [34] Giribabu L, Sudhakar K, Velkannan V, et al. Phthalocyanines:potential alternativesensitizers to Ru(II) polypyridyl complexes for dye-sensitized solar cells[J].Current. Science,2012,102:991-1000.
    [35] Bobertson J M, Linstead R P, Dent C E. Nature,1935,135:506.
    [36] Sharman W M, van Lier J E. In the porphyrin handbook academic press: NewYork,2003,15:1-60.
    [37] Sugimori T, Kasuga K. Chem. Lett,2000,1200.
    [38] Mikhalenko S A, Gladyr S A, Lukyanets E A. Zh. Org. Khim,1972,8:341.
    [39] Fouriea E, Chambrierb I, Cook M J, et al. Electrochemical and spectroscopicdetection of self-association of octa-alkyl phthalocyaninato cadmium compoundsinto dimeric species[J]. Dalton Trans,2009,1145-1154.
    [40] Hanack M, Sommerauer M, Subramanian L R, et al. Separation of structuralisomers of tetra-tert-butylphthalocyaninatonickel(II)[J]. Chem. Commun,1993,58-60.
    [41] G rlach B, Dachtler M, Albert K, Hanack M, et al. Synthesis and Separation ofStructural Isomers of2(3),9(10),16(17),23(24)-TetrasubstitutedPhthalocyanines[J]. Chem. Eur. J,2001,7:2459-2465.
    [42] Dolotova O V, Bundina N I, Lukyanets E A, et al. Obshch. Khim.1992,62:2064.
    [43] Lukyanets E A. Electronic Spectra of Phthalocyanines and Related Compounds[J]. Cherkassy,1989,1-95.
    [44] Lukyanets E A, Mihalenko S A, Kobshev E I. Zh. Obshch. Khim,1971,41:934.
    [45] Iqbal Z, Lyubimtsev A, Hanack M. Synthesis of Phthalonitriles Using aPalladium Catalyst[J]. Synlett,2008,15:2287-2290.
    [46] Galpern M G, Yurchenko A G. Zh. Obshch. Khim,1980,50:2390.
    [47] Kimura M, Sakaguchi A, Kobayashi N, et al. Selective ligation to stericallyisolated metallophthalocyanines[J]. Inorg. Chem,2003,42:2821-2823.
    [48] Mikhalenko S A, Lukyanets E A. Zh. Obshch. Khim,1969,39:2129.
    [49] a) Sivanesan A, John S A. Amino Group Position Dependent Orientation ofSelf-Assembled Monomolecular Films of Tetraaminophthalocyanatocobalt(II) onAu Surfaces[J]. Langmuir,2008,24:2186-2190; b) Nombona N, Tau P, NyokongT. Electrochemical and electrocatalytic properties of α-substituted manganeseand titanium phthalocyanines[J]. Acta.2008,53:3139-3148.
    [50] Hoz A de la, Saiz A, Vazquez E, et al. Synergy between Heterogeneous Catalysisand Microwave Irradiation in an Efficient One-Pot Synthesis of BenzeneDerivatives via Ring-Opening of Diels-Alder Cycloadducts of SubstitutedFurans[J]. Synlett,2001,6:753-756.
    [51] Dsouza F, Subbaiyan N K, Fukuzumi S, et al. Photosynthetic reaction centermimicry: low reorganization energy driven charge stabilization in self-assembledcofacial zinc phthalocyanine dimer-fullerene conjugate[J]. J. Am. Chem. Soc,2009,131:8787-8797.
    [52] Kobayashi N. Optically active ‘adjacent’ type non-centrosymmetricallysubstituted phthalocyanines[J]. Chem. Commun,1998,487-488.
    [53] Wainwright M. Photodynamic Therapy:The Development of NewPhotosensitisers[J]. Anti-Cancer Agents Med. Chem,2008,8:280-291.
    [54] Vorozhtsov G N, Derkacheva V M, Yakubovakaya R[M]. RU2183635,2002.
    [55] Opris D M, Nüesch F, Nagel M, et al. Synthesis, Characterization, and DielectricProperties of Phthalocyanines with Ester and Carboxylic Acid Functionalities[J].Chem. Mater,2008,20:6889-6896.
    [56] Patrick M, Leznoff C C, et al. Syntheses and characterization of phthalonitrilesand phthalocyanines substituted with adamantane moieties[J]. Can. J. Chem,2006,84:1380-1387.
    [57] a) Leznoff C C, et al. Syntheses of Octaalkynylphthalocyanines fromHalophthalonitriles[J] J. Porphyrins Phthalocyanines,1999,3:406; b) SavenkovaN S, Kuznetsova R T, Tomilova L G, et al. Proceedings of Caol2005, Yalta,Ukraine, Sept.12-17,2005,2:23-26.
