磁性纳米颗粒固定纤维素酶和产酶丝状真菌转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶是一组具有纤维素降解能力酶的总称,它们协同作用可以将纤维素物质水解成简单糖,进而发酵产生乙醇,从而应用于农业、再生能源以及环境保护等领域。将已商业化的分泌型木霉生产的多组分纤维素酶有效固定化,不仅可以提高酶的稳定性、重复性,降低应用成本,还能为其他大分子底物的多酶体系的合理共固定研究奠定基础。本研究主要开展磁性纳米颗粒固定化纤维素酶和丝状真菌转化系统研究,获得了以下主要研究结果:
     一、以Fe_2O_3纳米颗粒和聚乙烯醇为载体物理交联固定纤维素酶方法的建立。采以Fe_2O_3纳米颗粒为载体,以聚乙烯醇为包覆物和交联物对纤维素酶进行反复冻融固定,形成了催化性质稳定的固定化复合物。采用透射电镜、红外光谱仪、振动样品磁强度计对固定化酶复合体进行了表征,结果显示:固定化酶凝胶团由大小约1μm的微凝胶团组成,微胶团内含10 nm左右的Fe_2O_3纳米颗粒。对影响固定化因素的研究发现:当pH为6,固定化时间为11 h,纤维素酶/PVA为4,PVA/Fe为50时,固定化纤维素酶效果最高。通过该方法固定后酶活回收率达42%,经过5次反应后的固定化酶相对酶活力仍保留50%以上。结果表明:基于Fe_2O_3纳米颗粒和聚乙烯醇为载体的反复冻融法可以有效固定纤维素酶。
     二、以牛血清蛋白(BSA)为模式蛋白,建立了采用硅油/Span80微乳体系固定化蛋白质的方法,并探讨了pH对固定化蛋白质在复合物空间分布的影响。对制备的BSA / PVA /Fe_2O_3纳米颗粒复合物进行酶联免疫、粒径、蛋白质含量分析,结果表明:较高pH值(pH=5、6)有利于BSA分布在复合物表层,而较低pH值(pH=3、4)使BSA则更多地镶嵌在复合物内层。透射电镜、zeta电位、红外光谱分析的结果显示BSA/PVA/Fe_2O_3纳米颗粒复合物粒径分布都较为均匀,具有球型核壳状的立体结构,并较好地保持了BSA的活力。
     三、利用硅油/Span80微乳体系对纤维素酶(ICM)进行了固定,考察了油相种类、油水比、纤维素酶浓度,搅拌转速,pH值,交联方式等因素对固定化纤维素酶活力的影响。结果显示:采用硅油/Span 80体系,水/油比值为1/25,水相纤维素酶浓度为20 mg·mL~(-1),搅拌转速为2000 rpm,pH值为5的条件下固定化效果最佳。滤纸酶活力可达7 U·mg~(-1)。透射电镜和粒径分析表明该固定化酶的粒径为300 nm左右,并形成Fe_2O_3纳米颗粒聚集在内,高分子物质分布在外的复合物。振动样品强度分析显示该复合物的饱和磁化强度为4.87 Am2·kg~(-1),矫顽力为50 Oe,有较强的顺磁性,红外光谱分析表明纤维素酶固定在PVA/Fe_2O_3纳米颗粒体系中。对固定化酶的性质分析表明:该固定化方法虽然C1酶活力和β-葡萄糖苷酶活力均下降,但比游离酶的Cx酶活力85 U·mg~(-1)要高很多,显示该方法能够有效调整纤维素酶组分的位置。酶学性质研究结果显示该固定化酶水解曲线、最适pH值与游离酶等性能基本相似,并具有较强的耐机械剪切能力。
     四、纤维素的晶体结构是提高酶活力的主要障碍之一,球磨技术虽然能够很好地破坏结晶纤维但是对酶活力影响也比较大。实验将固定化酶与球磨联用处理纤维素。酶活力和糖化分析结果表明:与球磨(300rpm)联合处理微晶纤维素(MCC) 6 h后,微乳固定化酶的单位蛋白酶活力是游离酶活力的3.5倍,且固定化酶与球磨对于微晶纤维素的降解具有明显协同作用。红外光谱、X晶体衍射和环境扫描电镜分析结果显示:球磨能够增加微晶纤维素的吸水量;微晶纤维的有序晶体排列在处理过程中被机械球磨降低,并使更多的不定型特性的纤维素纤丝出现,而固定化酶能够迅速降解这一不定型纤丝,从而使球磨和固定化酶呈现出良好的协同降解微晶纤维素作用,表明乳固定化酶结合湿法球磨是一种新型潜在的有效降解微晶纤维素的方法。
     五、为了便于探索丝状真菌纤维素降解机制,对丝状真菌的转化方法进行了探索,建立的农杆菌介导的丝状真菌转化体系。利用根癌农杆菌LB4404和质粒pPK2成功实现了简青霉菌株的转化。通过分子检测表明,hph基因成功转化至简青霉中,而且呈单拷贝。转化过程中影响遗传转化效率因素的研究结果表明在乙酰丁香酮浓度为250μM、OD值在0.8、共培养时间为48 h的条件下转化效率最高。验证结果表明在该条件下,平均转化率可达50个转化子/105孢子。该转化体系的建立为建立更合理的固定化纤维素酶模式奠定了基础。
Cellulases are enzymatic hydrolytic systems which consist of different enzymes capable of degrading cellulose into simple sugars through their synergies, and these sugars can be fermented to produce ethanol. As a result, Cellulases have great potential applications in some fields, such as agriculture, renewable energy environmental protection. The immobilized cellulase could be more stabile and reusable than free celluase, and result in lower cost in industrial application. In addition, a novel immobilization technology of celluase could bring a new idea of reasonable immobilization of muti-enzyme complex. This dissertation has focused on the study of preparation of the immobiled cellulase in polyvinyl alcohol/Fe_2O_3 nanoparticles, and the construction of transformation of Penicillium simplicissimum mediated by agrobacterium tumefaciens. The thesis mainly includes the following parts:
     1. The immobiled cellulase in polyvinyl alcohol/Fe_2O_3 nanoparticles were prepared by cyclic freezing–thawing process. Characters of TEM,IR and VSM suggested that the average diameters of immobilled cellulase complexs were 1μm whichcontained 10nm Fe_2O_3 naoparticle. Factors affecting activities of immobilizated cellulase were researched. About 42% activity retention of immobilized cellulase was achieved under the optimum conditions: pH 6.0, cellulase/PVA equal to 4,PVA/Fe equal to 50,11 hour for immobilization. The immobilized cellulase exhibited greater efficiency than free cellulase and retained 50% relatively activity after five cycles of reuse, which indicated that this novel method of immobilization could be propitious to reuse and improve efficiency of cellulase.
