大鲵虹彩病毒病病原的分离、鉴定、基因组测序及大鲵群体遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大鲵(Chinese giant salamander, Andrias davidianus)是我国重要的珍稀保护动物与特种养殖对象。近年来,随着大鲵养殖规模的不断扩大、养殖集约化程度的不断提高以及苗、种交流的日益频繁,大鲵的病害问题日益突出。大鲵虹彩病毒病作为新出现的病毒性疾病,对大鲵养殖业危害十分严重,已经造成巨大的经济损失。本研究对大鲵虹彩病毒病的病原进行了分离、鉴定,分析了病毒的理化特性,建立了病毒的检测方法,并且对病毒的基因组进行了测序及分析。同时,应用微卫星标记对大鲵群体的遗传多样性进行了分析。研究的主要结果如下:
     1.大鲵虹彩病毒病病原的分离、鉴定
     从全身水肿,腹部有出血点的幼鲵以及全身性体表出血、吻端或四肢末端溃烂的成鲵体内成功分离到一株病毒。对感染组织进行病理切片发现,患病大鲵肾脏、肝脏、脾脏和肠道受损明显,肝组织脆性增加、表面多出血点,肾脏细胞空泡变性;脾缩小,淋巴细胞减少且坏死,并在其内发现类似病毒的包涵体。病变组织的过滤匀浆液可使鲤鱼上皮瘤细胞(EPC)产生病变;对感染的组织和出现病变的EPC细胞电镜观察结果表明,细胞的线粒体变形,嵴断裂,粗面内质网扩张,细胞核破碎,染色质浓缩,细胞质内有空泡,并且可见晶格状排列、直径约140nm具典型虹彩病毒形态学特征的病毒粒子。人工回归感染实验表明,该病毒导致健康大鲵出现与自然发病大鲵相同的症状,表明其为致病病原;克隆病毒主衣壳蛋白基因(MCP)全序列并进行序列分析,结果显示该序列与虹彩病毒科蛙病毒属病毒的相似性在98%以上。结合组织病理、细胞培养、电镜观察、感染试验以及分子生物学鉴定,证明导致大鲵患病的病原为虹彩病毒科蛙病毒属病毒,命名为大鲵虹彩病毒(Chinese giant salamander iridovirus, GSIV)。
     2.大鲵虹彩病毒理化与生物学特性研究及检测方法建立
     采用常规的病毒理化与生物学特性研究方法,对该病毒的培养滴度、病毒对热、酸碱度、有机溶剂、胰蛋白酶的敏感性以及病毒增殖特性与最适培养温度等进行了研究。结果表明,大鲵虹彩病毒的病毒滴度TCID50/0.1mL为109.8540.48;病毒对pH3和10的酸、碱敏感;在56℃热处理30min后病毒被灭活;胰蛋白酶处理后病毒滴度显著下降;在25℃条件下病毒在EPC细胞中增殖迅速,在感染细胞6h后病毒开始增殖,72h后进入平台期。病毒的理化性质与已知虹彩病毒理化特性相符。针对病毒MCP基因,分别建立了普通PCR、巢氏PCR、荧光定量PCR、多克隆抗体和环介导的等温扩增(LAMP)共5种检测方法,通过对5种检测方法各自反应条件的优化以及对不同来源病毒进行检测验证,结果证明这5种方法都可以有效地检测大鲵虹彩病毒,可以作为大鲵虹彩病毒病原的检测方法。其中,荧光定量PCR和LAMP法检测的灵敏度高达10-9模板DNA稀释度,可以对微量病毒进行检测。
     3.大鲵虹彩病毒全基因组测序及序列分析
     基于De Novo测序技术,利用Illumina公司的HiSeq基因组分析仪(Illumina HiSeq2000)对大鲵虹彩病毒进行全基因测序。测序结果显示病毒基因组全长104373bp, GC含量为55.2%,有95个开放阅读框(ORFs),编码蛋白所含的氨基酸个数从49到1294个不等,分子量大小在5.2-140.9kDa之间;在基因组40219-40314nt位置有48个CA重复序列;将大鲵虹彩病毒基因组的ORFs与其它已知虹彩病毒基因组的ORFs进行比较显示,大鲵虹彩病毒病毒基因组有41个ORFs与普通产婆蟾蛙病毒(common midwife toad ranavirus, CMTV)最为相似,而且基因组点阵分析也显示大鲵虹彩病毒基因组与CMTV病毒最为相似。将大鲵虹彩病毒的26个核心基因与15株已知虹彩病毒基因组的26个核心基因进行比较,按照大鲵虹彩病毒编码蛋白的氨基酸排列顺序进行串联,构建系统进化树,进化树结果显示虹彩病毒各属成员分别聚类,感染同类宿主的病毒成员有聚在一起的趋势;大鲵虹彩病毒与蛙病毒属成员聚在一类,且与CMTV病毒关系最近。
     4.大鲵微卫星引物开发及遗传多样性分析
     利用磁珠富集法开发了大鲵微卫星引物70对。利用其中10对引物对野生和人工繁殖的大鲵群体遗传多样性进行分析。结果表明其中7对引物在研究群体中有多态,观察等位基因个数在6-9个之间,多态信息含量(polymorphism information content, PIC)从0.3750-0.8751不等,大部分都属于高度多态。比较而言,野生群体等位基因数量高于人工繁殖群体,人工繁殖群体存在一定的等位基因丢失现象,并且遗传多样性水平低于野生群体。
Chinese giant salamander (Andrias davidianus) is a rare protected animal and important species in aquaculture in China. Alongside the enlargement of the cultivation scale, the incease of intensification and the frequent trading of the animal, the diseases have become a great concern in recent years. The Chinese giant salamander iridovirus disease was a new emerged viral disease in farmed Chinese giant salamanders, which has caused huge economic loss and represents a great threat the industry. In this study, an irodovirus, belonging to the genus Ranavirus, family Iridovuridae was isolated and identified from the diseased Chinese giant salamander. The physic-chemical and biological properties of the virus were investigated. Moreover, the complete genome sequence of the Chinese giant salamander iridovrisus was determined and analyzed. The results are as follows:
     1. Isolation and indentification a Ranavirus pathogen in diseased Chinese giant salamander, Andrias davidianus
     An iridovirus was isolated form the diseased larvae and adult Chinese giant salamanders. The typical clinical signs of diseased larvae exhibited jaw and bellies swelling, subcutaneous hemorrhage, and in the diseased adults, the symptoms of included skin hemorrhages, ulceration of the hind limbs, and multiple hemorrhagic spots in the visceral organs. Light microscopy demonstrated tissue degeneration and cytoplasmic inclusions in spleen, liver and kidney, suggestive of a viral infection. The tissue necrosis included splenocytes vacuolar degeneration, necrosis of renal hemopoietic tissue cells and liver sinusoids hypertrophied. The tissue homogenates from the diseased animals were inoculated into EPC (Epithelioma papulosum cyprinid) cells and caused typical cytopathic effect. Electron microscopy observation revealed that the virion was140~180nm in diameter both in the renal tubular epithelial cells of the kidney tissue and in the virus-infected EPC cells. The virus was determined pathogenecity to the healthy animal after experimental infection and resulted in the reproduction of