    [58] Sakamoto K, Watanabe M, Cook M J, et al. Synthesis of novel cationicamphiphilic phthalocyanine derivatives for next generation photosensitizer usingphotodynamic therapy of cancer[J]. Dyes and Pigments,2005,1:63-71.
    [59] Cammidge A N, Hughes D L, Cook M J, et al.Phthalocyanines bearing bulkycycloalkylmethyl substituents on non-peripheral sites[J]. Tetrahedron Lett,2009,50:5254-5456.
    [60] Fitzgerald J P, Yee G T, Sommer R D, et al. Iron Tetraanthracenotetraazaporphyrins: Synthesis, Structural Characterization, LigandBinding Properties, and Unexpected Selectivity of a Bis-“Bowl”Tetraazaporphyrin[J]. Inorg. Chem,2008,47:4520-4530.
    [61] Leznoff C C, Li Z, Terekhov D S. Syntheses of Octaalkynylphthalocyanines fromHalophthalonitriles[J]. J. Porphyrins Phthalocyanines.1999,3:406.
    [62] Leznoff C C, Terekhov D S, Li J, et al. Multisubstituted phthalonitriles,naphthalenedicarbonitriles, and phenanthrenetetracarbonitriles as precursors forphthalocyanine synthe[J]. Can. J. Chem,1995,73:435-443.
    [63] Ali H, Cauchon N, van Lier J E, et al. Pd-catalyzed Heck reaction for thesynthesis of isomeric metallo tetravinylsulfo phthalocyanines and theirphotosensitizing properties[J]. Photochem. Photobiol. Sci,2009,8:868-874.
    [64] de la Torre G, Vazquez P. Agullo-Lopez, F, Torres T. Role of Structural Factors inthe Nonlinear Optical Properties of Phthalocyanines and Related Compounds[J].Chem. ReV,2004,104:3723-3747.
    [65] Kobayashi, N, Nonomura, T. First observation of the circular dichroism spectraof chiral subphthalocyanines with asymmetry[J]. Tetrahedron Lett.(2002)43,4253.
    [66] Leznoff C C. In Phthalocyanine. Properties and Applications; Leznoff C C,LeVer A B P, Eds, VCH Publications: New York,(1989)1:1.
    [67] a) Yoshiyama H, Nakamura S, Toru T. Synthesis and properties of trifluoroethoxy-coated binuclear phthalocyanine[J]. Chem.Commun,2008,1977; b) Reddy M R,Shibata N, Toru T, et al. Design, Synthesis, and Spectroscopic Investigation ofZinc Dodecakis(trifluoroethoxy) phthalocyanines Conjugated withDeoxyribonucleosides[J]. Angew.Chem, Int. Ed,2006,45:8163-8166.
    [68] Idelso E M. U.S. Patent4,061,654,1977; Chem. Abstr.1978,88,171797m.
    [69] Dumoulin F, Zorlu Y, Ahsen V. A first ABAC phthalocyanine[J]. J. PorphyrinsPhthalocyanines,2009,13:161.
    [70] a) Erdem S S, Nesterova I V, Soper S A. Solid-Phase Synthesis ofAsymmetrically Substituted “AB3-Type” Phthalocyanines[J]. J. Org. Chem,2008,73:5003–5007; b) Alonso M A. Synthesis and Photophysical Studies of NewPorphyrin–Phthalocyanine Dyads with Hindered Rotation[J]. Eur. J. Org. Chem,2006,257-267.
    [71] Leznoff C C, Hall T W. The synthesis of a soluble, unsymmetricalphthalocyanine on a polymer support[J]. Tetrahedron Lett,1982,23:3023–3026.
    [72] Chen X, Salmon T R, McGrath D V. Asymmetric Phthalocyanine Synthesis byROMP-Capture-Release[J]. Org. Lett,2009,11:2061–2064.
    [73] a) Youngblood W J. Synthesis of a New trans-A2B2Phthalocyanine Motif as aBuilding Block for Rodlike Phthalocyanine Polymers[J]. J. Org. Chem,2006,71:3345-3356; b) Padmaja K, Bocian D F, Lindsey J S, et al. Triple-DeckerSandwich Compounds Bearing Compact Triallyl Tripods for MolecularInformation Storage Applications[J]. Inorg. Chem,2006,45:5479-5492.
    [74] a) Quintiliani M, Guldi D M, Torres T. Synthesis and PhotoinducedElectron-Transfer Properties of Phthalocyanine–[60]Fullerene Conjugates[J].Chem. Eur. J,2008,14:3765-3775; b) Yang Z L, Wan D, Liu Y S, et al.Phthalocyanines–MWCNT hybrid materials: Fabrication, aggregation andphotoconductivity properties improvement[J]. Chem. Phys. Lett,2008,465:73-77.
