18F-FDG PET和累及野在食管癌放化疗中的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的文献显示肿瘤FDG代谢反应能够预测食管癌放疗的组织病理反应,但是各种临床试验应用的肿瘤FDG代谢反应参数是不同的,包括放疗后SUVmax (post-SUVmax)、放疗前后SUVmax降低的百分比(%DetaSUVmax),以及放疗前后由SUVmax确定的肿瘤病灶长度降低的百分比(△L)等,如何评价和分析这些参数存在着争论。该实验的目的是在相同的食管癌群体中,观察以上各种代谢反应参数在预测组织病理学反应的差异,并且观察根据代谢反应和组织病理学反应分层后生存曲线的区别。
     材料和方法共有60例适合入组的食管鳞癌患者接受了新辅助放化疗和食管切除术。治疗前和放疗后1周患者接受了两次18FDG-PET检查。计算代谢反应参数post-SUVmax、%DctaSUVmax和△L。按照以上参数post-SUVmax (3.0)、%DetaSUVmax(75%)和△L(33%)阂值对患者分层为完全代谢反应(CMR)和非完全代谢反应(non-CMR)。观察术后食管肿瘤标本病理反应,确定完全病理反应(CR)或者非完全病理反应(non-CR)。然后分析各项代谢反应参数预测病理反应的敏感性、特异性、阳性预测值和阴性预测值;观察按照代谢反应参数分层后的生存曲线和按照组织病理反应分层后的生存曲线的差异。
     结果在PET各项代谢参数中,%DetaSUVmax75%和△L33%均能够预测食管癌放疗后组织病理反应,其敏感性和特异性为91.6%、86.7%和81.4%、89.5%,且与患者局部控制时间、总生存时间相关(相关系数R:0.747/0.704和0.705/0.684,P<0.05)。多因素COX风险比例模型也支持该参数是预后因素(HR0.897和0.813,P<0.05);并且这两个参数代谢反应生存曲线和组织病理反应的差异小。
     结论在食管癌放疗后各项代谢反应参数中,以%DetaSUVmax75%和△L33%预测组织病理反应为佳,且在生存曲线上比较符合。
     目的该项实验目的是研究接受后程加速超分割放疗的食管癌患者的生存时间和局部控制时间,是否与肿瘤FDG吸收值下降的百分比有线性相关性;并且确定从后程加速超分割放疗中获得增益者。
     方法共有50例合适入组的食管鳞癌患者接受了三次PET检查和后程加速超分割放疗方案,总放疗剂量为68.4Gy/41次6.5周。肿瘤FDG吸收值下降的百分比(%DeltaSUVmax)计算出后,按照常规照射方案中计算出%DeltaSUVmax对患者进行分层:高度敏感性组(HR)、中度敏感性组(MR)和低度敏感性组(LR)。然后统计患者的生存时间和%DeltaSUVmax之间的线性相关系数。患者分层后比较局部控制率和总生存率。
     结果只有在MR(中度敏感性)组,常规(照射)方案的%DeltaSUVmax和后程超分割方案的%DeltaSUVmax没有线性相关性(相关系数R<0.4,P值>0.05)。其他的放疗后%DeltaSUVmax与总生存时间和局部控制时间都有线性相关性(相关系数R>0.5,P值<0.05),包括HR组和LR组的常规方案和后程加速超分割方案%DeltaSUVmax之间。在HR、MR和LR组3年局部控制率分别是100%、81.5%和0%(P<0.001);对HR、MR和LR组来说,3年总生存率分别为92.4%、58.8%和0%(P<0.001)。
     结论食管癌放疗后的肿瘤FDG吸收值下降百分比(%DeltaSUVmax)与患者的生存时间是相关的。只有常规照射方案后%DeltaSUVmax在30%-60%范围的患者,才能从后程加速超分割放疗中获益。
     目的同期放化疗累及野照射在治疗颈段和上胸段食管癌的可行性研究。
     材料和方法总共102例颈段和上胸段食管癌接受了同期放化疗,同期放化疗前1周所有的患者接受颈部超声和颈胸部CT检查。所有的病人被随机分到累及野照射组(IFI)和淋巴结选择性照射组(ENI)。放疗采用三维适形调强放疗,放疗剂量为59.4Gy/33/5.5周。患者接受放疗期间,同时给予2周期以顺铂为基础全身化疗。
     结果颈段和上胸段食管癌累及野照射和选择性淋巴结照射组总的毒性反应没有统计学意义(P=0.203)。但是血液学毒性包括感染(27.4%v64.7%)和呕吐反应(25.4%v54.9%)之间有统计学意义(P=0.008和0.028)。局部区域总失败率在累及野组和预防组分别为17.6%和13.7%,但没有统计学差异(P=0.837)。累及野组区域淋巴结失败率是9.8%,而淋巴结选择性照射组是7.8%(P=0.837)。累及野组野外淋巴结失败率为2%。淋巴结选择性照射组1-、2-和3-生存率分别是100%、84.0%和41.3%,而累及野组分别是100%、74.7%和32.0%(P=0.336)。在累及野组和淋巴结选择性照射组1-、2-和3年局部控制率分别是90.0%,、80.1%、80.1%和92.8%、92.8%、85.7%(P=0.583)。
     结论累及野照射不是颈段和上胸段食管癌区域淋巴结失败的重要预后因素。因此累及野照射是颈段和上胸段食管癌放疗可接受的放疗方式,且毒性反应较低。
Background And Purpose Published literatures indicated that metabolic response of tumor18F-FDG is able to predict histopathologic response after chemoradiation in esophageal cancer. But all kinds of metabolic parameters and thresholds vary from different clinical trials, including post-radiation SUVmax (post-SUVmax), a decrease percentage of SUVmax on pre-and post-radiation (%DetaSUVmax), and a change percentage of tumor length according to SUVmax (△L), et al. Disputes exist in how to evaluate and analysize the indexes and values. The aim of this trial is to observe the differences about the parameters predicting histopathologic response and survival curve of these after stratification patients according to histopathologic and metabolic response.