     2. Using bovine serum albumin (BSA) as a model protein, we established a pattern of silicone oil/Span80 microemulsion to immobilize protein and investigated the adjustment of the protein regulation of immobilizied complex by pH through ELISA, zetasizer, infrared spectroscopy. The results showed that more BSA were distributed in the exterior of complex in the high pH (pH=5,6) and more BSA were distributed in the interior of complex in the low pH(pH=3,4). The results of etasizer, infrared spectroscopy also showed the compex had homogeneous sizes and core-shell structure, moreover, the activity of BSA would be good retained by this immobilized method.
     3. We immobilized the cellulase (ICM) polyvinyl alcohol/Fe_2O_3 nanoparticles under the silicone oil/Span80 microemulsion system, and we also investigatied the effects of the immobilization of cellulase activity,such as types of oil phase, oil-water ratio, cellulose concentration, stirring speed, pH, cross-linking forms. The results showed that the activity of ICM was best(filter paper enzyme activity up to 7 U ? mg-1) under such condition as the oil phase of silicone oil/Span 80, the water/oil ratio of 1/25, the concentration of cellulase in aqueous at 20 mg?mL-1, stirring speed at 2000 rpm, pH 5. The analysis results of transmission electron microscopy and zetasizer showed that the immobilized enzyme formed a kind of sphere complex with the diameter of approximately 300 nm, and with the structure of aggregational Fe_2O_3 nanoparticles in their interior and, polymer in their exterior. Vibrating sample analysis showed that the saturation magnetization of immoblied enzyme is 4.87 Am2 ? kg-1, and the coercivity is 50 Oe, which suggested the complexs had a strong paramagnetic. The infrared spectroscopy images also showed that cellulase was immobilized in PVA/Fe_2O_3 system. The enzymatic charater of the immobilized enzyme showed that: although C1 activity andβ-glucosidase activity decreased in this complexs, Cx is much higher than the free enzyme activity 85 U mg~(-1), indicating that this method can adjust the position of cellulase compent. Characterization results showed that the hydrolysis curve and the optimum pH value of immobilized enzyme were similar with the free enzymes, and had strong resistance to mechanical shearing.
     4. The crystal structure of cellulose is one of the main obstacles to degrade. Ball milling could destroy the crystal structure(MCC) but do great harm to the activity of cellulase. We combined ball milling with ICM. The analysis of retained activity showed that the specific activity of ICM was about 3.5 times of that of free cellulase after treated by the ball milling in 300rpm 6 h. The glucose analysis suggests that there are synergies between milling and immobilized enzyme for the degradation of microcrystalline cellulose. Infrared analysis showed that the ball can increase water absorption microcrystalline cellulose. XRD and ESEM analysis results suggested that ball milling loosed the crystalline surface and made amorphous structure, which was more accessible by ICM. With the enzyme hydrolysis of MCC, the fibrous structure of cellulose was broken, which is considered to be adoptable for better mechanic and chemical modification. These two reactions proceeded repeatedly and synergistically until the MCC was degraded efficiently. These results show that the combination of microemulsion immobilized potential wet milling is a new and effective method of degrading microcrystalline cellulose.
     5. To simplify the investigation of the cellulose degradation mechanism in filamentous fungi, a novel Agrobacterium-mediated transformation method of filamentous fungi method was established. We achieved the conversion of Penicillium simplicissimum by combining Agrobacterium tumefaciens LB4404 with plasmid pPK2. The molecular analysis showed that the hph gene was successfully transformed into Penicillium simplicissimum with a randomly single-copy insertion. The average transformation efficiency was about 50 transformants per 105 spores at the optimized conditiong: the concentration of Agrobacterium tumefacien at 250μM, the concentration of acetoyringone at 0.8 OD and the co-culture time at 48 h. The establishment of thid transformation system would contribute to the estabilishment of a more rational method of immobilized cellulase.