    [75] Kahnt A, Quintiliani M, Torres T, et al. A Bis(C60)–Bis(phthalocyanine)Nanoconjugate: Synthesis and Photoinduced Charge Transfer[J]. ChemSusChem,2008,1:97-102.
    [76] Guldi D M, Vázquez P, Torres T, et al. Metallophthalocyanines: VersatileElectron-Donating Building Blocks for Fullerene Dyads[J]. J. Phys. Chem. B,2004,108:18485-18494.
    [77] a) Yaz c A A D, Kobayashi N. Synthesis and characterization of novelazo-bridged Zn(II) and Co(II) bisphthalocyanines[J]. J. PorphyrinsPhthalocyanines,2006,10:1140-1044; b) Ranta J, Kumpulainen T, LemmetyinenH, Efimov A. Synthesis and Characterization of Monoisomeric1,8,15,22-Substituted (A3B and A2B2) Phthalocyanines and Phthalocyanine FullereneDyads[J]. J. Org. Chem,2010,75:5178-5194; c) Rio Y, Seitz W, Vazquez P,Torres T, et al. A Panchromatic Supramolecular Fullerene-BasedDonor–Acceptor Assembly Derived from a Peripherally SubstitutedBodipy–Zinc Phthalocyanine Dyad[J]. Chem. Eur. J,2010,16:1929-1940.
    [78] Nolan J M, Hu M, Leznoff C C. Synlett,1997,593-594.
    [79] Tang C W.2-Layer organic photovoltaic cell[J]. Appl. Phys. Lett,1986,48:183–185.
    [80] a) Thompson, Fréchet J M J. Polymer–C60Composite Solar Cells[J].Angew.Chem, Int. Ed,2008,47:58–77; b) Dennler G, Scharber M C, Brabec C J.Polymer-Fullerene Bulk-Heterojunction Solar Cells[J]. Adv. Mater,2009,21:1323–1338.
    [81] Kim J Y, Dante M, Heeger A J, et al. Efficient Tandem Polymer Solar CellsFabricated by All-Solution Processing[J]. Science,2007,317:222–225.
    [82] de la Torre G, Claessens C G, Torres T. Phthalocyanines: old dyes, new materials.Putting color in nanotechnology[J]. Chem. Commun,2007,2000-2015.
    [83] Leblebici S Y, Chen T L, Ma B, et al. Near-Infrared Azadipyrromethenes asElectron Donor for Efficient Planar Heterojunction Organic Solar Cells[J]. MaAppl. Mater. Interf,2011,3:4469–4474.
    [84] a) Mueller T, K Leo, RiedeSol M, et al. Organic solar cells based on a novelinfrared absorbing aza-bodipy dye[J]. Energy Mater. Sol. Cells,2012,99:176–181; b) Wang W, Armstrong N R, et al. Planar and texturedheterojunction organic photovoltaics based on chloroindium phthalocyanine(ClInPc) versus titanyl phthalocyanine (TiOPc) donor layers[J]. Org. Electron.2011,12:383–393.
    [85] a) Placencia D, Brumbach M, Armstrong N R. Organic Photovoltaic Cells BasedOn Solvent-Annealed, Textured Titanyl Phthalocyanine/C60Heterojunctions[J].Adv. Funct. Mater,2009,19:1913–1921.
    [86] de la Escosura A, Torres T. Stabilization of Charge Separated States inSupramolecular phthalocyanine-fullerene triads by D-A interactions[J]. J. Am.Chem. Soc,2006,128:4112-4118.
    [87] Gratzel M. Solar energy conversion by DSSC[J]. Inorg Chem,2005,44:6841-6851.
    [88] Campbell W M, Burrell A K, Officer D L, Jolley K W. Porphyrins as lightharvesters in the dye-sensitised TiO2solar cell[J]. Coord Chem ReV,2004,248:1363-1379.
    [89] McKeown N B. Phthalocyanine materials. synthesis, structure and function.Cambridge University Press, Cambridge.1998.
    [90] Shen Y C, Zhou Q F, Mao H F, Xu H J. Fabrication, characterization andphotovoltaic study of a TiO2microporous electrode[J]. Thin Solid Films,1995,257:144-146.
    [91] He J J, Hagfeld, A, Sundstrom V. Modified phthalocyanines for efficient near-IRsensitization of nanostructured TiO2electrode[J]. J Am Chem Soc,2002,124:4922-4932.
    [92] Liu G M, Sundstrom V, Sun L C, et al. XPS and UPS characterization of theTiO2/ZnPcGly heterointerface: alignment of energy levels[J]. J Phys Chem B,2002,106:5814-5849.