clinical signs as naturnaturally ocurred. The whole major capsid protein (MCP) coding gene of the isolated virus was cloned and sequenced (GenBank:JN615141) and the result of sequence analysis shown a98%~99%sililarity with other ranavirus MCP sequences in GenBank. Combined the histopathology, electron microscopy observation, virus culture in EPC cells, experimental infection and MCP sequence analyzed, the isolated virus was determined to iridovirus belonging to the genus Ranavirus, family Iridovurus and was the pathogen of diseased Chinese giant salamander. The disease was tentatively name Chinese giant salamander iridovirus disease, meanwhile the pathogen named Chinese giant salamander iridovirus (GSIV).
     2. Physico-chemical and biological properties and detection methods of the Chinese giant salamander iridovirus
     The physico-chemical characteristics of GSIV were investigated. The physico-chemical and biological factors included viral titer, growth, sensitivity to temperature, to acid and base, to organic solvent and trypsin. Based on the sequence of MCP gene, five methods were established to detect GSIV. They were conventional PCR, fluorogenic quantitative PCR, polyclone antibody, nested PCR and loop-mediated isothermal amplification assay (LAMP). These methods all can detect GSIV effectively. And the detection sensitivity of the fluorogenic quantitative PCR and LAMP methods can achieve10-9DNA template dilution.
     3. Sequencing and characterization of GSIV genome
     The complete genome of GSIV was determined by using Illumina HiSeq2000. The length of GSIV genome was104373bp. The results of sequence analysis showed that the genome encoded95predicted open reading frames (ORFs) and GC content was55.2%. The numbers of amino acid encoded proteins were between49and129. The genome had the26core genes of Iridovirus. There were48(CA) repeats in40219~40314nt. The ORF align and dot plot analysis all showed the GSIV closed with common midwife toad ranavirus (CMTV). According the amino acid order of26core genes in GSIV genome,16iridovirus genome sequences were used to construct NJ phylogenetic tree. The results revealed that the sequences clustered into five genera of Iridoviridae, respectively. The GSIV is a member of Ranavirus. In addition, the virus infecting host had the same classification status tended to cluster. The complete genome sequence was submitted to GenBank with the accession KC243313.
     4. Development of microsatellite markers and genetic diversity analysis of Chinese giant salamander
     Using the AG-enriched genomic library of the Chinese giant salamander, seventy microsatellite markers were developed for the Chinese giant salamander. Ten pairs of these microsatellite markers were evaluated the genetic diversity of cultivation and wild populations. Seven markers were polymorphic in all the samples. The number of alleles ranged from6to9. The polymorphism information content (PIC) of all populations was from0.3750to0.8751, suggesting high polymorphism at these loci. Compared with the wild populations, some alleles in the cultivation population were drifted and the PIC was lower.
引文
1 安苗,张龙,姚俊杰,姜海波,牟洪民.大鲵水霉病病原的形态学观察.贵州农业科学,2009,37(10):146-148
    2 敖弟书,吴中明,王玉,张德刚,李晓琴.迟钝爱德华菌感染大鲵的研究.四川动物,2010,29(3):411-414
    3 陈云祥.大鲵越冬期感染水霉菌的原因、危害与防治.海洋与渔业,2007,1:31
    4 陈云祥,陈新民.大鲵病害研究综述.渔业现代化,2006,5:25-27
    5 陈在贤,郑坚川.从患“红脖子病”甲鱼体分离到虹彩病毒.中国兽医学报,1998,2:135-139
    6 陈中元,朱蓉,张奇亚.水生动物病毒的电镜和荧光显微镜观察.电子显微学报,2012,31(2):190-193
    7 方耀林,张燕,杨焱清,肖汉兵.大鲵遗传多样性分析.淡水渔业,2006,36(6):8-11
    8 高正勇,曾令兵,孟彦,刘小玲,张波.患病大鲵中弗氏柠檬酸杆菌的分离与鉴定.微生物学报,2012,52(2):169-176
    9 高正勇,曾令兵,肖汉兵,张辉,孟彦,肖艺,徐进.大鲵虹彩病毒理化及生物学特性研究.淡水渔业,2012,42(5):17-26
    10贺路,刘鉴毅.大鲵的病害及其防治.水利渔业,1999,19(1):29-30
    11 耿毅,汪开毓,李成伟,王均,廖雨婷,黄锦炉,周赵英.蛙病毒感染致养殖大鲵大规模死亡的电镜观察及PCR检测.中国兽医科学,2010,40(8):817-821
    12 耿毅,汪开毓,李成伟,王均,廖雨婷,黄锦炉,周赵英. 蛙病毒感染致养殖大鲵大规模死亡的电镜观察及PCR检测.中国兽医科学,2010,40(8):817-821
    13 耿毅,汪开毓,李成伟,黄小丽,时玉菲,王均,黄锦炉.养殖大鲵蛙病毒自然感染的病理形态学观察.中国兽医学报,2011,31(11):1640-1644
    14 巩华,黄志斌,吴淑勤.水产疫苗研究开发现状与展望.海洋与渔业,2010,1:43-47
    15 黄小丽,汪开毓,陈德芳,黄锦炉,邓永强,李开勇.大鲵体表溃烂病的病理组织学观察.中国兽医科学,2010,40(2):185-188
    16 黄磊,王义权(2004)扬子鳄种群的微卫星DNA多态及其遗传多样性保护对策分析.生物多样性,12,528-533.