引文
[1] David BW. Cellulases and biofuels. Current Opinion in Biotechnology, 2009, 20(3): 295-299
    [2] Kyoung-Mi L, , Marimuthu J, Ah-Reum J,et al. Purification and characterization of a thermostable endo-β-1,4-glucanase from a novel strain of Penicillium purpurogenum. Enzyme and Microbial Technology, 2010, 46(3): 206-211
    [3] Wood TM., Bhat KM. Methods for measuring cellulase activities. Methods in Enzymology, 1988, 160: 87-112
    [4] David BW. Evidence for a novel mechanism of microbial cellulose degradation. Cellulose, 2009,16(4):723-727
    [5] Hu M, Zhang W, Wu Y, et al. Characteristics and function of a low– molecular-weight compound with reductive activity from Phanerochaete chrysosporium in lignin biodegradation. Bioresource Technology, 2009, 100(6): 2077-2081
    [6] Petr B, Vendula V. Degradation of cellulose by basidiomycetous fungi. FEMS Microbiology Reviews, 2008, 32(3): 501-521
    [7] Carlos MF, Harry JG. Cellulosomes: Highly Efficient Nanomachines Designed to Deconstruct Plant CellWall Complex Carbohydrates. Annual Review of Biochemistry, 2010, 79(7). doi: 10.1146/annurev-biochem-091208-085603
    [8] James GE, Babu R, Martin K. Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Current Opinion in Biotechnology, 2010, 21(5): 657-662
    [9] Michael E H, Qi X, Yonghua L, et al. Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels, 2010, 1(2): 323-341
    [10] Gerber PJ. Purification and characterization of hemicellulolytic and cellulolytic enzymes and their interaction on bleached wood fiber. Wood and Paper Science, 1997, 13-14
    [11] Johannes HI, Sotirios K, Sanne MN,et al. NMR characterization of a 264-residue hyperthermostable endo-β-1,3-glucanase. Biochemical and Biophysical Research Communications, 2010, 391(1): 370-375
    [12] Bai Y, Wang J, Zhang Z, et al. A novel family 9β-1,3(4)-glucanase from thermoacidophilic Alicyclobacillus sp. A4 with potential applications in thebrewing industry. Applied Microbiology and Biotechnology,2010,87, (1):251-259
    [13] Rabinovich ML, Melnick MS, Bolobova AV. The structure and mechanism of action of cellulolytic enzymes. Biochemistry (Moscow), 2002, 67(8): 850-871
    [14] Srisodsuk M, Reinikainen T, Teeri TT. Role of the interdomain linker peptide of Trichoderma reesei cellobiohydrolase I in its interaction with crystalline cellulose. The Journal of Biological Chemistry, 1993, 268: 20756-20761
    [15] Sonan GK, Receveur-Brechot V, Duez C, et al. The linker region plays a key role in the adaptation to cold of the cellulase from an Antarctic bacterium. Biochemical Journal, 2007, 407(2): 293-302
    [16] Ting CL, Makarov DE, Wang ZG. A Kinetic Model for the Enzymatic Action of Cellulase. Journal of Physical. Chemistry B, 2009, 113(14): 4970-4977
    [17] Wood TM. Fungal cellulase. Biochemical society Transaction, 1992, 20(1): 46-53
    [18]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展.自然科学进展, 2003, (1): 21-29
    [19] Gilkes NR, Henriessat B, Kilburn DG, et al. Domains in microbial beta-1,4-glycanses: sequence conservation, function, and enzyme families. Microbiology and Molecular Biology Reviews, 1991, 55(2): 303-315
    [20] Yuan L, Makoto Y, Yuma K, et al. The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. FEBS Journal, 2010, 277(6): 1532-1542
    [21]赵荣乐.纤维素酶研究进展.喀什师范学院学报, 2005, 26(6): 51-54
    [22] Hilden L, Johansson G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnology Letters, 2004, 26(22): 1683-1693
    [23]侯爱华,吴斌辉.细菌纤维小体的结构和功能.纤维素科学与技术, 2002, 10(1): 50-56
    [24] Imen F, Chantal T, Henri PF, et al. The cellulosomes from Clostridium cellulolyticum. FEBS Journal, 2009, 276(11): 3076-3086
    [25] Shigenobu M, Hiromi K, Yifen L. The rosettazyme: A synthetic cellulosome. Journal of Biotechnology, 2009, 143(2): 139-144
    [26] Lytle BL, Volkman BF, Westler WM, et al. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Archives of Biochemistry Biophysics, 2000, 379(2): 237-244
    [27] Mishra NC, Tatum EL. Non-Mendelian inheritance of DNA-induced inositolindependence in Neurospora. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(12): 3875-3879
    [28] Bundock P, Dulk-Ras A, Beijersbergen A, et al. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO Journal, 1995, 14(13): 3206-3214