    [93] Deng H, Mao H F, Xu H J, et al. Improvement in photoelectric conversion of aphthalocyanine-sensitized TiO2electrode by doping with porphyrin[J]. ChemPhys.1998,231:95-103.
    [94] Mao H F, Shen Y C, Lu Z H. Chin Sci Bull,1997,42:833-635.
    [95] Cid J J, Yum J H, Jang S R, Palomares E, Ko J, Gratzel M, Torres T. AngewChem Int Ed.2007,46:8538-8539.
    [96] Robertson N. Catching the rainbow: light harvesting in DSSC[J]. Angew ChemInt Ed.2008,47:1012-1014.
    [97] Chen Y, Wang X, Zhang B. Highly efficient co-sensitization of nanocrystallineTiO2electrodes with plural organic dyes[J]. New J Chem,2005,29:773-776.
    [98] Eu S, Matano Y, Imahori H, et al. Synthesis of sterically hinderedphthalocyanines and their applications to dye-sensitized solar cells[J]. DaltonTrans.2008,5476–5483.
    [99] Imahori H, Umeyama T. Large π-aromatic molecules as potential sensitizers forhighly efficient dye-sensitized solar cells. Acc. Chem. Res,2009,42:1809–1818.
    [100] Nazeeruddin M K, Trombach N, et al. Efficient near-IR sensitization ofnanocrystalline TiO2films by zinc and aluminium Phthalocyanines[J]. J PorphyrPhthalocyanines,1999,3:230-237.
    [101] Reddy P Y, Giribabu L, Nazeeruddin M K, et al. Efficient sensitization ofnanocrystalline TiO2films by a near-IR-absorbing unsymmetrical zincphthalocyanine[J]. Angew Chem Int Ed,2007,46:373-376.
    [102] Giribabu L, Nazeeruddin K, Gratzel M. Unsymmetrical alkoxy zincphthalocyanine for sensitization of nanocrystalline TiO2films[J]. Sol EnergMater Sol,2007,91:1611-1617.
    [103] Tsumura A, Koezuka H, Ando T. Macromolecular electronic deVice:Field‐effect transistor with a polythiophene thin film[J]. Appl Phys Lett,1986),49:1210-1212.
    [104] a) LeVer A B P, Leznoff C C. Phthalocyanine: properties and applications. VCH,New York,1989,Vol.1;1993, Vols.2and3;1996, Vol.4; b) Jiang J, Ng D. K. P.A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato RareEarth Complexes[J]. Acc Chem Res,2009,42:79-88.
    [105] Guillaud G, Maitrot M, et al. Thin‐film transistors based on nickelphthalocyanine[J]. J Appl Phys,1989,66:4554-4556.
    [106] Guillaud G, Jouve C, Gamoudi M. Transient behaviour of thin film transistorsbased on nickel phthalocyanine[J]. Thin Solid Films,1995,258:279-282.
    [107] Ben Chaabane R, Bouazizi A, Ben Ouada H, et al. Study of organic thin filmtransistors based on nickel phthalocyanine: Effect of annealing[J]. Thin SolidFilms,2003,427:371-376.
    [108] Bao Z, Dodabalapur A. Organic field‐effect transistors with high mobilitybased on copper phthalocyanine[J]. Appl Phys Lett,1996,69:3066-3068.
    [109] Kudo K, Iizuka M, Kuniyoshi S, Tanaka K. DeVice characteristics of lateral andvertical type organic field effect transistors[J]. Thin Solid Films,2001,393:362-367.
    [110] Schauer F, Zhivkov I, Nespurek S. Organic phthalocyanine films with highmobilities for efficient field-effect transistor switches[J]. J Non-Cryst Solids,2000,266:999-1003.
    [111] Yuan J, Yan D, Xu W, et al. Bottom-contact organic field-effect transistorshaving low-dielectric layer under source and drain electrodes[J]. Appl Phys Lett.2003.82:3967-3969.
    [112] Hoshino S, Kamata T, Yase K. Effect of active layer thickness on deViceproperties of organic thin-film transistors based on Cu(II) phthalocyanine[J]. JAppl Phys,2002,92:6028-6032.
    [113] Okuda T, Shintoh S, Terada N. Copper-phthalocyanine field-effect transistorwith a low driving voltage[J]. J Appl Phys.2004,96:3586-3588.
    [114] Puigdollers J, Vetter M, Alcubilla R, et al. Copper phthalocyanine thin-filmtransistors with polymeric gate dielectric[J]. J Non-Cryst Solids.2006,352:1778-1782.