    17 黄友华.虹彩病毒三个免疫逃避基因的克隆与特征分析.[博士学位论文].武汉:中国科学院水生生物研究所.2007
    18 江育林,张曼,景宏丽,高隆英.患病中国大鲵中分离到一株虹彩病毒及其特性的研究.病毒学报,2011,27(3):274-282
    19罗春清,杨焕明.微生物全基因组鸟枪法测序.遗传,2002,24(3):310-314
    20 李惠芳,吕建强,岳志芹,刘荭,田飞焱,何俊强,蔡依娜,陈昌福.虹彩病毒蛙病毒属病毒实时荧光PCR检测方法的建立.华中农业大学学报,2008,27(2):172-176
    21 雷晓颖.RGV基因组与50L功能及石斑鱼皮肤细胞系对病毒敏感性的分析.[博士学位论文].武汉:中国科学院水生生物研究所.2012
    22 李川,何登菊,牟洪民,马姗,姚俊杰.大鲵水霉病中草药治疗试验.河北渔业,2010,193(1):33-57
    23 李军,王铁辉,陆仁后,徐怀忽.鱼类病毒检测技术.海洋湖沼通报,1996,2:58-65
    24 李文峰,麦康森,黄健,史成银.鱼类细胞培养及其在病毒学研究中的应用.动物医学进展,2010,31(5):107-110
    25 劳海华,叶星,邹为民,白俊杰,谭爱萍.巢式PCR检测鳜传染性脾肾坏死病毒(ISKNV).南方水产,2009,5(4):69-72
    26 孟彦,曾令兵,杨焱清,肖汉兵.大鲵腹水病病原菌的分离与鉴定研究.西北农林科技大学学报,2009,37(3):77-81
    27 欧东升.人工养殖条件下大鲵病害防治初探.内陆水产.2005,8:17
    28 沈红保,张建军,张军燕,李引娣,陈媛媛.大鲵虹彩病毒的PCR检测及初步应用.河北渔业,2012,8(6):17-19
    29孙海汐,王秀杰.DNA测序技术发展及其展望.TECHNOLOGY,2009,6:19-29
    30陶凯.大鲵“腹水病”病原鉴定及其组织病理学研究.[硕士学位论文].杨凌:西北农林科技大学.2011
    31 陶峰勇,王小明,郑合勋,方盛国.中国大鲵四种群的遗传结构和地理分化.动物学研究,2005,26,162-167.
    32 田继远.淋巴囊肿病毒口服微囊核酸疫苗的研制与免疫效果研究.[博士学位论文].青岛:中国海洋大学,2008
    33 王广军.虹彩病毒生物学研究现状及展望.湛江海洋大学学报,2004,23(4):74-78
    34王晓红,翁少萍,何建国.虎纹蛙病毒体外培养及其理化特性.水产学报,2002,26(4):363-367
    35 王旭,颜其贵,陈玥,雷燕,左兰,王志彪,万莉.中国大鲵维氏气单胞菌病的组织病理学观察.中国兽医科学,2011,41(7):737-740
    36 王旭,颜其贵,雷燕,左兰,曾晖.中国大鲵腐皮病病原菌的分离与鉴定.中国人兽共患病学报,2010,26(10):94-948
    37 王印,林跃华.大鲵腐皮病病原的分离鉴定与药敏试验.兽医科技,2009,7:89-90
    38 文正常,余波,徐景娥,蔡一鸣.患病大鲵中嗜水气单孢菌的分离鉴定及其防治.基因组学与应用生物学,2010,29(1):82-86
    39 相建海,刘保忠.重要海水养殖动物病害发生和免疫防治的基础研究.生命科学,2007,19(4):396-398
    40 谢简,李正秋,张奇亚,李文鑫.免疫组化法检测美国青蛙组织中的蛙虹彩病毒.水生生物学报,2002,26(5):438-443
    41 吴阳升,罗淑萍.一种新的高效快速核酸恒温扩增方法-LAMP法.生物技术.2008,14(4):76-78
    42 叶小丽.大鲵腹水病的诊断与治疗.水产养殖.2001,6:19
    43 袁兴建,陈开健,欧东升,肖调义,赵文君.大鲵嗜水气单胞菌全菌灭活苗的初步研制.内陆水产,2007,9:44-46
    44 于喆,江辉,钟蕾,肖克宇,谭情,毛盼.大鲵细菌性感染综合症的病原分离与药敏试验分析.湖南农业大学自然科学学报,2012,12(6):74-79
    45 王小明,郑合勋(2006,).中国大鲵五地理种群Cyt b基因全序列及其遗传关系分析.水生生物学报,30,625-628
    46张奇亚,桂建芳.水生病毒学.高等教育出版社.2008,219
    47 张奇亚,李正秋,江育林,梁绍昌,桂建芳.沼泽绿牛蛙病毒的分离及其细胞感染的初步研究.水生生物学报,1996,20(4):390-392
    48 张奇亚,李正秋,桂建芳.特种水产养殖动物病毒病及其防治的生物技术研究.中美农业科技与发展研讨会论文集,中国农业出版社,1996,168-174
    49 张奇亚,肖枫,李正秋,桂建芳.从我国分离的3株蛙虹彩病毒与蛙病毒3型主要衣壳蛋白基因同源性的比较.病毒学报,2001,17(4):372-374
    50曾令兵,贺路.草鱼出血病病毒854株的纯化及其理化特性.淡水渔业,1992,2:3-5
    51 郑凤荣.淋巴囊肿病毒(Lymphocystis disease virus)核酸疫苗的免疫效果评价及安全性研究.[博士学位论文].青岛:中国海洋大学,2006
    52 钟蕾,刘大志,肖调义,刘晓燕,陈开健.大鲵细菌性败血症病原分离及生物学特性研究.生物学杂志,2010,27(4):11-14
    53 钟蕾,肖调义,刘晓燕,陈开建,刘大志.大鲵细菌性败血症的组织病理学观察.湖南师范大学自然科学学报,2009,32(3):84-88