    [29] Meyer V. Genetic engineering of filamentous fungi - Progress, obstacles and future trends. Biotechnology Advances, 2008, 26(2): 177-185
    [30] Masato Y, Kazunobu Y, Yohsuke O, et al. Agrobacterium tumefaciens-mediated transformation of antifungal lipopeptide producing fungus Coleophoma empetri F-11899.Current Genetics, 2009, 55(6): 623-630
    [31]黄亚丽,叶婧,蒋细良,等.真菌遗传转化系统的研究进展.微生物学通报, 2007, 34(6): 1213-1217
    [32] Jochen S, Ulf Stahl, Vera M. Genetic and Metabolic Engineering in Filamentous Fungi.Physiology and Genetics, 2009, 15:377-392
    [33]孙宪昀,曲音波,刘自勇.青霉木质纤维素降解酶系研究进展.应用与环境生物学报, 2007, 13(5): 736-740
    [34]陈洪章.秸秆资源生态高值化理论与应用.北京:化学工业出版社, 2006, 166-187
    [35] Aline MC, Marcelle LAC, Selma GFL, et al. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. Journal of Industrial Microbiology & Biotechnology, 2010, 37(2): 151-158
    [36]拜永孝,李彦锋,马应霞,等.固定化酶技术及其应用.化学通报, 2005, 68: 1-6
    [37] Barker SA, Kay I. Principles of immobilized-enzyme technology. Handbook of Enzyme Biotechnology, Ellis Horwood, Chichester, 1975, 89-110
    [38] Weetall HH, Pilchcr Jr WH. Scaling up an immobilized enzyme system. Science, 1986, 232(4756): 1396-1403
    [39] Nellson JM., Griffin EG. Adsorption of invertase. Journal of the American Chemical Society, 1916, 38: 1109-1116
    [40] Hirsh SL, Bilek MMM, Nosworthy NJ, et al. A Comparison of Covalent Immobilization and Physical Adsorption of a Cellulase Enzyme Mixture. Langmuir, 2010, 26 (17):14380–14388
    [41] Sheldon RA, Schoevaart R, Langen L, et al. Cross-linked enzyme aggregates (CLEAs): A novel and versatile method for enzyme immobilization. Biocatalysis and Biotransformation, 2005, 23(3-4): 141-147
    [42] Yang K, Xua Ni, Su W. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. Journal of Biotechnology, 2010,148(2):119-127
    [43] Kumakura M. Kaetsu I. Fluid immobilized cellulase. Biotechnology letters, 1985, 7(10):773-778
    [44] Rao M, Mishra C. Properties and applications of Penicillium funiculosum cellulase immobilized on a soluble polymer. Biotechnology letters, 1984, 6(5): 319-322
    [45] Dincer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. Journal of Molecular Catalysis B:Enzymatic, 2007, 45(1-2): 10-14
    [46] Wu L, Yuan XY, Sheng J. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. Journal of Membrane Science, 2005,250(1-2): 167-173
    [47] Karube I, Tanaka S, Shirai T, et al. Hydrolysis of cellulose in a cellulase-bead fluidized bed reactor. Biotechnology and Bioengineering, 1977, 19(8): 1183-1191
    [48] Roy SK, Rahaa SK, Dey SK, et al. Immobilization ofβ-glucosidase from Myceliophthora thermophila D-14. Enzyme and Microbial Technology, 1989, 11 (7): 431-435
    [49] Kumakura M, Kaetsu I. Preparation of immobilized enzyme slurry by urethane reaction and radiation polymerization. Studia Biophysica, 1985, 107: 103-107
    [50] Zhu Z, Noppadon S, Zhang P. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst, 2009, 134(11): 2267-2272
    [51] Lee NE, Woodward J. Kinetics of the adsorption of Trichoderma reesei C30 cellulase to DEAE-Macrosorb. Journal of Biotechnology, 1989, 11(1): 75-82
    [52] Chim-anage P, Kashiwagi Y, Magae Y, et al. Properties of cellulose immobilized on agarose gel with spacer. Biotechnology and Bioengineering, 1986, 28(12): 1876-1878
    [53] Jain P, Wilkins ES. Cellulase immobilized on modified nylon for saccharification of cellulose. Biotechnology and Bioengineering, 1987, 30(9): 1057-1062
    [54] Cao L. Carrier-bound immobilized enzymes: principles, applications and design. WILEY-VCH Verlag CmbH&Co. KGaA,Germany: Weinheim, 2005, 12-14
    [55] Afaq S, Iqbal J. Immobilisation and stabilisation of papain on chelatingSepharose: a metal chelate regenerable carrier. Electron. Journal of Biotechnology, 2001, 4(3): 1-5
    [56] Platonova G A, Vlakh E G, Ivanova N D, et al. A flow-through enzymatic bioreactor based on immobilizedα-chymotrypsin. Russian Journal of Applied Chemistry, 2009,82(12): 2182-2186
    [57] Furukawa S, Ono T, Ijima H, et al. Activation of protease by sol-gel entrapment into organically modified hybrid silicates. Biotechnology Letters, 2002, 24(1): 13-16
    [58] Fatima BD, Samia K, Tahar S. Adsorption of cellulase Aspergillus niger on a commercial activated carbon: Kinetics and equilibrium studies. Colloids and Surfaces B: Biointerfaces ,2010, 75(1): 93-99