    [115] Jiang W, Du G, Wang X, et al. Organic thin film field effect transistors withPMMA-GMA gate dielectric[J]. Chin Phys Lett,2006,23:1939-1942.
    [116] Yu S,Wang X, Chang. Y, Du G, et al. Organic thin-film transistors withpolymeric gate insulators[J]. J Non-Cryst Solids,2008,354:1516-1521.
    [117] Zhang J, Wang J, Wang H, Yan D. Organic thin-film transistors in sandwichconfiguration[J]. Appl Phys Lett,2004,84:142-144.
    [118] Videlot-Ackermann C, Ackermann J, Fages F. Charge transfer effects in organicfield-effect transistors containing a donor/acceptor heterojunction[J]. Synth Met.2007,157:551-557.
    [119] Su W, Jiang J, Liu Y, et al. Thin-film transistors based on langmuir blodgettfilms of heteroleptic bis(phthalocyaninato) rare earth complexes[J]. Langmuir,2005,21:6527-6531.
    [120] Gao Y, Ma P, Jiang J, et al. Design, synthesis, characterization, and OFETproperties of amphiphilic heteroleptic tris(phthalocyaninato) europium(III)complexes[J]. Inorg Chem,2009,48:45-54.
    [121] Chen Y, Li R, Jiang J, et al. Effect of peripheral hydrophobic alkoxy substitutionon the organic field effect transistor performance of amphiphilictris(phthalocyaninato) europium triple-decker complexes[J]. Langmuir,2007,23:12549-12554.
    [122] Chen Y, Wang L, Wang S, et al. High performance organic field-effecttransistors based on amphiphilic tris(phthalocyaninato) rare earth triple-deckercomplexes[J]. J Am Chem Soc,2005,127:15700-15701.
    [123] Guillaud G, Bouvet M, et al. Smectic liquid crystals: textures and structures[J].Chem Phys Lett,1990,167:503.
    [124] Rihter B D, Rodgers M A J. Photochromic reactions involving palladium(II)octabutoxynaphthalocyanine and molecular oxygen[J]. J. Am. Chem. Soc.1993,115:8146-8152.
    [125] Voloshin Y Z, Volkov S V, Starikov Z A. Ditopic macropolycyclic complexes:synthesis of hybrid phthalocyaninoclathrochelates[J]. Inorganic Chemistry,2005,44:822-824.
    [126] Luo Q F, Chen B Z, Wang M Z, Tian H. Mono-bisthienylethene ring-fusedversus multi-bisthienylethene ring-fused photochromic hybrids[J]. Adv. Funct.Mater,2003,13:233-239.
    [127] Luo Q F, Cheng S H, Tian H. Synthesis and photochromism of a new binuclearporphyrazinato magnesium(II)[J]. Tetrahedron Lett,2004,45:7737-7740.
    [128] Sun L, Wang S, Tian H. Chem Lett,2007,36:250-251.
    [129] Hammarstrom L. Hammes-Schiffer, S. Artificial Photosynthesis and SolarFuels[J]. Acc. Chem. Res,2009,42:1859-1860.
    [130] Balzani V. Electron Transfer in Chemistry. Wiley-VCH: Weinheim, Germany,2001, Vols.1-4.
    [131] Claessens C G, Hahn U, Torres T. Phthalocyanines: from outstanding electronicproperties to emerging applications[J]. Chem. Rec,2008,8:75-97.
    [132] de la Torre G, Torres T, et al. Functional phthalocyanines: synthesis,nanostructuration, and electro-optical applications[J]. Struct. Bonding,2010,135:1-44.
    [133] D’Souza F, Ito O. Supramolecular donor–acceptor hybrids of porphyrins/phthalocyanines with fullerenes/carbon nanotubes: electron transfer, sensing,switching, and catalytic applications[J]. Chem. Commun,2009,4913-4928.
    [134] a) Guldi D M, Illescas B M, Atienza C M, Wielopolski M, Martin N. Fullerenefor organic electronics[J]. Chem. Soc. ReV,2009,38:1587-1597; b) Sgobba V,Guldi D M. Chem. Soc. ReV,2009,38:165.
    [135] Hatton R A, Blanchard N P, Silva S R P, et al. Nanostructured copperphthalocyanine-sensitized multiwall carbon nanotube films[J]. Langmuir,2007,23:6424-6430.
    [136] Wang X B, Zhu D, et al. Immobilization of tetra-tert-butyl-phthalocyanines oncarbon nanotubes: a first step towards the deVelopment of new nanomaterials[J].J. Mater. Chem,2002,12:1636-1639.
    [137] Kyatskaya S, Wernsdorfer W, Ruben M, et al. Anchoring of rare-earth-basedsingle-molecule magnets on single-walled carbon nanotubes[J]. J. Am. Chem.Soc,2009,131:15143-15151.
