新型金属有机骨架/多孔氧化铝复合膜的制备、结构表征和氢气、甲烷分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一般认为,H_2是最符合人类可持续发展要求的绿色能源。由于自然界中仅存在极少量的游离态H_2,因此在工业生产中通常采用CH_4裂解法制备H_2,其中H_2与CH_4气体分离是制备高纯H_2的关键工艺技术。目前,一般采用变压吸附法分离H_2与CH_4,但由于选择性较低,难以生产出高纯H_2,同时还存在能耗大、成本高等问题。膜分离技术是有着广泛发展前景的气体分离高新技术,但传统的膜材料都难以满足高纯H_2制备技术的要求。例如聚砜膜、醋酸纤维膜等有机聚合物膜气透性较低,结构稳定性较差。炭分子筛膜等无机膜具有良好的热稳定性,但由于孔道结构很难控制,导致分离选择性较差。因此,在高纯H_2制备工业化生产技术发展中,迫切需要开发新型膜材料。
     二十世纪末,人们开发出金属有机骨架化合物(MOF),由于其具有结构热稳定性高、孔道结构可控等特点,在包括气体高选择性分离在内的诸多领域展现出广泛而良好的应用前景。目前,国际上关于气体分离MOF膜的研究尚处于起步阶段,即使关于MOF膜制备的文献报道也不多。对于理想的H_2/CH_4分离膜技术,既要具有MOF材料的高选择性和结构热稳定性等特性,又要具有无机膜材料较强的机械强度等特性。因此,本文研究目的是针对CH_4裂解法高纯H_2制备中,H_2和CH_4气体分离的关键工业技术,研制开发同时具有极高选择性、较高结构热稳定性、较大机械强度等特性的新型MOF/多孔氧化铝复合膜。该研究对于扩展MOF膜材料在混合气体中高选择性分离H_2具有实际应用价值,同时对于开发新型MOF材料,也具有重要的理论意义,研究结果主要体现在三个方面:
     一、新型H_2/CH_4气体分离MOF膜的晶体合成、结构表征及热稳定性。
     对于理想的H_2/CH_4气体分离MOF功能材料,不仅要求在结构上具有高选择分离性能,具有孔道结构且孔径应介于H_2和CH_4气体分子动力学直径之间,而且要求具有良好的结构热稳定性,在373-473K温度范围内仍能保持稳定的孔道结构。对此,本文选择5种配体,采用反应物浓度0.003-0.05mol/L,溶剂为水、甲醇或DMF,实验温度298-453K,反应周期4-7天等实验条件,共合成出8种新型MOF晶体材料,结果如下:
     1、应用单晶衍射方法测量表明,配合物1: Cu(ClO4)2.C_(16)H_(16)N_2O_5、2:[C_(16)H_(18)N_2O_5].[ZnCl4]、3:[C_(16)H_(17)N_2O_5]·[ZnCl3]、4:[C_(16)H_(17)N_2O_5]·[ZnCl3]和5:Cu_2(ClO_4)_2(OH)_2·(C_(16)H_(16)N_2O_5)2·2CH_3OH具有零维密实的晶体结构。配合物6:HgI2·C18H_24N6O4具有一维晶体结构,在C轴方向形成一维孔道,孔径约为0.5nm。配合物7:Co(C_(10)H_8N_2).(CHO2)2为三维密实晶体结构。配合物8:Ni_(1.5)(C_(10)H_8N_2)_(1.5).C_(12)H_(28)O_9P_3.(H_2O)_3具有三维晶体结构,属四方晶系,沿C轴方向形成一维孔道结构,孔径为0.38nm。在八种新型MOF晶体材料中,配合物6和8具有孔道结构,但配合物6孔径为CH_4气体动力学直径1.3倍,只有配合物8的孔径大小正好介于H_2和CH_4气体分子动力学直径之间。
     2、应用热重分析方法检测表明,在氮气气氛下,配合物8在低于453K时,能够保持结构稳定,具有较强的结构热稳定性。
     3、配合物8晶体材料对单组分气体吸附实验表明,在压力0-1000mbar,温度303K条件下,由于H_2气体分子与MOF材料间的作用力极弱,导致晶体材料对H_2气体吸附量为零;在温度303K,压力1000mbar下,晶体材料对分子动力学直径小于孔径的CO2吸附量约为2wt%。然而,在273K和303K温度条件下,由于CH_4分子动力学直径大于MOF孔径,CH_4无法进入孔道,导致MOF晶体材料对CH_4的吸附量为零。这说明,配合物8晶体结构对气体分子具有很强的分子筛筛分性能。
     二、多孔氧化铝膜基底材料制备及H_2/CH_4气透性。
     对于高选择性H_2/CH_4气体分离的MOF复合膜,理想的无机基底材料不仅要与MOF材料有较强的表面附着力,而且要具有较强的机械强度和良好的气透性,这些主要决定于基底表面性质、厚度及孔径大小。一般而言,镍网、多孔陶瓷片、透气钢片和多孔氧化铝膜等是常用的无机基底材料。应用原位法制备MOF/无机基底材料复合膜,实验结果表明,多孔氧化铝膜为最优基底材料。多孔氧化铝膜厚度为77.4μm,孔径为25nm时,可以同时满足复合膜在气透性和机械强度两方面的要求。其耐压强度大于1Mpa,H_2和CH_4气透率分别为5.607×10-5mol/Pa·m~2·s和2.385×10-5mol/Pa·m~2·s。
     三、新型MOF/多孔氧化铝复合膜制备和H_2/CH_4气体分离性能。
     理想的MOF/多孔氧化铝复合膜在分离性能上应具有H_2/CH_4气体分离性高和结构热稳定性高,在物理性质上应具有厚度可控且均一、耐压强度好和气透性适中等特性,具体结果如下:
     1、采用平板真空法制备新型MOF/多孔氧化铝复合膜,MOF涂膜液浓度及涂布方式、操作温度及不同镍盐等对复合膜结构都产生不同程度的影响。实验表明,MOF涂膜液浓度在0.2-0.7%之间均可以得到完整复合膜;反应温度由413K升高到433K,复合膜的厚度由450μm降低到200μm;采用Ni(CH_3COO)_2.4H_2O作为镍盐得到复合膜厚度为200μm,但晶体存在纵向堆积。
     2、综合考虑MOF复合膜质量,选择MOF晶种层厚度是450μm,多孔氧化铝膜厚度77.4μm的MOF/多孔氧化铝复合膜作为气体测试膜。复合膜耐压强度大于1MPa,在温度298K时,单组分H_2和CH_4气体渗透率实验表明,H_2气透率为1.44×10-9mol/Pa·m~2·s,并且在压差0.1-0.3MPa间几乎不随压力变化,而CH_4气透率为零,无法透过该复合膜。
     3、在298-373K温度范围内测试H_2/CH_4混合气体渗透率。实验表明,H_2气透率随温度的升高逐渐降低,CH_4气透率为零,这说明该复合膜对H_2/CH_4混合气体有极高的选择性,可以用来制备高纯H_2。
     综合上述研究结果,新型MOF/多孔氧化铝复合膜具有良好结构热稳定性、较强的耐压强度及极高的H_2/CH_4气体分离性能,有望在CH_4裂解法高纯H_2制备中得到应用。其中,科学创新点主要是在国际上首次采用平板真空法制备出同时具有较强耐压强度、高结构热稳定性及极高H_2/CH_4选择性的新型MOF/多孔氧化铝复合膜。研究特色主要是得到了MOF/多孔氧化铝复合膜制备技术参数,为MOF/多孔氧化铝复合膜在高纯H_2制备工业化技术开发中,提供了必要的理论指导及技术基础。
As a kind of green energy, hydrogen has been considered to meet therequirements of human sustainable development. Generally, hydrogen is produced bydecomposition of methane, because there is only a small amount of hydrogen innature. During productive process, the key technology is how to separate purehydrogen from hydrogen and methane mixtures. At present, because of its lowselectivity, as well as high energy consumption and high cost, it is difficult to separatepure hydrogen from the mixed gases by pressure swing adsorption. In contrast totraditional separation technologies, Membrane-based gas separation technology is ofhigh efficiency and plays an increasingly important role in industrial processes.However, traditional membrane materials are difficult to meet the development of thistechnology. Polymer membranes are prone to be plasticized or swollen, leading to alow efficiency of gas separation. With high thermal stability, inorganic membranes,such as carbon molecular sieve membrane, could maintain stability at hightemperature, however, the uncontrollable pore structure limits its further development.Thus it is urgent and necessary develop a new type of membrane material to separatepure hydrogen during industrial production.