    54 周晓光,任鲁风,李运涛,张猛,俞育德,于军.下一代测序技术:技术回顾与展望.中国科学:生命科学,2010,40(1):23-37
    55 周勇,曾令兵,孟彦,周群兰,张辉,高正勇,肖艺,孙建滨.大鲵虹彩病毒TaqMan real-time PCR检测方法的建立.水产学报,2012,36(5):732-778
    56 朱春华.中华鳖虹彩病毒单克隆抗体的制备、特性分析及应用研究.[硕士学位论文].福州:福建农林大学.2008.
    57 朱大强,李存,陈斌,姜焕焕,江晓芳,安小平,米志强,陈禹保,童贻刚.四种常用高通量测序拼接软件的应用比较.生物信息学,2011:9(2):106-112
    58 Andres G, Garcfa-Escudero R, Vinuela E, Salas ML, Rodriguez JM. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. Journal of Virology, 2001,75:6758-6768
    59 Ariel E, Skall HF, Olesen NJ. Susceptibility testing of fish cell lines for virus isolation. Aquaculture,2009,298:125-130
    60 Arunruta N, Prombunb P, Saksmerpromea V, Flegel TW, Kiatpathomchai W. Rapid and sensitive detection of infectious hypodermal and hematopoietic necrosis virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. J.Microbiol. Methods,2011,171,21-25
    61 Aubertin AM. Iridoviridae:Classification and Nomenclature of Viruses:Fifth report of the International Committee on Taxonomy of Viruses,1991,132-136
    62 Baslserio A, Dalton KP, Cerro DA, Marquez I, Parra F, Prieto JM, Casais R. Outbreak of common midwife toad virus in alpine newts (Mesotriton alpestris cyreni) and common midwife toads (Alytes obstetricans) in Northern Spain:A comparative pathological study of an emerging ranavirus. Vet J,2010,186:256-258
    63 Black PN, Blair CD, Butcher A, Capinera JL, Happ GM. Biochemistry and ultrastructure of iridescent virus type 29. J. Invertebr. Pathol,1981.38:12-21
    64 Benson, G. Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Research,1999,27(2):573-580.
    65 Bollinger TK, Mao JH, Schock D, Brigham RM, Gregory V. Pathology, isolated and preliminary molecular characherization of a novel iridovirus from tiger salamander in Sasktchewan. J Wildlife Dis,1999,35:413-429
    66 Brunner JL, Collins JP. Testing assumptions of the trade-off theory of the evolution of parasite virulence. Evolutionary Ecology Research,2009,11:1169-1188
    67 Brunner JL, Schock DM, Collins JP. Transmission dynamics of the amphibian ranavirus Ambystoma tigrinum virus. Diseases of Aquatic Organisms,2007, 77:87-95
    68 Caipang CMA, Haraguchi I, Ohira T, Hirono I, Aoki T. Rapid detection of a fish iridovirus using loop-mediated isothermal amplification (LAMP). Journal of Virological Methods,2004,121:155-161.