    [138] Chen R J, Zhang Y, Wang D, Dai H. noncovalent sidewall functionalization ofsingle-walled carbon nanotubes for protein immobilization[J]. J. Am. Chem. Soc.2001,123:3838-3839.
    [139] Cao L, Xu J M, Wang M, et al. Carbon-nanotube-templated assembly ofrare-earth phthalocyanine nanowires[J]. AdV. Mater,2003,15:909-913.
    [140] Ye J S, Wen Y, Sheu F S, et al. Electrochemical biosensing platforms usingphthalocyanine-functionalized carbon nanotube electrode[J]. Electroanalysis,2005,17:89-95.
    [141] Wang J, Blau W J. Chem. Linear and nonlinear spectroscopic studies ofphthalocyanine-carbon nanotube blends[J]. Phys. Lett,2008,465:265-271.
    [142] Martínez-Díaz M V, Torres T, et al. A supramolecular approach for theformation of fullerene–phthalocyanine dyads[J]. J. Mater. Chem,2002,12:2095–2099.
    [143] Guldi D M, Da Ros, T, Prato M, et al. ReVersible zinc phthalocyanine fullereneensembles[J]. Chem. Commun,2002,2774-2775.
    [144] Sessler J L, Torres T, Guldi D M, et al. Guanosine and fullerene derivedde-aggregation of a new phthalocyanine-linked cytidine derivative. Tetrahedron.2006,62:2123-2131.
    [145] Torres T, Gouloumis A, Sessler J L, et al. Photophysical characterization of acytidine-guanosine tethered phthalocyanine-fullerene dyad[J]. Chem. Commun,2007,292-294.
    [146] Hauke F, Swartz A, Guldi D M, Hirsch A. Supramolecular assembly of aquasi-linear heterofullerene–porphyrin dyad[J]. J. Mater. Chem,2002,12:2088-2094.
    [147] El-Khouly M E, D’Souza F. Studies on Intra-Supramolecular andIntermolecular Electron-Transfer Processes between Zinc Naphthalocyanine andImidazole-Appended Fullerene[J]. ChemPhysChem,2003,4:474-484.
    [148] D’Souza F, Maligaspe E, Fukuzumi S, et al. Photosynthetic reaction centermimicry: low reorganization energy driven charge stabilization in self-assembledcofacial zinc phthalocyanine dimer-fullerene conjugate[J]. J. Am. Chem. Soc,2009,131:8787-8797.
    [149] Rodriguez-Morgade M S, Echegoyen L, Torres, T, et al. Synthesis,characterization, and photoinduced electron transfer processes of orthogonalruthenium phthalocyanine-fullerene assemblies[J]. J. Am. Chem. Soc.2009,131:10484-10496.
    [150] Cammidge A N, Berber G, Chambrier I, et al. Octaalkylphthalocyaninatoruthenium(II) complexes with mixed axial ligands and supramolecularporphyrin:phthalocyanine structures derived from them[J]. Tetrahedron,2005),61:4067-4074.
    [151] Martin-Gomis L, Fernandez-Lazaro F, Fukuzumi S. Synthesis andphotophysical studies of a new nonaggregated C60silicon phthalocyanine C60triad[J]. A. Org. Lett,2007,9:3441-3444.
    [152] Li X, Wasielewski M R, et al. Ultrafast aggregate-to-aggregate energy transferwithin self-assembled light-harvesting columns of zinc phthalocyaninetetrakis(perylenediimide)[J]. J. Am. Chem. Soc,2004,126:10810-10811.
    [153] Ohkubo K, Fukuzumi S. Long-lived charge-separated states of simple electrondonor-acceptor dyads using porphyrins and phthalocyanines. J. PorphyrinsPhthalocyanines.2008,12:993.
    [154] Rodriguez-Morgade M S, Guldi, D. M, et al. SupramolecularBis(rutheniumphthalocyanine) Perylenediimide Ensembles: SimpleComplexation as a Powerful Tool toward Long-Lived Radical Ion Pair States[J].J. Am. Chem. Soc.2006,128:15145-15154.
    [155] Ying G, Yu S H, Antonietti M, Bottcher C, Faul C F J. Synthesis ofSupramolecular Polymers by Ionic Self-assembling of Oppositely ChargedDyes[J]. Chem. Eur. J.2005,11:1305-1311.
    [156] Calmettes B, Porte L, Coratger R. Bicomponent Supramolecular Packing inFlexible Phthalocyanine Networks[J]. Angew. Chem. Int. Ed,2008,47:6994–6998.