     In the end of the twentieth century, metal-organic framework (MOF), which arecrystalline hybrid materials composed of metal ions and organic ligands, have beendeveloped rapidly and used widely, such as gas-sorption properties depend on theirlarge porosity and designability of structures. Till now, there are few studies reportedabout MOF composite membranes, much less than their gas separation properties. Asideal composite membranes to separate hydrogen from mixed gases, it is necessary tocombine the thermal stability and high selectivity of metal organic framework with the mechanical strength characteristics of inorganic materials. This research couldexpand the utilization of MOF/PAAM composite membranes in the field of gasseparation, especially for hydrogen separation. And it could promote the developmentof new MOF materials as well. Results of this research are as follows:
     1. The synthetic processes and structural characterizations of new metal organicframeworks.
     As ideal MOF materials to separation H_2and CH_4, it should exhibit highseparation performance with the pore structure, moreover, the pore size is between thetwo molecule diameters of H_2and CH_4. In addition, thermal stability is equallyimportant for them when the temperature ranges from373K to473K. In this research,we synthesized eight compounds using five ligands. The experimental conditionswere as follows: concentration was0.003-0.05mol/L, solvent was H_2O or CH3OH,synthetic temperature was in the range298-453K, reaction time was from four toseven days.
     1) Compound1to5were proved to be zero dimensional compact structures bysingle crystal diffraction method. Compound6belongs to monoclinic system with onedimensional structure. Along the C axis, compound6forms one dimensional porewith the aperture0.5nm. Compound7is compact structure. Compound8belongs totetragonal system with the one dimensional pore along the C axis. The aperture is0.38nm. Among eight new MOF crystal materials, both compound6and8have porestructures, but the aperture of compound6is1.3times larger than the kinetic diameterof CH_4. Thus only compound8meets the requirement of pore size.
     2) With nitrogen protected, it is possible to maintain a stable structure below473K by gravitational thermal analysis.
     3) Gas adsorption behavior of single component gas on compound8wasinvestigated. The result shows that at303K, gas adsorption of H_2is zero with pressurefrom0-1000mbar, because of the weak interaction between the H_2molecule and MOFmaterials, although the H_2molecule can diffuse into the pores. Maximum adsorption capacity of CO2is2wt%. At273K and303K, the gas adsorption of CH_4is zero,because the kinetic diameter of CH_4is larger than the crystal aperture. Thisphenomenon confirms that compound8possesses obvious molecular sievingproperties.
     2. Preparing PAAM and testing gas transmittance of hydrogen and methane.
     For high selective MOF composite membrane to separate H_2and CH_4, idealinorganic substrate materials are required to have strong surface adhesion with theMOF materials, strong mechanical strength and good gas permeability, all of whichare decided by the aperture and thickness of substrate. In general, nickel net, porousceramics sheet, breathable stainless steel sheet and PAAM are used as substratematerials for preparing composite membrane. The MOF composite membrane wereprepared by “in suit” method in this work. The result shows that the ideal inorganicsubstrate materials is PAAM. With the thicknesses of77.4and pore of25nm, thestrong mechanical strength and gas permeability meet the requirements. The gastransmission rates of H_2and CH_4are5.60710-5mol/Pa·m2·s and2.38510-5mol/Pa·m2·srespectively.
     3. Preparing MOF/PAAM composite membranes and measuring gastransmittance of hydrogen and methane.
     The ideal MOF/PAAM composite membranes should have the followingperformance: high gas separation efficiency, high thermal stability, uniform thickness,high compressive strength and high gas permeability. The results are shown in details:
     1) The quality of new MOF/PAAM composite membrane which is prepared bytablet vacuum method is influenced by many factors, for example the concentration ofcoating solution, operating temperature and different nickel salt. This experimentshows that the best concentration of coating solution is0.2-0.7percentage. When thetemperature raises from413K to433K, the thickness of composite membranedecreases from450μm to200μm. Gap appears among the crystal particles when thetemperature is453K. The thickness of the composite membrane is200μm using Ni(CH3COO)2.4H_2O as nickel source,however, crystal packing appears through thecross-section of composite membrane.
     2) Considering the quality of composite membrane, we choose one compositemembrane to test gas permeability. This composite membrane is consisted of twoparts, one is the MOF membrane with thickness of450μm, another is PAAM withthickness of77.4μm. The compressive strength of this composite membrane is greaterthan10barrer. The gas transmission rates of H_2is1.44×10-9mol/Pa·m~2·s at298K andalmost keeps as constant with pressure under0.1-0.3Mpa. At the same condition, CH_4can not penetrate through this composite membrane, so the gas transmission rates ofCH_4is zero.