    [59] Angelo CP, Luciano C, Caio OH, et al. Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing: Ethanol detection using electrical capacitance measurements. Thin Solid Films, 2008, 516(24): 9002-9005
    [60] Wasserman BP, Hultin HO, Jacobson BS. High-yield method for immobilization of enzymes. Biotechnology and Bioengineering, 1980, 22(2): 271-287
    [61] Xu FJ, Cai QJ, Li YL et al. Covalent immobilization of glucose oxidase on well-defined Poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Biomacromolecules, 2005, 6(2): 1012-1020
    [62] Wang A, Wang H, Zhou C, et al. Ag-induced Efficient Immobilization of Papain on Silica Spheres. Chinese Journal of Chemical Engineering, 2008, 16(4): 612-619
    [63] Dyal A, Loos K, Noto M, et al. Activity of Candida rugosa lipase immobilized onγ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 2003, 125(7): 1684-1685
    [64]刘薇,白姝,孙彦.磁性纳米粒子的制备及脂肪酶的固定化.过程工程学报, 2004, 4(4): 362-366
    [65] Zeng L, Luo KK, Gong YF.Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J. Mol. Catal. B: Enzymatic., 2006, 38(1-2): 24-30
    [66] Kato N, Samejima S, Takahashi F. Isomaltose synthesis in the reversed hydrolysis catalyzed by amyloglucosidase immobilized in the thermosensitive gel. Mater. Sci. Eng. C, 2001, 17(1-2): 155-160
    [67] Bhattarai N, Ramay HR, Gunn J, et al. PEG-grafted chitosan as an injectablethermosensitive hydrogel for sustained protein release. Journal of Controlled Release, 2005, 103(3): 609-624
    [68]贺枫,卓仁禧,刘立建,等. pH敏感相分离的固定化酶的制备和性质.武汉大学学报, 1997, 43(4): 463-464
    [69] Zhu SD, Wu YX, Yu ZN. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester. Journal of Biotechnology, 2005, 116(4): 397-401
    [70] Oliveira PC de, Alves GM, Castro HF de. Immobilisation studies and catalytic properties of microbial lipase onto styrene-divinylbenzene copolymer. Biochem. Eng. J., 2000, 5(1):63-71
    [71] Taylan KO, Ali K. Immobilization of lipase in organic solvent in the presence of fatty acid additives. Journal of Molecular Catalysis B: Enzymatic., 2010,67(3):214-218
    [72]郭桥,罗贵民,孙启安,等.α-淀粉酶与糖化酶的共固定化研究.生物化学杂志, 1994, 10(3): 259-263
    [73]葛玉斌,王树岩,孙铭一,等.淀粉接枝共聚物共固定糖化酶和葡萄糖异构酶研究.吉林大学自然科学学报, 1998, 3: 99-101
    [74] Suman, Pundir CS. Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase onto alkylamine glass beads for measurement of total cholesterol in serum. Current Applied Physics, 2003, 3(2-3): 129-133
    [75] Sheldon RA. Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal., 2007, 349(8-9): 1289-1307
    [76] Xu C, Xu K, Gu H, et al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. Journal of the American Chemical Society, 2004, 126(32): 9938-9939
    [77] Phadtare S, Kumar A,. Vinod VP, et al. Direct assembly of gold nanoparticle“shells”on polyurethane microsphere“cores”and their application as enzyme immobilization templates. Chemistry of Materials, 2003, 15(10): 1944-1949
    [78] Kim J, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chemical Engineering Science, 2006, 61(3): 1017-1026
    [79] Li CZ, Yoshimoto M, Fukunaga K, et al. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresource Technology, 2007, 98(7): 1366-1372
    [80] Sinegani AAS, Emtiazi G, Shariatmadari H. Sorption and immobilization of cellulase on silicate clay minerals. Journal of Colloid and Interface Science, 2005,290(1): 39-44
    [81] Takimoto A, Shiomi T, Ino K, et al. Encapsulation of cellulase with mesoporous silica (SBA-15). Microporous and Mesoporous Materials, 2008, 116(1-3): 601-606
    [82] Li L, Ma L, Li H. Characteristics of magnetic microspheres and its application in enzyme immobilization. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(4): 8198-8200
    [83] Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie, 2007, 46(8): 1222-1244
    [84] Widder KJ, Senyei AE, Scarpelli DG, et al. Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med., 1978, 58(12): 141-146
    [85]姜炜,李凤生,陈令允,等.新型磁性Fe3O4/EDTA纳米复合粒子的制备及性能研究.物理化学学报, 2005, 21(2): 182-186
    [86]施卫贤,杨俊.磁性Fe3O4微粒表面有机改性.物理化学学报, 2001, 17(6): 507-510
    [87]赵强,庞小峰.磁性纳米生物材料研究进展及其应用.原子与分子物理学报, 2005, 22(2): 222-225
    [88]郑元青,童春义,王贝,等.叶酸-磁性淀粉纳米颗粒的研制及其肿瘤靶向磁热疗效应分析.科学通报, 2009, 54(14): 2065-2070
    [89] Ponvel KM, Lee DG, Woo EJ, et al. Immobilization of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate. Korean Journal of Chemical Engineering, 2009, 26(1): 127-130