    [157] Lin Y Z, Lia Y F, Zhan X W. Small molecule semiconductors forhigh-efficiency organic photovoltaics[J]. Chem. Soc. ReV.2012,41:4245–4272.
    [158] Qian G, Wang Z Y. Near‐Infrared Organic Compounds and EmergingApplications[J]. Chem. Asian J.2010,5:1006–1029.
    [159] Rastegar M F, Wang Z Y. A New Class of Near-Infrared ElectrochromicOxamide-Based Dinuclear Ruthenium Complexes[J]. Org. Lett.2004,6:4519-4522.
    [160] Qian G, Dai B, Wang Z Y. Band gap tunable, donor–acceptor–donorcharge-transfer heteroquinoid-based chromophores: near infraredphotoluminescence and electroluminescence.[J] Chem. Mater,2008,20:6208–6216.
    [161] Sun Z, Ye Q, Chi C Y. Wu J S. Low band gap polycyclic hydrocarbons: fromclosed-shell near infrared dyes and semiconductors to open-shell radicals[J].Chem. Soc. ReV.2012,41:7857–7889.
    [162] Wu Y Z, Zhu W H. Organic sensitizers from D–π–A to D–A–π–A: effect of theinternal electron-withdrawing units on molecular absorption, energy leVels andphotovoltaic performances[J]. Chem. Soc. ReV,2013,42:2039.
    [163] Perepichka D F. Bryce M R. Molecules with Exceptionally SmallHOMO–LUMO Gaps[J]. Angew. Chem. Int. Ed.2005,44:5370–5373.
    [164] Kobayashi N, Furuyama T, Satoh K. Rationally Designed PhthalocyaninesHaving Their Main Absorption Band beyond1000nm[J]. J. Am. Chem. Soc.2011,133:19642–19645.
    [165] Muranaka A, Yonehara M, Uchiyama M. Azulenocyanine: A New Family ofPhthalocyanines with Intense Near-IR Absorption[J]. J. Am. Chem. Soc.2010,132:7844–7845.
    [166] Nyokong T. Electronic Spectral and Electrochemical Behavior of Near InfraredAbsorbing Metallophthalocyanines[J]. Struct Bond,2010,135:45–88.
    [167] Victor E. PushkareV, Tomilova, Nikolay S. Zefirov. Sandwich Double-DeckerLanthanide(III)“Intracavity” Complexes Based on Clamshell-TypePhthalocyanine Ligands: Synthesis, Spectral, Electrochemical, andSpectroelectrochemical Investigations[J]. Chem. Eur. J.2012,18:9046-9055.
    [168] Kobayashi N. Dimers, trimers and oligomers of phthalocyanines and relatedcompounds[J]. Coordination Chemistry ReViews,2002,227:129-152.
    [169] Matsushita O, Lukyanets E A, Kobayashi N, et al. Rectangular-ShapedExpanded Phthalocyanines with Two Central Metal Atoms[J]. J. Am. Chem.Soc.2012,134:3411–3418.
    [170] Tang C W, Vanslyke S A. Organic electroluminescent diodes[J]. Appl.Phys.Lett,1987,51:913.
    [171] Burroughes J H, Holmes A B, et al. Nature,1990,347:539.
    [172] Chuan-Hui Cheng, Chun-Yu Ma, et al.1.1μm near-infraredelectrophosphorescence from organic light-emitting diodes based on copperphthalocyanine[J]. Applied Physics Letters.2006,88:213505.
    [173] Ince M, Guldi D M, et al. Immobilizing NIR absorbing azulenocyanines ontosingle wall carbon nanotubes—from charge transfer to photovoltaics[J]. Chem.Sci.2012,3:1472–1480.
    [174] Bo S, Liu X, Zhen Z, et al. Near-infrared luminescence properties of erbiumcomplexes with the substituted phthalocyaninato ligands[J]. Photochem.Photobiol. Sci.2008,7:474–479.
    [175] Kimura M, Ueki H, Ohta K, Shirai H, Kobayashi N. Self-organization oflow-symmetry adjacent-type metallophthalocyanines having branched alkylchains[J]. Langmuir.2006,22:5051-5056.
    [176] Sheng N, Zhang Y, Xu H, Bao M, Sun X, Jiang J.(Phthalocyaninato)copper(II)Complexes Fused with Different Numbers of15-Crown-5Moieties–Synthesis,Spectroscopy, Supramolecular Structures, and the Effects of Substituent Numberand Molecular Symmetry[J]. Eur J Inorg.2007,3268-3275.
    [177] Engelkamp H, Middlebeek S, Nolte R. J. M. Self-assembling of Disk-ShapedMolecules to Coiled-Coil Aggregates with Tunable[J]. Science,1999,284:785.