     3) In range of298-373K, gas transmission rates of H_2decrease with theincreasing temperature. This MOF/PAAM composite membrane shows highselectivity of H_2and CH_4,for example at298K, the gas transmission rates of H_2is1.38×10~(-9)mol/Pa·m~2·s, but the gas transmission rate of CH_4is zero.
     Based on this research, the MOF/PAAM composite membrane is expected to beapplied in the production of high purity H_2through decomposition of CH_4, because ofits high thermal stability and high compressive strength, especially high gasseparation efficiency. The scientific innovation in this research is that we prepared thefirst new MOF/PAAM composite membrane by tablet vacuum method in the world.The main research feather is that we obtain the preparation technology parameters ofMOF/PPA, such as thickness, temperature, and so on. It will provide necessarytheoretical and technical foundation of MOF/PPAM in production of high pure H_2industrial technology developments.
引文
[1] China's gas separation by membrane technology advanced. China Chemical Reporter, April,2004.
    [2] Belyaev, A. A. Yampolskii, Y. P. Starannikova, L. E. Polyakov, A. M. Clarizia, G. Drioli, E.Marigliano, G. Barbieri, Membrane air separation for intensification of coal gasification process.Fuel Process.Technol.2003,80:119-121.
    [3] UBE expands gas separation membrane production.Membrane Technology, November2006.
    [4] Satoshi Takamizawa, Yuichi Takasaki, Ryosuke Miyake. Single-Crystal Membrane forAnisotropic and Efficient Gas Permeation. J. Am. Chem. Soc.,2010,132(9):2862-2863.
    [5] Deyuan Kong, Jerzy Zon, Jennifer McBee, Abraham Clearfield. Rational Design and Synthesisof Porous Organic-Inorganic Hybrid Frameworks Constructed by1,3,5-BenzenetriphosphonicAcid and Pyridine Synthons. Inorganic Chemistry. Inorg. Chem.,2006,45:977-986.
    [6] Markus Henn, Klaus Jurkschat, Dirk Mansfeld, Michael Mehring, Markus Schurmann.Synthesis and structure of and DFT-studies on1,3,5-[P(O)(i-PrO)2]3C6H3and its CHCl3adduct:analysis of the Cl3C–H…OP hydrogen bond. Journal of Molecular Structure,2004,697:213-220.
    [7] Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, ZoeyR. Herm, Tae-Hyun Bae, Jeffrey R. Long. Carbon Dioxide Capture in Metal-Organic Frameworks.Chem. Rev.,2012,112:724-781.
    [8] H. Lin, E. Van Wanger, R Raharjo, B. D. Freeman, I Roman. High-Performance PolymerMembranes for Natural-Gas Sweetening. Advanced Materials,2006,18(1):39-44.
    [9] Bhupender S. Minhas, Takeshi Matsuura, Srinivasa Sourirajan. Ind. Eng. Chem, Res,1987,26(11):2344-2348.
    [10] Ingo Pinnau, Lora G. Toy. Gas and vapor transport properties of amorphous perfluorinatedcopolymer membranes based on2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene. Journal of memebrane science,1996,109(1):125-133.
    [11] Hyun Hang Yong, Hyun Chae Park, Yong Soo Kang, Jong Won, Woo Nyun Kim.Zeolite-filled polyimide membrane containing2,4,6-triaminopyrimidine. Journal of membranescience,2001,188(2):151-163.
    [12] De Q Vu, William J Koros, Stephen J Miller. Mixed matrix membranes using carbonmolecular sievesI. Preparation and experimental results. Journal of membrane science,2003,211(2):311-334.
    [13] Tc Merkel, I Pinnau, R Prabhakar. Gas and vapor transport properties of perfluoropolymersChem. Mater.,2003,15(1):109–123.
    [14]李刚,王金渠,杨建华,初乃波,鲁金明.二次生长法合成SAPO-34沸石膜及其气体渗透性能.硅酸盐通报,2009,5:887-892.
    [15] M. A. Aroon, A. F. Ismail, M. M. Montazer Rahmati, T. Matsuura. Morphology andpermeation properties of polysulfone membranes for gas separation: Effects of non-solventadditives and co-solven. Separation and purification technology,2010,72(2):194-202.
    [16] Murphy M K. Post-treatment of asymmetric membranes for gas application. AICHE SYMP,SER,1989,85(272):34-40.
    [17] Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res,2002,41:1393.
    [18]王学松,气体膜分离技术.出版地:化学工业出版社,出版时间:2010:271-274.
    [19]江锐鹏.甲烷直接裂解核能制氢效率的研究[学位论文].上海:上海交通大学,2005.
    [20]侯梦溪,张海涛.焦炉气的循环利用.上海化工,2008,33(2):27-31.
    [21]姚占强,任小坤,孙郁,何秋菊,张武.焦炉气综合利用技术的最新发展及特点.煤炭加工与综合利用,2009,2:34-37.
    [22]侯梦溪,张海涛.焦炉气的循环利用.上海化工,2008,33(2):27—30.
    [23]王海风,张春霞,胡长庆,齐渊洪.钢铁企业焦炉煤气利用的一个重要发展方向.钢铁研究学报,2008,20(3):9-12.
    [24] Miller JQ, Stocker J. Selection of a hydrogen separation process. National Petrochemical andRefiners Association Annual Meeting, San Francisco, March1989.
    [25] Suzuki T, Kawabata S, Tomita T. Present status of hydrogen transport systems utilizingexisting natural gas supply infrastructures in Europe and the USA. Institute of Energy Economics,Japan, JFE Engineering Corporation, IEEJ, October2005.
    [26] S. Biloe, V. Goetz, A. Guillot. Optimal design of an activated carbon for an adsorbed naturalgas storage system. Carbon,2002,40(8):1295-2308.
    [27]余夕志,王浩,陈波.化肥厂合成气及重整氢真空变压吸附制取高纯度氢气.石油炼制与化工,2002,33(10):20-25.
    [28]姜涛,孙培智,李海周.变压吸附在乙烯装置氢气分离中的应用.乙烯工业,2006,18(1):57-59.
    [29] Surendar Reddy Venna. MOLECULAR ENGINEERING DESIGN OF THE SAPO-34ANDZIF-8MEMBRANES FOR CO2SEPARATION FROM CH4and N2[dissertation]: University ofLouisville in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy,2010.
    [30] Shekhawat, D, Luebke, D.R, Pennline, H.W. A Review of Carbon Dioxide SelectiveMembranes: A Topical Report, DOE/NETL-2003/1200,2003.
    [31] Robert E. Lacey, Sidney Loeb. Industrial processing with membranes. University ofCalifornia May,2008.
    [32] M. A. Mazid, Ramamurti Rangarajan, Takeshi Matsuura, S. Sourirajan. Separation ofHydrogen-Methane Gas Mixtures by Permeation under Pressure through Porous Cellulose AcetateMembraned. Ind. Eng. Chem. Process. Des. Dev,1985,24(4):907-913.