    69 Caipang CMA, Takano T, Hirono I, Aoki T. Construction and analysis of experimental DNA vaccines against megalocytivirus. Fish& Shellfish Immunology, 2012,33:1192-1198
    70 Caipang CMA, Takano T, Hirono I, Aoki T. Genetic vaccines protect red seabream, Pagrus major, upon challenge with red seabream iridovirus (RSIV). Fish & Shellfish Immunology,2006,21(2):130-138
    71 Chao CB, Yang SC, Tsai HY, Chen CY, Lin CS, Huang HT. A Nested PCR for the Detection of Grouper Iridovirus in Taiwan (TGIV) in Cultured Hybrid Grouper, Giant Seaperch, and Largemouth Bass. Journal of Aquatic Animal Health, 2002,14(2):104-113
    72 Chen GC, Robert J. Antiviral immunity in amphibians. Viruses,2011,3:2065-2086
    73 Chen ZX, Zheng JC, Jiang YL. A new iridovirus isolated from soft-shelled turtle. Virus Research,1999,63:147-151
    74 Chinchar VG Ranaviruses (family Iridoviridae):Emerging cold-blooded killers. Archives of Virology,2002,147:447-470
    75 Chinchar VG, Essbauer S, He JG, Hyatt A, Miyazaki T, Seligy V, Williams T. Iridoviridae Virus taxonomy:eighth report of the international committee on the taxomomy of viruese. London:Elsevier,2005,163-175
    76 Chinchar VG, Hyatt A, Miyazaki T, Williams T. Family Iridoviridae:Poor viral relations no lnger. Current Topics in Microbiology and Immunology,2009,328:123-170
    77 Chinchar VG, Mao JH. Molecular Diagnosis of Iridovirus Infections in cold-blooded Ammals. Seminars in Avian and Exotic Pet Medicine,2000,9(1):27-35
    78 Coupar BEH, Goldie SG, Hyatt AD, Pallister JA. Identification of a Bohle Iridovirus thymidine kinase gene and demonstration of activity using vaccinia virus. Archives of Virology,2005,150,1797-1812
    79 Cunningham AA, Hyatt AD, Russell P, Bennett PM. Emerging epidemic diseases of frogs in Britain are dependent on the source of ranavirus agent and the route of exposure. Epidemiology and Infection,2007,135:1200-1212
    80 Cunningham AA, Langton TE, Bennett PM, Drury SE, Gough RE, Macgregor SK.Pathological and microbialogical findings from incidents of unusual mortality of the common frog (Rana temporaria). Philos Trans R Soc Lond B Biol Sci,1996, 351:1539-1557
    81 Cunningham AA, Tems CA, Russell PH. Immunohistochemical demonstration of ranavirus antigen in the tissues of infected frogs(Rana temporaria) with systemic haemorrhagic or cutaneous ulcerative disease. Journal of Comparative Pathology, 2008,138,3-11
    82 Curry A, Appleton H, Dowsett B. Application of transmission electron microscopy to the clinical study of viral and bacterial infections:present and future. Micron, 2006,37:91-106
    83 Dang LT, Kondo H, Aoki T, Hirono I. Engineered virus-encoded pre-microRNA (pre-miRNA) induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line:Convergence of RNAi-related pathways and IFN-related pathways in antiviral response. Antiviral Res,2008,80:316-323
    84 Daszak P, Berger L, Cunningham AA, Hyatt AD, Green E, Speare R. Emerging infectious diseases and amphibian population declines. Emerging Infect Dis,1999,5: 735-748
    85 Deering RE, Arakawa CK, Oshima KH, OHara PJ, Landolt ML, Winton JR. Development of a biotinylated DNA probe for detection and identification of infectious hematopoietic necrosis virus. Diseases of Aquatic Organisms,1991,11(1): 57-65
    86 Delcher AL, Harmon D, Kasif S, White O, Salzberg S. Improved microbial gene identification with GLIMMER. Nucleic Acids Res.1999,27 (23):4636-4641
    87 Delhon G, Tulman ER, Afonso CL, Lu ZQ, Bettina JJ, Moser BA, Kutish GF, Rock DL.Gnome of Invertebrate Iridescent Virus Type 3 (Mosquito Iridescent Virus). J Virol,2006,80 (17):8439-8449
    88 Duffus AL, Pauli BD, Wozney K, Brunetti CR, Berrill M. Frog virus 3-like infections in aquatic amphibian communities. J Wildlife Dis,2008,44:109-120
    89 Dimitry AC, Bart H, Filip AMV. Microsatellites and their genomic distribution, evolution, function and applications:a review with special reference to fish genetics. Aquaculture,2006,255,1-29.
    90 Eaton HE, Metcalf J, Penny E, Tcherepanov V, Upton C, Brunetti CR. Comparative genomic analysis of the family Iridoviridae:re-annotating and defining the core set of iridovirus genes.Virology Journal,2007,4:11
    91 Echaubard P, Little K, Pauli B, Lesbarreres D. Context-Dependent Effects of Ranaviral Infection on Northern Leopard Frog Life History Traits. PLoS One,2010, 5:e13723.
    92 Fauquet CM. Taxonomy, classification and nomenclature of Viruses. Encyclopedia of Virology 7th ed, Academic press,2008,9-23
    93 Goorha R. Frog virus 3 DNA replication occurs in two stages. J Virol,1982,43: 519-528
    94 Gray MJ, Miller DL, Hoverman JT. Reliability of non-lethal surveillance methods for detecting ranavirus infection. Dis Aquat Org,2012,99:1-6
    95 Gray MJ, Miller DL, Schmutzer AC, Baldwin CA. Frog virus 3 prevalence in Tadpole opulations inhabiting cattle-access and non-access wetlands in Tennessee, USA. Diseases of Aquatic Organisms,2007,77:97-103
    96 Greer AL, Collins JP. Sensitivity of a diagnostic test for amphibian ranavinus varies with sampling protocol. J Wildl Dis,2007,43:525-532
    97 Harp EM, James WP. Ranavirus in wood frogs (Rana sylvatica):potential sources of transmission within and between ponds. Journal of Wildlife Diseases,2006 42, 307-318
    98 Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, DiMeo J, Efcavitch JW, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake SR, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, Xie Z. Single-molecule DNA sequencing of a viral genome. Science,2008,320: 106-109
    99 Hayes TB, Falso P, Gallipeau S, Stice M. The cause of global amphibian declines:a developmental endocrinologist's perspective. Journal of Experimental Biology,2010, 213:921-933
    100 He JG, Deng M, Weng SP, Li Z, Zhou SY, Long QX, Wang XZ, Chan SM. Complete genome Analysis of the Mandarin Fish Infectious Spleen and Kidney Necrosis Iridovirus. Virology,2001,291:126-139
    101 Hogg M, Aller P, Konigsberg W, Wallace SS, Doublie S. Structural and biochemical investigation of the role in proofreading of a beta hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family. JBiol Chem, 2007,282:1432-1444
    102 Hou JH, Zhu BC, Dong YW, Li PQ, Liu HM, Wan XQ. Research advances of Chinese giant salamander, Andrias davidianus. Sichuan J Zool,2004,22:262-267
    103 Houts GE, Gravell M, Granoff A. Electron microscopic observations on early events of frog virus 3 replication. Virology,1974,58(2):589-594
    104 Hoverman JT, Gray MJ, Miller DL, Haislip NA. Widespread Occurrence of Ranavirus in pond-Breeding Amphibian Populations. EcoHealth,2012,9:36-48
    105 Hoverman JT, Gray MJ, Miller DL. Anuran susceptibilities to ranaviruses:role of species identity, exposure route, and a novel virus isolate. Diseases of Aquatic Organisms,2010,89:97-107
    106 Huang YH, Huang XL, Cai J. Construction of green fluorescent protein-tagged recombinant iridovirus to assess viral replication. Virus Research,2011,160:21-229
    107 Huang XH, Huang YH, Liu H, Gong JOYL, Zhang L, Cui HC, Cao JH, Zhao YT, Wang XJ, Jiang YL, Qin QW.Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae. BMC Genomics,2009,10:224
    108 Huang XH, Huang YH, Yuan XP, Zhang QY. Electron microscopic examination of the viromatrix of Rana grylio virus in a fish cell line. J virol Methods,2006, 133:117-123