    [178] Guldi D M, Gouloumis A, Prato M, Z. Nanoscale Organization of aPhthalocyanine Fullerene System: Remarkable Stabilization of Charges inPhotoactive1-D Nanotubules[J]. J Am Chem Soc.2005,127:5811-5813.
    [179] de la Escosura A, Nolte R J M, Torres T, et al. Donor Acceptor PhthalocyanineNanoaggregates[J]. J Am Chem Soc.2003,125:12300-12308.
    [180] Morisue M, Kobuke Y. Tandem Cofacial Stacks of Porphyrin–PhthalocyanineDyads through Complementary Coordination[J]. Chem Eur J.2008,14:4993-5000.
    [181]姜月顺,杨文胜.北京:科学出版社[M],2004,77-81.
    [182] Hiroshi W, Dominique C, Lydie V, et al. Thin-film phases of organiccharge-transfer complexes formed by chemical vapor deposition[J]. Thin SolidFilms.2009,518:299-304.
    [183] Walzer K, Toccoli T, Pallaoro A, et al. Comparison of organic thin filmsdeposited by supersonic molecular-beam epitaxy and organic molecular-beamepitaxy: The case of titanyl phthalocyanine[J]. Surface Science.2006,600:2064-2069.
    [184] Hasegawa H, Kubota T, Mashiko S. Site-selective fabrication of conductingmolecular nanowires based on electrocrystallization[J]. Electrochimica Acta.2005,50:3029-3032.
    [185] Chintakula G, Rajaputra S, Singh V P. Schottky diodes on nanowires of copperphthalocyanine[J]. Solar Energy Materials&Solar Cells.(2010)94,34-39.
    [186] Guo Z C, Chen B, Zhang M Y, et al. Zinc phthalocyanine hierarchicalnanostructure with hollow interior space: Solvent–thermal synthesis and highvisible photocatalytic property[J]. Journal of Colloid and Interface Science.2010,348:37-42.
    [187] LeVer A B P. In Phthalocyanine. Properties and Applications; Leznoff C C,LeVer A B P, Eds, VCH Publications: New York[M].(1993)3,1.
    [188] Mack J, Stillman M J. In The Porphyrin Handbook; Kadish, K. M,Smith, K. M,Guilard, R, Eds, Academic Press: New York[M],2003,16:43.
    [189] Stillman M J. In Phthalocyanine. Properties and Applications; Leznoff C C,LeVer A B P, Eds, VCH Publications: New York[M],1993,3:227.
    [190] Kobayashi N, Miwa H, Nemykin V N. Adjacent versus Opposite TypeDi-Aromatic Ring-Fused Phthalocyanine Derivatives: Synthesis,Spectroscopy, Electrochemistry, and Molecular Orbital Calculations[J]. J. Am.Chem. Soc.2002,124:8007.
    [191] Kobayashi N, Fukuda T. Phthalocyanine, Porphyrin, Cyclodextrin, and PolymerSystems Suitable for Studying by Circular Dichroism, Magnetic CircularDichroism, and/or Electrochemistry[J]. Bull. Chem. Soc. Jpn.2009,82:631.
    [192] Miwa H, Ishii K, Kobayashi N. Electronic Structures of Zinc and PalladiumTetraazaporphyrin Derivatives Controlled by Fused Benzo Rings[J]. Chem.sEur.J.2004,10:4422-4235.
    [193] Li R, Kobayashi N, Jiang J. Electron-Donating or-Withdrawing Nature ofSubstituents ReVealed by the Electrochemistry of Metal-FreePhthalocyanines[J]. Inorg. Chem.2006,45:2327-2334.
    [194] Antoniadis H, Hsieh B R, Abkowitz M A, et al. Photovoltaic andphotoconductive properties of aluminum/poly(p-phenylene vinylene)interfaces[J]. Synth. Met.1994,62:265-271.
    [195] Osaheni J A, Jenekhe S A, Perlstein J. Photogeneration of Charge Carriers inBilayer Assemblies of Conjugated Rigid-Rod Polymers. Appl. Phys. Lett,1994,64:3112-3114.
    [196] Huang Y, Duan X F, Cui Y, et al. Gallium nitride nanowire nanodeVices[J].Nano. Lett,2002,2:101-104.
    [197] Tang S, Li C, Liu Y, et al. High-Performance Air-Stable n-Type Transistors withan Asymmetrical DeVice Configuration Based on Organic Single-CrystallineSubmicrometer/Nanometer Ribbons[J]. J. Am. Chem. Soc.2006,128:14634-14639.
    [198] Peisert H, Knupfer M, Fink J, et al. Full characterization of the interfacebetween the organic semiconductor copper phthalocyanine and gold[J]. J. Appl.Phys.2002,91:4872-4878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700