    [33] Jian-Rong Li, Yuguang Ma, M. Colin McCarthy, Julian Sculley, Jiamei Yub, Hae-KwonJeong, Perla B. Balbuen, Hong-Cai, Zhou, Carbon dioxide capture-related gas adsorption andseparation in metal-organic frameworks. Coordination Chemistry Reviews,2011,255:1791-1823.
    [34] Kazuhiro T, Islam M N, Masayoshi K,et al.Gas permeation and separation properties ofsulfonated polyimidemembranes. Polymer,2006,47:4370-4377.
    [35]阎康平,涂铭旌.纳米微孔铝阳极氧化膜的制备及性能.功能材料,2000,31(3):294-295.
    [36] Mariola Calle and Young Moo Lee. Thermally Rearranged (TR) Poly(ether benzoxazole)Membranes for Gas Separation. Macromolecules,2011,44(5):1156-1165.
    [37] Christopher J. Orme, Mark L. Stone, Michael T. Benson, Eric S. Peterson. Testing of PolymerMembranes for the Selective Permeability of Hydrogen. Separation science and technology,2003,38(12):3225-3283.
    [38]陶玲,刑卫红.阳极氧化铝膜过滤BSA溶液过程中的污染分析的研究.南京工业大学学报,2006,28(5):71-75.
    [39]旷亚非.铝阳极氧化多孔膜层的界面电性能研究.电化学,1998,4(2):168-170.
    [40] J. P. Agrawal and S. Sourirajan. Helium separation by cellulose acetate membranes. Journalof applied polymer science,1969,13(5):1065-1068.
    [41] Wei Wei, Haoquan Hu, Longbo You, Guohua Chen. Preparation of carbon molecular sievemembrane from phenol–formaldehyde Novolac resin. Carbon,2002,40:445-467.
    [42] P. Gorgojo, S. Uriel, C. Tellez, J. Coronas. Development of mixed matrix membranessubstrated on zeolite Nu-6(2) for gas separation. Micropor. Mesopor. Mater.,2008,115:85–92.
    [43] Itaya K, Sugawara S, Arai K et al. Properties of porous anodic aluminium oxide films asmembranes. Journal of Chemical Engineering of Japan,1984,17(5):514-520.
    [44] Rigby W R, Cowieson D R, Davies N C, Furneaux. An anodizing process for the productionof inorganic microfiltration membranes. Transactions of the Institute of Metal Finishing,1990,68(3):95-99.
    [45] Chia-Yu Liang, Petr Uchytil, Roman Petrychkovych, Yung-Chieh Lai, Karel Friess, MilanSipek, M. Mohan Reddy, Shing-Yi Suen. A comparison on gas separation between PES(polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2mixed matrix membranes.Separation and purification technology,2012,92(18):57-63.
    [46] Huiqing Ren, Jiaying Jin, Jun Hu, Honglai Liu. Affinity between Metal Organic Frameworksand Polyimides in Asymmetric Mixed Matrix Membranes for Gas Separations. Ind. Eng. Chem.Res,2012,51(30):10156-10164.
    [47] Yangfeng Zhang, Inga H. Musselman, John P. Ferraris, Kenneth J. Balkus Jr. Gaspermeability properties of Matrimid membranes containing the metal-organic frameworkCu-BPY-HFS. Journal of membrane science,2008,313(1-2):170-181.
    [48] A. Car, C. Stropnik, K. V. Peinemann. Hybrid membrane materials with differentmetal-organic frameworks (MOFs) for gas separation. Desalination,2006,200:24-28.
    [49] Ying Dai, J.R. Johnson, Oguz Karvan, David S. Sholl, W.J. Koros. Ultem/ZIF-8mixed matrixhollow fiber membranes for CO2/N2separations. Journal of membrane science,2012,401-402:76-82.
    [50] T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, A. J. Hill. Sorption,Transport, and Structural Evidence for Enhanced Free Volume in Poly(4-methyl-2-pentyne)/Fumed Silica Nanocomposite Membranes. Chemistry of materials,2003,15(1):109-203.
    [51] Seyed Saeid Hosseini, Yi Li, Tai-Shung Chung, Ye Liu. Enhanced gas separation performanceof nanocomposite membranes using MgO nanoparticles. Journal of membrane science,2007,302(1-2):207-217.
    [52] Yanfeng Zhang, Inga H. Musselman, John P. Ferraris, Kennethe J. Balkus Jr. Gaspermeability properties of Matrimid membranes containing the metal-organic frameworkCu–BPY–HFS. Journal of membrane science,2008,313(1-2):170-181.
    [53] Ma. Josephine C. Ordonez, Kenneth J. Balkus Jr., Jorn P. Ferraris, Inga H. Musselman.Molecular sieving realized with ZIF-8/Matrimid mixed-matrix membranes. Journal of membranescience,2010,361:28-37.
    [54] Sen Kalipcilar, Yilmaz. Development of polycarbonate based zeolite4A filled mixed matrixgas separation membranes. Journal of membrane science,2007,303(1-2):10.
    [55] Richard Ash, Richard M. Barrer and Richard T. Lowson. Transport of single gases and ofbinary gas mixtures in a microporous carbon membrane. J. Chem. Soc., Faraday Trans.1973,69:2166-2178.
    [56] A.J. Bird, D.L. Trimm. Carbon molecular sieves used in gasseparation membranes. Carbon,1998,21:177-179.
    [57] J.E. Koresh, A. Soffer, Study of molecular sieve carbons. PartⅠPore structure, gradual poreopening and mechanism of molecular sieving. J. Chem. Soc., Faraday Trans. I1980,76:2457.
    [58] J. Koresh, A. Soffer, Study of molecular sieve carbons. Part2. Estimation of cross-sectionaldiameters of non-spherical molecules. J. Chem. Soc., Faraday Trans. I1980,76:2472.
    [59]瞿美臻,陈义均.阳极氧化铝膜的制备及其在CH4/H2混合气体分离中的应用.天然气化学,1992,3(2):32-39.
    [60] M.B. Rao, S. Sircar, Performance and pore characterization of nanoporous carbon membranefor gas separation. J. Membr.Sci,1996,110:109-113.
    [61] M.B. Rao, S. Sircar, Nanoporous carbon membrane for gas separation. Gas Sep. Purif,1993,7:279-281.
    [62] H. Kita, M. Yoshino, K. Tanaka, K. Okamato, Gas permselecivity of carbonizedpolypyrrolone membrane. J. Chem. Soc. Chem. Commun,1997:1051-1053.