    [90] Namdeo M, Bajpai SK. Immobilization ofα-amylase onto cellulose-coated magnetite (CCM) nanoparticles and preliminary starch degradation study. Journal of Molecular Catalysis B: Enzymatic, 2009, 59(1-3): 134-139
    [91]江泽民.对中国能源问题的思考.上海交通大学学报, 2008, 42(3): 346-359
    [92] Gray KA , Zhao L , Emptage M. Bioethanol. Current Opinion in Chemical Biology, 2006, 10(2): 141-146
    [93] Li C, Yoshimoto M, Fukunaga K, et al. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresource Technology, 2007, 98(7): 1366-1372
    [94] Dincer A, Telefoncu A. Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads. Journal of Molecular Catalysis B: Enzymatic,2007, 459(2): 10-14
    [95] Charusheela A, Arvind L. Enzyme catalyzed hydrolysis of esters using reversibly soluble polymer conjugated lipases. Enzyme and Microbial Technology, 2002, 30(1): 19-25
    [96] Silva CJSM, Zhang Q, Shen J, et al. Immobilization of proteases with a water soluble-insoluble reversible polymer for treatment of wool. Enzyme and Microbial Technology, 2006, 39(4): 634-640
    [97] Mishra C, Deshpande V, Rao M. Immobilization of Penictllium funiculosum cellulase on a soluble polymer. Enzyme and Microbial Technology, 1983, 5(5): 342-344
    [98] Vallander L, Eriksson KE. Enzyme recirculation in saccharification of lignocellulosic materials. Enzyme and Microbial Technology, 1987, 9(12): 714-720
    [99] Mes-Hartree M, Hogan CM,Saddler JN. Recycle of enzymes and substrate following enzymatic hydrolysis of steam-pretreated aspenwood. Biotechnology and Bioengineering, 1987, 30(4): 558-564
    [100] Bai S, Guo Z, Liu W, et al. Resolution of (±)-menthol by immobilized Candida rugosa lipase on super paramagnetic nanoparticles. Food Chemistry, 2006, 96(1): 1-7
    [101] Chastellain M, Petri A, Hofmann H. Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. Journal of Colloid Interface Science, 2004, 278(2): 353-360
    [102]严瑞瑄.水溶性高分子.北京:化学工业出版社, 2001, 70-71
    [103] van Ewijk GA, Vroege GJ, Philipse AP. Convenient preparation methods for magnetic colloids. Journal of Magnetism and Magnetic Materials, 1999, 201(1-3): 31-33
    [104] Kabel MA, van der Maarel MJEC, Klip G, et al. Standard assays do not predict the efficiency of commercial cellulase preparations towards plant materials. Biotechnology and Bioengineering.2006, 93(1): 56-63
    [105]蔡炳新,陈贻文.基础化学实验.北京:科学出版社, 2001,320-323
    [106]桂维玲.超顺磁性Fe2O3与Fe3O4用于磁共振胃肠造影剂的粒度比较.北京生物医学工程, 2009, 28(1): 52-54
    [107]徐世美,张淑芬,杨锦宗.有机-无机纳米复合水凝胶.化学进展, 2009, 21(5): 1008-1014
    [108]王改珍,贺进田,冯美彦,等.聚乙烯醇与牛血清白蛋白的相互作用及对其构象的影响.高等学校化学学报, 2009, 30(1): 68-7l
    [109] Kuptsov AH, Zhizhin GN. Handbook of fourier transform raman and infrared spectra of polymers. amsterdam: Elsevier, 1998:71–72
    [110] Teeri TT, Koivula A, Linder M, et al. Trichoderma reesei cellobiohydrolases: Why so efficient on crystalline cellulose? Biochemical Society Transactions, 1998, 26(2): 173-178
    [111] Cosgrove DJ. Growth of the plant cell well. Nature Reviews Molecular Cell Biology, 2005, 6: 850-861
    [112] B?rjesson J, Engqvist M, Sipos B, et al. Effect of poly (ethylene glycol) on enzymatic hydrolysis and adsorption of cellulose enzymes to pretreated lignocellulose. Enzyme and Microbial Technology, 2007, 41(1-2): 186-195
    [113] Medve J, Lee D, Tjerneld F. Ion-exchange chromatographic purification and quantitative analysis of Trichoderma reesei cellulases cellobiohydrolase I, II and endoglucanase II by fast protein liquid chromatography. Journal of Chromatography A, 1998, 808(1-2): 153-165
    [114]武旭业,黄世文,张建涛,等.物理交联聚乙烯醇/羟基末端聚酰胺-胺树型高分子水凝胶的制备与性质研究.高等学校化学学报, 2004, 25(2): 382-384
    [115] Nugent MJD, Higginbotham CL. Preparation of a novel freeze thawed poly (vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of. Pharmaceutics and Biopharmaceutics, 2007, 67(2): 377-386
    [116]王丹,黄锡荣,李越中,等.有机溶剂及反胶束中的酶催化性能.化学通报, 2003, 66: 1-7
    [117]周国伟,李干佐.微乳液中脂肪酶和含明胶的微乳液凝胶中固定化脂肪酶的催化特性.高等学校化学学报, 2001, 22(9): 1526-1529
    [118] Rees GD, Nascimento MG, Jenta TRJ, et al. Reverse enzyme synthesis in microemulsion-based organo-gels Biochimica et Biophysica Acta, 1991, 1073(3): 493-501
    [119] Hudson S, Magner E, Cooney J, et al. Methodology for the immobilization of enzymes onto mesoporous materials. The Journal of Physical Chemistry B, 2005, 109(41): 19496-19506.