    109 ICTV, I.C.o.T.o.V.2011. Iridovirus:Virus Taxonomy 2011 Release.
    110 Jancovich JK, Chinchar VG, Hyatt A, Miyazaki T, Williams T, Zhang QY. Family Iridoviridae Virus Taxonomy,9th Report of the ICTV.2011, Elserier:San Diego, CA, USA,193-210.
    111 Jancovich JK, Bremont M, Touchman JW, Jacobs BL. Evidence for multiple recent host species shifts among the Ranaviruses (family Iridoviridae). J Virol,2010, 84:2636-2647
    112 Jancovich JK, Davidson EW, Morado JF, Jacobs BL, Cliilins JP. Isolation of a lethal virus from the endangered tiger salamander Ambystoma tigdnum stebbinsi. Dis Aquat Org,1997,31:161-167
    113 Jancovich JK, Davidson EW, Parameswaran N, Mao J, Chinchar VG, Collins JP, Jacobs BL, Storfer A. Evidence for emergence of an amphibian iridoviral disease because of human-enhanced spread. Molecular Ecology,2005.14,213-224
    114 Janeovieh JK, Mao J, ChineharVG Genomic sequenee of a ranavirus (family Iridoviridae) associated with salamander mortalities in North Ameriea. Virology, 2003,316(l):90-103
    115 Jeong JB, Jun LJ, Park KH, Kim KH, Chung JK, Komisar JL, Do JH. Asymptomatic iridovirus infection in various marine fishes detected by a 2-step PCR method. Aquaculture,2006,255:30-38
    116 Karanis P, Ongerth J. LAMP-a powerful and flexible tool for monitoring microbial pathogens. Trends in Parasitology,2009,25,498-499.
    117 Kerby JL, Storfer A. Combined effects of atrazine and chlorpyrifos on susceptibility of the tiger salamander to Ambystoma tigrinum virus. Ecohealth,2009,6:91-98
    112 Kik M, Martel A, Sluijs AS, Pasmans F, Wohlsein P, Grone A, Rijks JM. Ranavirus-associated mass mortality in wild amphibians, The Netherlands,2010:A first report. The Veterinary Journal,2011,190:284-286
    113 Lei X, Ou T, Zhu RL, Zhang QY. Sequencing and analysis of the complete genome of Ranagrylio virus (RGV). Arch Virol,2012,157:1559-1564
    114 Leonardo G, Pereira A, Marquez A, Mazzoni R. Ranavirus detection by PCR in cultured tadpoles{Rana catesbeiana Shaw,1802) from South America. Aquaculture,2006,257:78-82
    115 Li M, Wang JG, Zhang JY, Gu ZM, Ling F, Ke XL, Gong XN. First report of twoBalantidium species from the Chinese giant salamander, Andrias davidianus: Balantidium sinensis Nie 1935 and Balantidium andianusis n. sp. Parasitology Research,2008,102(4):605-611
    116 Liu ZJ, Cordes JF. DNA marker technologies and their applications in aquaculture genetics. Aquaculture,2004,238,1-37
    117 RQ, Zhu HM, Ruan J, Qian WB, Fang XD, Shi ZB, Liu YR, Li ST, Shan G, Kristiansen K, Li SQ Yang HM, Wang J, Wang J. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res,2010, 20:265-272
    118 Li RQ, Fan W, Tian G. Zhu HM, He L, Cai J, Huang QF, Cai QL, Li B, Bai YQ, Zhang ZH, Zhang YP, Wang W, Li J, Wei FW, Li H, Jian M, Li JW, Zhang ZL, Nielsen R, et al The sequence and de novo assembly of the giant panda genome. Nature,2010b,463:311-317
    119 Liu ZX, Liu H, Xie XY, He JQ, Luo TR, Teng Y. Evaluation of a loop-mediated isothermal amplification assay for rapid diagnosis of soft-shelled turtle iridovirus. Journal of Virological Methods,2011,173:328-333
    120 Lu L, Zhou SY, Chen C, Weng SP, Chan SM, He JG. Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper, Epinephelus coioides. Virology,2005,339:81-100
    121 Mao J, Hedrick RP, Chinchar VG Molecular characterization, sequence analysis and taxonomic position of newly isolated fish Iridoviruses. Virology,1997,229, 212-220
    122 Marschang RE.Viruses Infecting Reptiles. Viruses,2011,3:2087-2126
    123 Marsh IB, Whittington RJ, Rourke BO, Hyatt AD, Chisholm O. Rapid differentiation of Australian, European and American ranaviruses based on variation in major capsid protein gene sequence. Molecular and Cellular Probes,2002, 16:137-151
    124 Matos APAD. Correia MFAST, Papp T, Matos BACA, Correia ACL, Marschang RE. New viruses from Lacerta monticola (Serra da Estrela, Portugal):further evidence for a new group of nucleo-cytoplasmic large deoxyriboviruses. Microsc Microanal, 2011,17:101-108
    125 Matthew CA. Characterizing the epidemiology of Ranavirus in North American chelonians:diagnosis, surveillance, pathogenesis and treatment. Degree doctor dissertation of University of Illinois,2012.