     Material and Methods A total of60patients with squamous esophageal cancer were enrolled in this trial. All patients received chemoradiation followed by esophagectomy and18FDG-PET examination twice on pre-and post-radiation. Then metabolic indexes post-SUVmax,%DetaSUVmax and△L are calculated and all patients are classified to metabolic complete response (CMR) or metabolic nonresponse (non-CMR) according to post-SUVmax3.0,%DetaSUVmax75%and△L33%. Histopathologic response in esophageal sections was observed to determine and classify to pathologic complete response (CR) or pathologic non-response (non-CR). Survival curves were compared to the difference after classification according to histopathologic and metabolic response.
     Results For all kinds of PET-based indexes, only%DetaSUVmax75%and△L33%predicted histopathologic response and correlated to local control time and overall survival time (Correlation coefficient R:0.747/0.704and0.705/0.684, P<0.05). And the accuracy is higher with the the sensitivity91.6%and81.4%and the specificity86.7%and89.5%. Analysis of Cox Proportional Hazards Model for overall survival and local control indicated that two parameters had a significant survival advantage (hazard ratio [HR]=0.897and0.813, P<0.01). Survival curve after stratification according to a threshold of75%of%DetaSUVmax was minor difference to that of histopathologic response.
     Conclusion%DetaSUVmax75%and△L33%in all metabolic indexes were optical to predict the histopathologic response, with a minor difference in survival curve after stratification.
     Objective The aim of this trial was to study whether a decrease percentage of tumor FDG uptake correlate with overall survival and local control times for patients with esophageal cancer, and who would benefit from a late-course accelerated hyperfractionated (LCHF) radiation scheme.
     Material and Methods A total of50eligible patients with squamous esophageal cancer received PET examination three times and were treated with the LCHF radiation scheme with a dose of68.4Gy/41fractions in6.5weeks. A decrease percentage of FDG uptake (%DeltaSUVmax) was calculated and patients were stratified into high radiosensitive (HR), moderate radiosensitive (MR) and low radiosensitive (LR) subgroups according to%DeltaSUVmax in the CF scheme. Then a linear correlation was calculated between patients'survival time and%DeltaSUVmax. Local control and overall survival were compared after stratification.