    [120] Hudson S, Cooney J, Hodnett BK, et al. Chloroperoxidase on periodic mesoporous organosilanes: Immobilization and reuse. Chemistry of Materials, 2007, 19(8): 2049-2055
    [121] Schultz N, Metreveli G, Franzreb M, et al. Zeta potential measurement as a diagnostic tool in enzyme immobilisation. Colloids and Surfaces B: Biointerfaces, 2008, 66(1): 39-44
    [122]陈钧辉,陶力,李俊,等.生物化学实验.第3版.北京:科学出版社, 2004, 51-54
    [123]黄锡荣,张文娟,宋少芳,等.微乳液凝胶及其固定化脂肪酶研究进展.微生物学杂志, 2001, 21(2): 33-35
    [124] Guillot S, Tomsic M, Sagalowicz L, et al. Internally self-assembled particles entrapped in thermoreversible hydrogels. Journal of Colloid and Interface Science, 2009, 330(1): 175-179
    [125]周秋云,俞英. 2-(8-羟基喹啉-5-磺酸-7-偶氮)-1,8-二羟基-3,6-萘二磺酸与牛血清白蛋白的相互作用.分析化学, 2003, 31(8): 976-980
    [126]甘志锋,姜继森.单分散磁性纳米颗粒的制备及生物高分子在其上的组装.化学进展, 2005, 17(6): 978-986
    [127] Brunelle JP. Preparation of catalysts by metallic complex adsorption on mineral oxides. Pure and Applied Chemistry, 1978, 50(9-10): 1211-1229
    [128] Parks GA. The isoelectric point of solid oxide, solid hydroxides, and aqueous hydroxides and aqueous hydroxo complex systems. Chemical Reviews, 1965, 65(2): 177-198
    [129] He JT, Su HB, Li GP, et al. Stabilization and encapsulation of a staphylokinase variant(K35R) into poly(lactic-co-glycolic acid) microspheres. International Journal of Pharmaceutics, 2006, 309(1-2): 101-108
    [130] Carrasquillo KG, Costantino HR, Cordero RA., et al. On the structural preservation of recombinant human growth hormone in a dried film of a synthetic biodegradable polymer. Journal of Pharmaceutical Sciences, 1999, 88(2): 166-173
    [131] Fu K, Griebenow K, Hsieh L, et al. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. Journal of Controlled Release, 1999, 58(3): 357-366
    [132]刁颖辉,付时雨,余惠生.生物酶的固定化及其应用.化学通报, 2002, 65: 1-6
    [133] Li CZ, Yoshimoto M, Fukunaga K, et al. Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose. Bioresource Technology, 2007, 98(7): 1366-1372
    [134] Ho KM, Mao X, Gu L, et al. Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly (methyl methacrylate) cores and cellulase shells. Langmuir, 2008, 24(19): 11036-11042
    [135] Horiike S, Matsuzawa S, Yamaura K. Preparation of chemically crosslinked gels with maleate-denatured poly (vinyl alcohol) and its application to drug release.Journal of Applied Polymer Science, 2002, 84(6): 1178-1184
    [136] Okada H, Mori K, Tada K, et al. Identification of active site carboxylic residues in Trichoderma reesei endoglucanase Cel12A by site-directed mutagenesis. Journal of Molecular Catalysis B: Enzymatic, 2000, 10(1-3): 249-255
    [137]严新.均匀纺锤形α-Fe2O3的制备及其等电性研究.华东理工大学, 2004, 30(5): 536-538
    [138] Ghose TK. Measure of cellulose activities. Pure and Applied Chemistry, 1987, 59(2): 257-268,
    [139] Awadel-Karim S, Leclerc D, Grondey H, et al. Changes in H-bonding of cellulose during solvent purification treatment (acetonation). Holzforschung, 1998, 52(1): 67-76
    [140] Bergstr?m K, Holmberg K. Microemulsions as reaction media for immobilization of proteins to hydrophilized surfaces. Colloids and Surfaces, 1992, 63(3-4): 273-280
    [141] Huibers PDT, Shah DO. Evidence for synergism in nonionic surfactant mixtures: Enhancement of solubilization in water-in-Oil microemulsions. Langmuir, 1997, 13(21): 5762–5765
    [142] Egan RW. Hydrophile-lipophile balance and critical micelle concentration as key factors influencing surfactant disruption of mitochondrial membranes. The Journal of Biological Chemistry, 1976,251: 4442-4447.
    [143]商显芹,郝龙云,房宽峻,等.纤维素酶水解能力的影响因素研究.针织工业, 2008, 4: 58-61
    [144] .Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 2002, 6, (4): 319-327
    [145] Wilde P, Mackie A, Husband F, et al. Proteins and emulsifiers at liquid interfaces. Advances in Colloid and Interface Science, 2004, 108-109: 63-71
    [146]秦明娜,葛忠学,郑晓东.微乳法制备纳米材料的研究进展.化工时刊, 2008, l122 (7): 50-53
    [147] Zoumpanioti M, Stamatis H, Xenakis A .Microemulsion-based organogels as matrices for lipase immobilization. Biotechnology Advances, 2010, 28(3): 395-406
    [148] Tawansi A, El-Khodary A, Abdelnaby MM. A study of the physical properties of FeCl3 filled PVA. Current Applied Physics, 2005, 5(6): 572-578.