    126 Matthew CA, David B, Mark AM. Development and validation of TaqMan quantitative PCR for detection of frog virus 3-like virus in eastern box turtles (Terrapene carolina carolina). Journal of Virological Methods,2013,188:121-125
    127 Matthew CA, Mohamed AE, Juergen S, David M, Larry SC, Melissa K. PCR Prevalence of Ranavirus in Free-Ranging Eastern Box Turtles(Terrapene carolina carolina) at Rehabilitation Centers in Three Southeastern US States. Journal of Wildlife Diseases,2011,47:759-764
    128 Mavian C, Bueno AL, Balseiro A, Casais R, Alcami A, Alejo A. The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses. J Virol,2012,86,7:3617-3625
    129 Mavian CALB, Maria PFS, Alcami A, Ali A. Complete Genome Sequence of the European Sheatfish Virus. J. Virol.,2012b,86(11):6365
    130 Mavian C, Bueno AL, Balseiro A, Casais R, Alcami A, Alejo A. The genome sequence of the emerging common midwife toad virus identifies an evolutionary intermediate within ranaviruses, J. Virol,2012a,86(7):3617-3625
    131 Miller DL, Gray MJ. Amphibian decline and mass mortality:The value of visualizing ranavirus in tissue sections. Vet J,2010,186:133-134
    132 Miller D, Gray M, Storfer A. Ecopathology of Ranaviruses Infecting Amphibians. Viruses,2011,3:2351-2373
    133 Morales HD, Abramowitz L, Gertz J, Sowa J, Vogel A, Robert J. Innate Immune Responses and Permissiveness to Ranavirus Infection of Peritoneal Leukocytes in the Frog Xenopus laevis. Journal of Virology,2010,84,4912-4922
    134 Mori Y, Notomi T. Loop-mediated isothermal amplifi cation (LAMP):a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother,2009,15:62-69
    135 Murti KG, Goorha R, Granoff A. An Unusual Replication Strategy of an Animal Iridovirus. Advances in Virus Research,1985(30):1-19
    136 Murph RW, Fu JZ, Upton DE, Lema TD, Zhao EM. Genetic variability among endangered Chinese giant salamanders, Andrias davidianus. Molecular Ecology, 2000,9:1539-1547
    137 Netherton C, Moffat K, Brooks E, Willeman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv virus Res,2007,70:101-182
    138 Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res,2000.28:E63
    139 OIE,2012. Listed Diseases 2012.
    140 Ou-yang ZL, Wang P, Huang XH, Cai J, Wei SN, Ji HS, Wei JG, Zhou YC, Qin QW. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides. Developmental & Comparative Immunology,2012,38(2):254-261
    141 Pessier A P. An overview of amphibian skin disease. Semin Avian Exot Pet,2002, 11:162-174
    142 Pessier AP. An Overview of Amphibian Skin Disease. Seminars in Avian and Exotic Pet Medicine,2002,11(3):162-174
    143 Picco AM, Collins JP. Fungal and viral pathogen occurrence in Costa Rican amphibians. Journal of Herpetology,2007,41,746-749
    144 Plumb JA. Disease recognition and diagnosis of fish. Modern Aquaculture in the Coastal Zone. J.Coimbra(Ed.), IOS Press,2001,145-154
    145 Reed LJ, Muench H. A simple method of estimating fifty percent end points. The American Journal of Hygiene,1938,27:493-497
    146 Robach Y, Michels B, Cerf R, Braunwald J, Tripeir-Darcy F. Ultrasonic absorption evidence for structural fluctuations in frog virus 3 and its subparticles. Proc Natl Acad Sci USA,1983,80:3981-3985
    147 Robert J. Emerging Ranaviral infectious diseases and amphibian decline. Diversity, 2010,2:314-330
    148 Roberr J, Abramowitz L, Gantress J, Morales HDM. Xenopus laevis:a possible vector of ranavirus infection? J Wildlife Dis,2007,43:645-652
    149 Robert J, George E, Andino FDJ, Chen GC. Waterborne infectivity of the Ranavirus frog virus 3 in Xenopus laevis. Virology,2011,417:410-417
    150 Rojas S, Richards K, Jancovich JK, Davidson EW. Influence of temperature on Ranavirus infection in larval salamanders Ambystoma tigrinum. Diseases of Aquatic Organisms,2005,63:95-100
    151 Rollins-Smith LA. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochimica et Biophysica Acta,2009.1788,1593-1599
    152 Schock DM, Bollinger TK, Collins JP. Mortality rates differ among Amphibian populations exposed to three strains of a lethal Ranavirus. EcoHealth,2009,6: 438-448
    153 Schloegel LM, Picco AM, Kilpatrick AM, Davies AJ, Hyatt AD, Daszak P. Magnitude of the US trade in amphibians and presence of Batrachochytrium dendrobatidis and ranavirus infection in imported North American bullfrogs (Rana catesbeiana). Biol Conserv,2009,142:1420-1426
    154 Schrader GM, Allender MC, Odoi A.. Diagnosis, treatment, and outcome of eastern box turtles (Terrapene carolina carolina) presented to a wildlife clinic in Tennessee, USA,1995-2007. J Wildl Dis,2010,46,1079-1085