    [63] Rajiv Mahajan, Ryan Burns, Michael Schaeffer, William J. Koros. Challenges in formingsuccessful mixed matrix membranes with rigid polymeric materials. Journal of Applied PolymerScience I,2002,86(4):881-890.
    [64] Y. K. Kim, H.B. Park, Y.M. Lee, Carbon molecular sieve membranes derived from thermallylabile polymer containing blend polymers and their gas separation properties, J. Membr. Sci,2004,243:9-12.
    [65] Wei Wei, Guotong Qin, Haoquan Hu, Longbo You, Guohua Chen. Preparation of supportedcarbon molecular sieve membrane from novolac phenol–formaldehyde resin. Journal of membranescience,2007,303(1-2):80-85.
    [66] Chang Woo Lee, Chang Lee, Won Shim, Yoon Ho Chang, Yeong Min Hahm. Characteristicsof gas permeation using two layeren alumina membrane prepared by anodic oxidation. Korean J.Chem. Eng,2001,18(1):101-106.
    [67] N.Itoh, K.Kato, T.Tsuji. M. Hongo. Preparation of a tubular anodic aluminum oxidemembrane. Journal of membrane science,1996,117(1-2):189-196.
    [68] S,Kitagawa and R. Matsuda. Chemistry of coordination space of porous coordinationpolymers. Coord Chem rev,2007,251(21-24):2490-2509.
    [69] Jie-Peng Zhang, Ai-Xin Zhu1, Rui-Biao Lin, Xiao-Lin Qi, Xiao-Ming Chen. Pore surfacetailored SOD type metal organic zeolites. Advanced Materials,2011,23(10):1268–1271.
    [70] Haibing Wang, Y.S. Lin. Effects of synthesis conditions on MFI zeolite membrane qualityand catalytic cracking deposition modification results. Microporous and Mesoporous Materials,2011,142(2-3):481-488.
    [71] Enrica Biemmi, Sandra Christian, Norbert Stock, Thomas Bein. High throughput screening ofsynthesisi parameter in the formation of the metal organic frameworks MOF-5and HKUST-1.Microporous and Mesoporous Materials,2009,117(1-2):111–117.
    [72] Kelly Briceno, Daniel Montane, Ricard Garcia Valls, Adolfo Lulianelli, Angelo Basile.Fabrication variables affecting the structure and properties of supported carbon molecular sievemembranes for hydrogen separation. Journal of membrane science,2012,415-416:288-297.
    [73]赵祯霞,金属有机骨架MOF-5膜的制备及其CO2气体渗透分离性能[学位论文]:华南理工大学,2009.
    [74] Kanna Aoki, Katsuki Kusakabe, Shigeharu Morooka. Journale of membrane science,1998,141(2):197-205.
    [75] Jirong Xiao, James Wei. Diffusion mechanism of hydrocarbons in zeolites-I. Theory.Chemical Engineering Science,1992,47(5):1123–1141.
    [76] Michael C. McCarthy, Victor Varela-Guerrero, Gregory V. Barnett, Hae-Kwon Jeong.Synthesis of Zeolitic Imidazolate Framework Films and Membranes with ControlledMicrostructures. Langmuir,2010,26(18): pp:14636-14641.
    [77] Haibing Wang, Y. S. Lin. Effects of synthesis conditions on MFI zeolite membrane qualityand catalytic cracking deposition modification results. Microporous and mesoporous materials,2011,142(2-3):481-488.
    [78] Aisheng Huang, Wei Dou, Jurgen Caro. Steam-Stable Zeolitic Imidazolate FrameworkZIF-90Membrane with Hydrogen Selectivity through Covalent Functionalization. J. AM. CHEM.SOC.2010,132:15562-15564.
    [79] Huang, A, Bux, H, Steinbach, F. Caro J. Molecular-Sieve Membrane with HydrogenPermselectivity: ZIF-22in LTA Topology Prepared with3-Aminopropyltriethoxysilane asCovalent Linker. Angew. Chem. Int. Ed.,2010,49(29):4958-4961.
    [80] Jiangpu Nan, Xueliang Dong, Wenjin Wang, Wanqin Jin, Nanping Xu. A Step-by-StepSeeding Procedure for Preparing HKUST-1Membrane on Porous α-Alumina Support. Langmuir2011,27(8):4309-4312.
    [81] Aisheng Huang, Jurgen Caro. Cationic Polymer Used to Capture Zeolite Precursor Particlesfor the Facile Synthesis of Oriented Zeolite LTA Molecular Sieve Membrane. Chem. Mater.,2010,22(15):4353-4355.
    [82] M.A. Aroon, A.F. Ismail, T. Matsuura, M.M. Montazer-Rahmati. Performance studies ofmixed matrix membranes for gas separation: A review. Separation and purification technology,2010,75:229-242.
    [83] Joseph O. Hirschfelder,Charles Francis Curtiss, Robert Byron Bird. Molecular theory of gasesand liquids. Wiley,1954.
    [84] Aisheng Huang, Jurgen Caro. Covalent Post-Functionalization of Zeolitic ImidazolateFramework ZIF-90Membrane for Enhanced Hydrogen Selectivity. Angew. Chem. Int. Ed.2011,50:4979-4982.
    [85]米万良.多孔陶瓷负载碳纳米管膜的制备及其气体渗透性能[博士论文].天津.天津大学.2005.
    [86] Blessing Ibeh, Chris Gardner, Marten Ternan. Separation of hydrogen from ahydrogen/methane mixture using a PEM fuel cell. International journal of hydrogen energy,2007,32(7):908-914.
    [87] Rohland B, Eberle K, Stobel R, Scholta J, Garche J. Electrochemical hydrogen compressor.Electrochem Acta,1998,43(24):3841-3846.
    [88] Lee HK, Choi HY, Choi KH, Park JH, Lee TH. Hydrogen separation using theelectrochemical method. Journal Power Sources,2004,132(1):92-98.
    [89] Javad Keypour, Ali Haghighi Asi, Alimorad Rashidi. Synthesis of hybrid nano-adsorbent forseparation of hydrogen from methane. Chemical engineering journal,2012,183(15):510-514.
    [90] Zhanlei Yang, Dapeng Cao. Effect of Li Doping on Diffusion and Separation of Hydrogenand Methane in Covalent Organic Frameworks. Journal phys. Chem. C,2012,116(23):12591-12598.
    [91] Hinchliffe, A. B, Porter, K. E. A comparison of membrane separation and distillation. Trans.Inst.Chem. Eng.2000,78:255-268.
    [92]徐徜徉,李同义,赵勇,蒋国良.膜分离技术在焦炉气H2回收中的应用.膜科学与技术,2004,24(4):44-47.