     Results Only in the MR subgroup there was no linear correlation for%DetaSUVmax between the CF and LCHF scheme (Correlation coefficients R<0.4, P values>0.05). And other%DeltaSUVmax after radiation correlated to overall survival or local control times (Correlation coefficients R>0.5, and P value<0.05), including between the CF and LCHF scheme in the HR and LR subgroups.3-year local control rates in the HR, MR and LR subgroups were100%,81.5%and0%respectively (P<0.001). And3-year overall survival rates were92.4%,58.8%and0%for HR, MR and LR subgroups respectively (P<0.001).
     Conclusion%DetaSUVmax on postradiation positively correlated to patients'survival time for esophageal cancer. Patients who benefited from LCHF schedules were patients with a30%-60%decrease of tumor FDG uptake after the completion of CF radiation.
     Objective To investigate the feasibility of involved-field irradiation (IFI) for the treatment of cervical and upper-thoracic esophageal cancer with concurrent chemoradiation.
     Material and Methods A total of102eligible patients with cervical and upper-thoracic esophageal cancer were treated with concurrent chemoradiation and randomized into either an IFI or elective nodal irradiation (ENI) group. Before chemoradiation, PET/CT scan was used to all patients. All patients received a dose of59.4Gy/33fractions in5.5weeks. A total of2cycles of cisplatin-based chemotherapy were delivered for patients.
     Results Total acute toxicities didn't reach a statistical significance for the IFI versus the ENI group(P=0.203), but hematologic toxicity included infect ion (27.4%v64.7%) and nausea (25.4%v54.9%)were a statistical significance group(P=0.008and0.028). There was no statistical difference for late radiation reaction. The cumulative incidence of local/regional failure (13.7%v17.6%) was lower in the ENI versus the IFI group in three years, with no statistical significance(P=0.837). Regional lymph failure was9.8%for the IFI group versus7.8%for the ENI group(P=0.837). And out-field lymph failure only2%for the IFI group. The1-,2-, and3-year survival rates were100%,84.0%, and41.3%for the ENI group, and100%,74.7%, and32.0%for the IFI group, respectively (P=0.336). The1-,2-, and3-year local control rates were90.0%,80.1%, and80.1%in the IFI group, and92.8%,92.8%, and85.7%in the ENI group(P=0.583), respectively.
     Conclusion IFI as treatment for cervical and upper-thoracic esophageal cancer did not cause significant failure in lymph node regions. IFI remains an acceptable and toxicity-minimizing method of treatment.
引文
1. Tong DK, Law S, Kwong DL, Chan KW, Lam AK, Wong KH. Histological regression of squamous esophageal carcinoma assessed by percentage of residual viable cells after neoadjuvant chemoradiation is an important prognostic factor. Ann Surg Oncol.2010;17(8):2184-92.
    2. Monjazeb AM, Riedlinger G, Aklilu M, et al. Outcomes of patients with esophageal cancer staged with [18F]fluorodeoxyglucose positron emission tomography (FDG-PET):can postchemoradiotherapy FDG-PET predict the utility of resection? J Clin Oncol.2010 Nov 1;28(31):4714-21.
    3. Javeri H, Xiao L, Rohren E, et al. The higher the decrease in the standardized uptake value of positron emission tomography after chemoradiation, the better the survival of patients with gastroesophageal adenocarcinoma. Cancer.2009;115(22):5184-92.
    4. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography:review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer.1999;35(13):1773-82.
    5. Wieder HA, Brucher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol.2004;22(5):900-8.
    6. Roedl JB, Harisinghani MG, Colen RR, et al. Assessment of treatment response and recurrence in esophageal carcinoma based on tumor length and standardized uptake value on positron emission tomography-computed tomography. Ann Thorac Surg.2008;86(4):1131-8.
    7. Schmidt M, Bollschweiler E, Dietlein M, et al. Mean and maximum standardized uptake values in [18F]FDG-PET for assessment of histopathological response in oesophageal squamous cell carcinoma or adenocarcinoma after radiochemotherapy. Eur J Nucl Med Mol Imaging. 2009;36 (5):735-44.