    155 Shendure J, Mitra R, Varma C, Church GM. Advanced sequencing technologies: methods and goals. Nat Rev Genet,2004,5:335-344
    156 Shi CY, Jia KT, Yang B, Huang J. Complete genome sequence of a Megalocytivirus (family Iridoviridae) associated with turbot mortality in China. Virology Journal, 2010,7:159
    157 Sung CH, Chi SC, Huang KC, Lu JK. Rapid detection of gourper iridovirus by loop-mediated isothermal amplification. Journal of Marine Science and Technology, 2010,18(4):568-573
    158 Tidona CA, Schnitzler P, Kehm R, Darai G. Is the major capsid protein of iridoviruses a suitable target for the study of viral evolution? Virus Genes,1998,16: 59-66
    159 Tripier DF, Braunwald J, Kim A. Localization of some frog virus 3 structural proteins. Virology,1982,116:635-640
    160 Tsai CT, Lin CH, Chang CY. Analysis of codon usage bias and base compositional constraints in iridovirus genomes. Virus Research,2007,126:196-206
    161 Wang XM, Zhang KJ, Wang ZH, Ding YZ, Wu W, Huang S. The decline of the Chinese giant salamander Andrias davidianus and implications for its conservation. Oryx,2004,38:197-202
    162 Ward CW. Progress towards a higher taxonomy of viruses. Research in Virology (Institute Pasteur).1993,144:419-453
    163 Webby R, Kalmakoff J. Sequence comparison of the major capsid protein gene from 18 diverse iridoviruses. Arch Virol,1998,143:1949-1966
    164 Whittington RJ, Becker JA, Dennis MM. Iridovirus infections in finfish-critical review with emphasis on ranaviruses. JFish Dis,2010 33:95-122
    165 Williams T, Barbosa-Solomieu V, Chinchar VG. A decade of advances in Iridovirus research. Virus Research,2005,65:174-246
    166 Willis DB, Goorha R, Chinchar VG. Macromolecular synthesis in cells infected by frog virus 3. Current Topics in Microbiology and Immunology,1984,116:77-106
    167 Wolf K. Experimental propagation of lymphocystis disease of fishes. Virology,1962, 18(2):249-256
    168 Wolf K, Bullock GL, Dunbar CE. Tadpole edema virus:A viscerotropic pathogen for anuran amphibians. J Infect Dis,1968,118:253-262
    169 Wong CK, Young VL, Kleffmann T, Ward VK. Genomic and proteomic analysis of Invertebrate Iridovirus Type 9. J Virol,2011,85 (15):7900-7911
    170 Yan XD, Yu ZY, Zhang P, Battisti AJ, Holdaway HA, Chipman PR, Bajaj C, Bergoin M, Rossmann MG, Baker TS. The capsid proteins of a large, icosahedral dsDNA virus. J. Mol. Biol,2009,385:1287-1299
    171 Yoshinao K, Satomi K, Tomohiro O, Naoko M, Osamu I, Noriaki S. Molecular cloning of estrogen receptor alpha (Era; ESR1) of the Japanese giant salamander, Andrias japonicus. Molecular and Cellular Endocrinology,2006,257,25884-25894
    172 Zerbino DR, Birney E. Velvet:algorithms for de novo short read assembly using de Bruijn graphs. Genome Res,2008,18:821-829
    173 Zhang QY, Li ZQ, Gui JF. Studies on morphogenesis and cellular interactions of Rana grylio virus in an infected fish cell line. Aquaculture,1999,175:185-197
    174 Zhang H, Hou YB, Lin SJ. Isolation and characterization of proliferating cell nuclear antigen from the Dinoflagellate Pfiesteria piscicida. J. Eukaryot. Microbiol, 2006,53 (2):1-9
    175 Zhang M, Yang JX, Lin XM, Zhu CH, He JQ, Liu H, Lin TL. A double antibody sandwich enzyme-linked immunosorbent assay for detection of soft-shelled turtle iridovirus antigens. Journal of Virological Methods,2010,167:193-198
    176 Zhang KJ, Wang XM, Wu W, Wang ZH, Huang S. Advances in conservation biology of Chinese giant salamander. Biodiversity Sci,2002,10:291-297
    177 Zhang QY, Li ZQ,Gui JF. Studieson morphogenesis and cellular interactions of Rana grylio virus in an infected fish cell line. Aquaculture,1999,175:185-197
    178 Zhang QL, Shi CY, Huang J, Jia KT, Chen XH, Liu H. Rapid diagnosis of turbot reddish body iridovirus in turbot using the loop-mediated isothermal amplification method. Journal of Virological Methods,2009,158:18-23
    179 Zhao ZL, Teng Y, Liu H, Lin XM, Wang K, Jiang YL, Chen HC. Characterization of a late gene encoding for MCP in soft-shelled turtle iridovirus (STIV). Virus Research,2007,129:135-144
    180 Zhou ZY, GengY, Liu XX, Ren SY, Zhou Y, Wang KY, Huang XL, Chen DF, Peng X, Lai WM.. Characterization of a ranavirus isolated from the Chinese giant salamander (Andrias davidianus, Blanchard,1871) in China. Aquaculture,2013,25: 66-73
    181 Zhou ZY, Geng Y, Ren SY, Wang KY, Huang XL, Chen DF, Liu XX, Lai WM. Ranavirus (family Iridoviridae) detection by polymerase chain reaction (PCR) in Chinese giant salamander (Andrias davidianus, Blanchard,1871), China. African Journal of Biotechnology,2012, 11(85):15130-15134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700