    [93] P. Bernardo, E. Drioli, G. Golemme, Membrane gas separation. Ind. Eng. Chem. Res.,2009,48:4638-4663
    [94] Farrusseng, D, Metal-Organic Frameworks: Applications from Catalysis to Gas Storage.Published Online:19JUL201110:14AM EST, Print ISBN:9783527328703, Online ISBN:9783527635856.
    [95] Schlichte, K. Kratzke, T. Kaskel, S., Improved synthesis, thermal stability and catalyticproperties of the metal-organic framework compound Cu3(BTC)2Microporous Mesoporous Mater,2004,73:81-88.
    [96] Min, K. S.; Suh, M. P. Silver(I)-Polynitrile Network Solids for Anion Exchange:Anion-Induced Transformation of Supramolecular Structure in the Crystalline State. J. Am. Chem.Soc,2000,122:6834–6840.
    [97]吴桂安,金属—有机骨架材料(MOF)及MOF/偶氮二甲酰胺复合物的制备:[学位论文].北京化工大学,2010.
    [98] Rettig, S. J. Storr, A. Summers, D. A. Thompson, R. C., Trotter, J. Iron(II)2-methylimidazolate and copper(II)1,2,4-triazolate complexes: systems exhibiting long-rangeferromagnetic ordering at low temperatures. Can. J. Chem,1999,77:425–433.
    [99] Masciocchi, N., Bruni, S., Cariati, E., Cariati, F., Galli, S.,Sironi,2in00C1o, p4p0e:r5(I8I9)7I–m5i9d0a5zo.
    [100] H. Hayashi, H.l aFteu rPuoklaywmae, rMs:. AO.S Kpeecetfrfoes, cOop.Mic. aYnadg XhiR. ZPDeo lSitteruA Ac.t uEimrxailtd eSnaztdueoddlay t.Pe Io nlfroyarmmgo.e rphismwCohrekms..Nat. Mater,2007,6:501–506.[101] R.R. Xu, W.Q. Pang, J.H. Yu, Q.S. Huo, J.S. Chen, Chemistry of Zeolites and Related
    Porous Materials: Synthesis and Structure, John Wiley&Sons (Aisa) Pte Ltd.,2007.[102]黄泳权.双三唑和双功能四唑配体的金属—有机骨架材料的合成和性质研究:[学位论
    文].南开大学,2009.[103] B. Zhao, X. Y. Chen, P. Cheng, D. Z. Liao, S. P.Yan, Z. H. Jiang. Coordination Polymers
    Containing1D Channels as Selective Luminescent Probes. J. Am. Chem. Soc.,2004,126(47):,15394-15395.[104] Kyo Sung Park, Zheng Ni, Adrien P. C té, Jae Yong Choi, Rudan Huang, Fernando J.
    Uribe-Romo, Hee K. Chae, Michael Keeffe, Omar M. Yaghi. Exceptional chemical and thermalstability of zeolitic imidazolate frameworks. Proceedings of the national academy of sciences ofthe united states of america,2006,103(27):10186-10191.
    [105] Stephan Hermes, Felicitas Schr der, Rolf Chelmowski, Christof W ll, Roland A. Fischer.Selective Nucleation and Growth of Metal Organic Open Framework Thin Films on PatternedCOOH/CF3-Terminated Self-Assembled Monolayers on Au(111). J. Am. Chem. Soc.,2005,127(40):13744–13745.
    [106] Yunyang Liu, Zhenfu Ng, Easir A. Khan, Hae-Kwon Jeong, Chi-bun Ching, Zhiping Lai,Synthesis of continuous MOF-5membranes on porous a-alumina substrates. Microporous andmesoporous materials,2009,118(1-3):296-301.
    [107] Sonia Aguado, Charles-Henri Nicolas, Virginie Moizan-Baslé, Carlos Nieto, Hedi Amrouche,Nicolas Bats, Nathalie Audebrand, David Farrusseng. Facile synthesis of an ultramicroporousMOF tubular membranewith selectivity towards CO2. New journal of chemistry,2011,1(35):41-44.
    [108] Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Molecular-Sieve Membrane with HydrogenPermselectivity: ZIF-22in LTA Topology Prepared with3-Aminopropyltriethoxysilane asCovalent Linker. Angew. Chem., Int. Ed.,2010,49(29):4958-4961.
    [109] E. Biemmi, C. Scherb, T. Bein. Oriented growth of the metal organic frameworkCu2(BTC)2(H2O).x H2O tunable with functionalized self assembled monolayer. J. Am. Chem. Soc.,2007,129(26):8054-8055.
    [110] D. Zacher, A. Baunemann, S. Hermes, R. A. Fischer. Depositon of microcrystalline
    [Cu-3(btc)(2)] and [Zn-2(btc)(2)(dabco)] at alumina and silica srufaces modified with patternedself assembled organic monolayers: evidence of surface selective and oriented growth. J. Mater.Chem.,2007,17(27):2785-2792.
    [111] Dongmei Jiang, Andrew D. Burrows, Robben Jaber, Karen J. Edler. Facile synthesis ofmetal–organic framework films via in situ seeding of nanoparticles. Chemical communications,2012,48(41):4965-4967.
    [112] Bux, H., Liang, F., Li, Y., Cravillon, J., Wiebcke, M., Caro, J. Zeolitic ImidazolateFramework Membrane with Molecular Sieving Properties by Microwave-Assisted SolvothermalSynthesis. J. Am. Chem. Soc.2009,131(44):16000-16001.
    [113] Yoo Y, Varela-Guerrero V, Jeong HK. Isoreticular Metal Organic Frameworks and TheirMembranes with Enhanced Crack Resistance and Moisture Stability by Surfactant-AssistedDrying. Langmuir,2011,27(6):2652–2657.
    [114] Schoedel, A., Scherb, C., Bein, T. Oriented Nanoscale Films of Metal Organic FrameworksBy Room-Temperature Gel-Layer Synthesis Angew. Chem., Int. Ed.2010,49(40):7225-7226.
    [115] Li, Y.-S.; Bux, H.; Feldhoff, A.; Li, G.-L.; Yang, W.-S.; Caro, J. Controllable Synthesis ofMetal-Organic Frameworks: From MOF Nanorods to Oriented MOF Membranes. Adv. Mater.2010,22(30):3322-3326.
    [116] Jian Feng Yao, Dehua Dong, Dan Li, Li He, Gengsheng Xu, Huanting Wang Contradiffusion synthesis of ZIF-8films on a polymer substrate. CHEM COMMUN,2011,47:2559-2561.
    [117] Bell, C. M., Arendt, M. F., Gomez, L., Schmehl, R. H., Mallouk, T. E.. Growth of lamellarHofmann clathrate films by sequential ligand exchange reactions: assembling a coordination solidone layer at a time. J. Am. Chem. Soc.1994,116(18):8374-8375.