    [149] Reese ET, Siu RGH, Levinson HS. The biological degradation of solublecellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. Journal of Bacteriology, 1950, 59: 485-497
    [150] Mansfield SD, Meder R. Cellulose hydrolysis-the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose, 2003, 10(2): 159-169
    [151] Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 2009, 100(1): 10-18
    [152] Mohammad JT, Keikhosro K. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Joural Molecular Sciences, 2008, 9(9): 1621–1651
    [153] Kelsey RG, Shafizadeh F. Enhancement of cellulose accessibility and enzymatic hydrolysis by simultaneous wet milling. Biotechnology and Bioengineering, 1980, 22(5): 1025-1036.
    [154] Mais U, Esteghlalian AR, Saddler JN et al. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Applied Biochemistry and Biotechnology, 2002, 98-100(1-9): 815-832
    [155] Furcht PW, Silla H. Comparison of simultaneous wet milling and enzymatic hydrolysis of cellulose in ball mill and attrition mill reactors. Biotechnology and Bioengineering, 1990, 35(6): 630-645
    [156] Zhou JX, Chen D, Zhu YH, et al. Simultaneous wet ball milling and mild acid hydrolysis of rice hull. Journal of Chemical Technology and Biotechnology, 2010, 85(1): 85-90
    [157] Sinegani AAS, Emtiazi G, Shariatmadari H.. Sorption and immobilization of cellulase on silicate clay minerals. Journal of Colloid and Interface Science, 2005, 290(1): 39-44
    [158] Takimoto A, Shiomi T, Ino K, et al.. Encapsulation of cellulase with mesoporous silica (SBA-15). Microporous and Mesoporous Materials, 2008, 116(1-3): 601-606
    [159] Cao Y, Tan H. Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme and Microbial Technology, 2005, 36(2-3): 314-317
    [160] Schwanninger M, Rodrigues JC, Pereira H, et al. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 2004, 36(1): 23-40
    [161] Zhao H, Kwak JH, Wang Y, et al. Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-millingstudy. Energy Fuels, 2006, 20(2):807-811.
    [162] Cao Y, Tan H. Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme and Microbial. Technology, 2005, 36(2-3): 314-317
    [163] Cao Y, Tan H. Structural characterization of cellulose with enzymatic treatment. Journal of Molecular Structure, 2004, 705(1-3): 189-193
    [164] Zhang W, Liang M, Lu CH. Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose, 2007, 14(5): 447-456
    [165] Gupta R, Lee YY. Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnology and Bioengineering, 2008, 102(6): 1570-1581
    [166] Cao Y, Tan H. Effects of cellulase on the modification of cellulose. Carbohydrate Research, 2002, 337(14): 1291-1296
    [167] Doi RH, Kosugi A. Cellulosomes: plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology, 2004, 2, 541-551
    [168] Bayer EA, Morag E, Lamed R. The cellulosome-a treasure-trove for biotechnology. Trends in Biotechnology, 1994, 12(9): 379-386.
    [169] Ding SY, Xu Q, Crowley M, et al. A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Current Opinion in Biotechnology. 2008, 19(3): 218-227
    [170] Doi RH, Tamaru Y. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. The Chemical Record, 2001, 1(1): 24-32
    [171] Noach I, Frolow F, Jakoby H, et al. Crystal structure of a type-II cohesin module from the bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. Journal of Molecular Biology, 2005, 348(1): 1-12
    [172] Steenbakkers PJM, Li XL, Ximenes EA,et al. Noncatalytic docking domains of cellulosomes of anaerobic fungi. Journal of Bacteriology, 2001, 183(18): 5325-5333.
    [173]郁红艳,曾光明,黄国和,等.简青霉Penicillium simplicissimum木质素降解能力.环境科学, 2005, 26(2): 167-171
    [174]苏彩云,靳发彬,张佳,等.丝状真菌的DNA转化方法.河北化工, 2007, 30(7): 29-31.
    [175] Degefu1 Y, Hanif M. Agrobacterium-tumefaciens-mediated transformation of Helminthosporium turcicum, the maize leaf-blight fungus. Archives ofmicrobiology, 2003, 180(4): 279-284
    [176] Fincham JR. Transformation in fungi, Microbiology Molecular Biology Reviews. 1989 , 53(1): 148-170
    [177] De Groot MJA, Bundock P, Hooykaas PJJ, et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology, 1998, 16(9): 839-842
    [178] de la Riva GA, Gonzalez-Cabrera J, Vazquez-Padron R, et al. Agrobacterium tumefaciens: a natural tool for plant transformation. Electronic Journal of Biotechnology, 1998, 1(3): 1-16
    [179]高兴喜,杨谦.根癌农杆菌介导的CryA(b)基因在哈茨木霉菌中的转化.科学通报, 2004, 49(21): 2193-2197
    [180] Michielse CB, Hooykaas PJJ, van den Hondel CA, et al. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Current Genetics, 2005, 48(1): 1-17
    [181] De Maeseneire SL, Van Bogaert IN, Dauvrin T, et al. Rapid isolation of fungal genomic DNA suitable for long distance PCR. Biotechnology Letters, 2007, 29(12) :1845-1855
    [182] Michielse CB, Hooykaas PJJ, van den Hondel CA, et al. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nature Protocols,2008, 3 :1671-1678
    [183]方丽,刘海青,宋凤鸣,等.农杆菌介导的黄瓜炭疽菌遗传转化.浙江大学学报:农业与生命科学版, 2006, 32(4): 360-366
    [184] Piyan Z, Bin X, Yuezhu W,et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the fungus Penicillium marneffei. Mycological Research, 2008,112(8) : 943-949

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700