    [118] Zacher, D., Yusenko, K., B_etard, A., Henke, S., Molon, M., Ladnorg, T., Shekhah, O.,Schcupbach, B., Arcos, T. D. L., Krasnopolski, M., Meilikhov,M., Winter, J., Terfort, A, Fischer, R.A. Liquid-Phase Epitaxy of Multicomponent Layer-Based Porous Coordination Polymer ThinFilms of [M(L)(P)0.5] Type: Importance of Deposition Sequence on the Oriented Growth.Chemistry-A European journal,2011,17(5):1448-1455.
    [119] Dong-Joo Lee, Qiming Li, Hern Kim, Kisay Lee. Preparation of Ni-MOF-74membrane forCO2separation by layer-by-layer seeding technique. Microporous and mesoporous materials,2012,163(15):169-177.
    [120] Lew, C. M., Cai, R., Yan, Y. Zeolite thin films: from computer chips to space stationsAcc.Chem. Res.2010,43(2):210-219.
    [121] Snyder, M. A., Tsapatsis, M. Hierarchical Nanomanufacturing: From Shaped ZeoliteNanoparticles to High Performance Separation Membranes. Angew. Chem., Int. Ed.2007,46(40):7560-7573.
    [122] Y. Yoo, Z. Lai, H.-K. Jeong, Fabrication of MOF-5Membranes using Microwave-InducedRapid Seeding and Solvothermal Secondary Growth. Micropor. Mesopor. Mater,2009,123:100-106.
    [123] Rajiv Ranjan, Michael Tsapatsis. Microporous Metal Organic Framework Membrane onPorous Support Using the Seeded Growth Method. Chemistry of Materials,2009,21(20):4920-4924.
    [124] Li, Y. S., Liang, F.-Y.; Bux, H., Feldhoff, A., Yang, W.-S., Caro, J. Molecular SieveMembrane: Supported Metal–Organic Framework with High Hydrogen Selectivity. Angew. Chem.,Int. Ed.2010,49(3):548-551.
    [125] Varela Guerrero, V., Yoo, Y., McCarthy, M. C., Jeong, H.-K.. Isoreticular Metal-OrganicFrameworks and Their Membranes with Enhanced Crack Resistance and Moisture Stability bySurfactant-Assisted Drying. J. Mater. Chem2011,27(6),2652-2657.
    [126] Yusenko, K., Meilikhov,M., Zacher,D., Wieland, F., Sternemann, C., Stammer,X., Ladnorg,T., Fischer, R. A.. Step-by-step growth of highly oriented and continuous seeding layers of
    [Cu2(ndc)2(dabco)] on bare oxide and nitride substrates CrystEngComm2010,12:2086-2090.
    [127] Loreen Hertag, Helge Bux, urgen Caro, Christian Chmelik, Tawun Remsungnen, MarkusKnauth, Siegfried Fritzsche. Diffusion of CH4and H2in ZIF-8. Journal of membrane science,2011, Accepted Manuscript.
    [128] Ameloot, R. Stappers, L., Fransaer, J., Alaerts, L., Sels, B. F., De Vos, D. E.. PatternedGrowth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater.2009,21(13):2580-2582..
    [129] Camilla Scherb, Alexander Sch del, Thomas Bein Prof. Directing the Structure of MetalOrganic Frameworks by OrientedSurface Growth on an Organic Monolayer. Angewandte Chemie,2008,120(31):5861-5863.
    [130] Jorge Gascon, Sonia Aguado, Freek Kapteijn. Manufacture of dense coatings of Cu3(BTC)2(HKUST-1) on a-alumina. Microporous and Mesoporous Materials,2008,113(1-3):132-138.
    [131] Yan-Shuo Li, Fang-Yi Liang, Helge Bux, Armin Feldhoff, Wei-Shen Yang, and Jurgen Caro.Molecular Sieve Membrane: Supported Metal-Organic Framework with High HydrogenSelectivity. Angew. Chem. Int. Ed,2010,49:548-551.
    [132] Rajiv Ranjan, Michael Tsapatsis. Microporous Metal Organic Framework Membrane onPorous Support Using the Seeded Growth Method. Chem. Mater.,2009,21(20):4920-4924.
    [133] Pan, Y.; Lai. Z. Sharp separation of C2/C3hydrocarbon mixtures by zeolitic imidazolateframework-8(ZIF-8) membranes synthesized inaqueous solutions. Chem. Commun.2011,47(37):10275-10277.
    [134] Victor Varela Guerrero, Yeonshick Yoo, Michael C. McCarthy, Hae-Kwon Jeong. HKUST-1membranes on porous supports using secondary growth. J. Mater. Chem.,2010,20:3938-3943.
    [135]杨兵,崔长春,韩云亭.合成氨厂提氢尾气提纯液化天然气技术应用.现代化工,2012,32(1):73-76.
    [136] Loeb, Sourirajan. New water desalting process developed at ucla. University of california,Office of public information, Press release.1960,23.
    [137] Yanshuo Li, Fangyi Liang, Helge Bux,Weishen Yang, Jürgen Caro. Zeolitic imidazolateframework ZIF-7substrated molecular sieve membrane for hydrogen separation. Journal ofmembrane science,2010,354:48-54.
    [138] A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. OKeeffe, Omar M. Yaghi.Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks.Acc. Chem. Res.,2010,43(1):58-67.
    [139] Helge Bux, Christian Chmelik, Rajamani Krishna, Juergen Caro. Ethene/ethane separationby the MOF membrane ZIF-8: Molecular correlation ofpermeation, adsorption, diffusion. Journalof membrane science,2011,369(1-2):284-289.
    [140] Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Crystals asmolecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Chem.Soc.2008,130(38):12626-12627.
    [141] MA Mazid, R Rangarajan, T Matsuura. Separation of hydrogen-methane gas mixtures bypermeation under pressure through porous cellulose acetate membranes. Ind. Eng. Chem. ProcessDes. Dev.,1985,24(4):907–913.
    [142] Chengwen Songa, Tonghua Wanga, Xiuyue Wanga, Jieshan Qiua, Yiming Cao. Preparationand gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes.Separation and purification technology,2008,58(3):412-418.
    [143]王兴龙,郑欣.长庆气田天然气膜法脱水工艺技术探讨.天然气工业,1998,18(5):77-81.
    [144] Vu, De Quang. Formation and Characterization of Asymmetric Carbon Molecular Sieve andMixed Matrix Membranes for Natural Gas. Purification Dissertation Abstracts International,2001,63(9):4274-4335.
    [145] Xu, R. Pang, W. Yu, J. Huo, Q.; Chen, J. Chemistry of Zeolites and Related PorousMaterials: Synthesis and Structure; John Wiley and Sons, Inc.: Singapore,2007.
    [146] Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D., Kim, K. J. Am. MicropoSFoelremctaitvee: GAa sS Simorppleti oMn ePtraol pOerrtgieasn. iCc hPeomro. uSso cM.2at0e0r4ia, ol1,w26Hit(.h1,)KH:3iitg2agh-3a F3wr.
    [147] Li, J. R., Tao, Y., Yu, Q., Bu, X. H., Sakamotaa,m Se.w Soerlke cStitvaebr iGloiutayss aMAnaddns oHgarpigntihesolnyeand Unique Structural Topology of a Highly Stable Guest-Free Zeolite-Type MOF Material withN-rich Chiral Open ChannelsChem.-Eur. J.2008,14(9):2771-2776.
    [148] Zhong, D. C., Zhang, W. X., Cao, F. L., Jiang, L., Lu, T. B. A three-dimensionalmicroporous metal organic framework with large hydrogen sorption hysteresis. Chem. Commun.2011,47:1204-1206.
    [149] Ma, S. Q.; Wang, X. S.; Collier, C. D.; Manis, E. S.; Zhou, H. C. UltramicroporousMetal Organic Framework Based on9,10-Anthracenedicarboxylate for Selective GasAdsorptionInorg. Chem.2007,46(21):8499-8501.
    [150] Chen, B. L., Xiang, S. C., Qian, G. D. Metal-Organic Frameworks with Functional Pores forRecognition of Small Molecules Acc. Chem. Res.2010,43(8):1115-1124.
    [151] Xue, M., Ma, S. Q., Jin, Z., Schaffino, R. M., Zhu, G. S.. Robust Metal-Organic FrameworkEnforced by Triple-Framework Interpenetration Exhibiting High H2Storage Density. Inorg. Chem.2008,47:6825-6828..
    [152] Zhang, Z. J., Xiang, S. C., Chen, Y. S., Ma, S. Q., Lee, Y., Phely-Bobin, T., Chen, B. L. ARobust Highly Interpenetrated Metal Organic Framework Constructed from PentanuclearClusters for Selective Sorption of Gas MoleculesInorg. Chem.2010,49(18):8444-8448.
    [153] Chen, B. L., Liang, C. D., Yang, J., Contreras, D. S., Clancy, Y. L., Lobkovsky, E. B., Yaghi,O. M., Dai, S. A Microporous Metal-Organic Framework for Gas-Chromatographic Separation ofAlkanes. Chem., Int. Ed.2006,45(9):1390-1393.
    [154] Chen, B. L., Ma, S. Q., Hurtado, E. J., Lobkovsky, E. B., Zhou, H. C. A TriplyInterpenetrated Microporous Metal-Organic Framework for Selective Sorption of Gas Molecules.Inorg. Chem.2007,46(21):84908492.
    [155] Park, H. J., Cheon, Y. E., Suh, M. P. Post-Synthetic Reversible Incorporation of OrganicLinkers into Porous Metal-Organic Frameworks through Single-Crystal-to-Single-CrystalTransformations and Modification of Gas-Sorption Properties. Chem.-Eur. J.2010,16(38):11662-11669.
    [156] Suresh K. Bhatia. Optimum Conditions for Adsorptive Storage. Langmuir,2006,22(4):1688-1700.
    [157] Garberoglio, G., Skoulidas, A. I., Johnson, J. K.. Adsorption of1M3a0t9e4ri-a1l3s:10C3.
    [158] Hedlunodm Jp.a, riSstoenrt eo fJ.,S iAmnutlhaotnioisn s Ma.n, dB oEnxsp eAri.m-Je.,n tCs.a rJs.t ePnhseyns. BC.,hG eaCmseo.r s cBinor a2Mn00eN5ta.,, l1OC0ro9gx(a2nD7i)c.:,Deckman H., De Gijnst W., de Moor P.-P., Lai F.. McHenry J., Mortier W., Reinoso J., Peters J.High-flux MFI membranes. Microporous and Mesoporous Materials,2002,52,(3):179-189.
    [159] Thompson G. E., Shimizu K., Wood G. C. Observation of flaws in anodic films onaluminium. Nature,1980,286:471-472.
    [160] Furneaux R C, Rigby W R, Davidson A P. The formation of controlled-porosity membranesfrom anodically oxidized aluminum. Nature,1989,337(12):147-149.
    [161] Whitney T. M., Searson P. C..Fabrication and magnetic properties of arrays of metallicnanowires. Science,1993,261:1316-1319.
    [162] Masuda H, Fukuda K.Ordered metal nanohole arrays made by a two step replication ofhoneycomb structures of anodic alumina. Science,1995,268(9):1466-1468.
    [163] Keller F., Hunter M. S., Robinson D. L.. Structrural features of oxide coatings on aluminum.J. Electrochem. Soc,1953,100(9):411-419.
    [164] Thompson G E, Furneaux R C, Wood G C. Nucleation and Growh of Pourous Anode Filmson Al. Nature,1978,272(565):433-435.
    [165] J. P. Osullivan, G. C. Wood. The Morphology and Mechanism of Formation of PorousAnodic Films on Aluminium. Proc. R. Soc. Lond. A.1970,317:511-543.
    [166] Jessensky O, Muller F, G osele U. Self-organized formation of hexagonal pore arrays inanodic alumina. Applied Physics Letters,1998,72(10):1173-1175.
    [167]邓兵.无机阳极氧化铝膜的制备及分离特性.达县师范高等专科学校校报(自然科学版),2005,15(2):38-42.
    [168] J rg J. Schneider, J rg Engstler, Karl P. Budna1, Christian Teichert, Steffen Franzka.Freestanding, Highly Flexible, Large Area, Nanoporous Alumina Membraneswith CompleteThrough-Hole Pore Morphology. European Journal of Inorganic Chemistry,2005,2005(12):2352-2359.
    [169] Li Y. B., Zheng M. J., Ma L, Shen W. Z. Fabrication of highly ordered nanoporous aluminafilms by stable high-field anodization. Nanotechnology,2006,17(20):5101-5105.
    [170]薛瑞飞,舒刚,梁淑敏.阳极氧化法制备多孔氧化铝模板.轻合金加工技术,2007,35(9):37-38.
    [171]姜海波,李春忠,赵尹,胡彦杰.阳极氧化电压对多孔氧化铝膜生长过程的影响.过程工程学报,2007,7(2):409-413.
    [172]赫丽娜,刘帅,孙瑾,宋国君.多孔阳极氧化铝模板的研究概况.化工科技,2009,17(5):74-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700