    8. Vali FS, Nagda S, Hall W, et al.Comparison of standardized uptake value-based positron emission tomography and computed tomography target volumes in esophageal cancer patients undergoing radiotherapy. Int J Radiat Oncol Biol Phys.2010;78(4):1057-63.
    9. Muijs CT, Beukema JC, Pruim J, et al. A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol.2010:97(2):165-71.
    10. Ishihara R, Yamamoto S, Iishi H, et al. Predicting the effects of chemoradiotherapy for squamous cell carcinoma of the esophagus by induction chemotherapy response assessed by positron emission tomography: toward PET-response-guided selection of chemoradiotherapy or esophagectomy. Int J Clin Oncol.2011 Jul 8.
    11. Chang F, Deere H, Mahadeva U, George S. Histopathologic examination and reporting of esophageal carcinomas following preoperative neoadjuvant therapy:practical guidelines and current issues. Am J Clin Pathol.2008:129(2):252-62.
    12. Klaeser B, Nitzsche E, Schuller JC, et al. Limited predictive value of FDG-PET for response assessment in the preoperative treatment of esophageal cancer:results of a prospective multi-center trial (SAKK 75/02). Onkologie.2009:32(12):724-30.
    13. Wieder HA, Bruicher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol.2004;22(5):900-8.
    14. Malik V, Lucey JA, Duffy GJ, et al. Early repeated 18F-FDG PET scans during neoadjuvant chemoradiation fail to predict histopathologic response or survival benefit in adenocarcinoma of the esophagus. J Nucl Med.2010;51(12):1863-9.
    15. Levine EA, Farmer MR, Clark P, et al. Predictive value of 18-fluoro-deoxy-glucose-positron emission tomography (18F-FDG-PET) in the identification of responders to chemoradiation therapy for the treatment of locally advanced esophageal cancer. Ann Surg. 2006;243(4):472-8.
    16. van Heijl M, Omloo JM, van Berge Henegouwen MI, et al. Fluorodeoxyglucose positron emission tomography for evaluating early response during neoadjuvant chemoradiotherapy in patients with potentially curable esophageal cancer. Ann Surg.2011;253(1):56-63.
    17. Avril NE, Weber WA. Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am.2005;43(1):189-204.
    18. Murthy SB, Patnana SV, Xiao L, et al.The standardized uptake value of 18-fluorodeoxyglucose positron emission tomography after chemoradiation and clinical outcome in patients with localized gastroesophageal carcinoma. Oncology.2010;78(5-6):316-22.
    19. Jeganathan R, McGuigan J, Campbell F, Lynch T. Does pre-operative estimation of oesophageal tumour metabolic length using 18F-fluorodeoxyglucose PET/CT images compare with surgical pathology length? Eur J Nucl Med Mol Imaging.2011;38(4):656-62.
    20. Boffa DJ and Detterbeck FC. Neoadjuvant Therapy. Jobe BA, Thomas CR Jr, Hunter JG. Esophageal cancer:principles and practice.2009 Demos Medical Publishing, LLC.407-422.
    21. Javeri H, Xiao L, Rohren E, et al. The higher the decrease in the standardized uptake value of positron emission tomography after chemoradiation, the better the survival of patients with gastroesophageal adenocarcinoma. Cancer.2009;115(22):5184-92.
    22. Klaeser B, Nitzsche E, Schuller JC, et al. Limited predictive value of FDG-PET for response ssessment in the preoperative treatment of esophageal cancer:results of a prospective multi-center trial (SAKK 75/02). Onkologie.2009;32 (12):724-30.
    23. Jingu K, Kaneta T, Nemoto K, et al. (18) F-fluorodeoxyglucose positron emission tomography immediately after chemoradiotherapy predicts prognosis in patients with locoregional postoperative recurrent esophageal cancer. Int J Clin Oncol.2010;15(2):184-90.
    24. Vallbohmer D, Holscher AH, Dietlein M, et al. [18F]-Fluorodeoxyglucose-positron emission tomography for the assessment of histopathologic response and prognosis after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg. 2009:250(6):888-94.
    25. van Heijl M, Omloo JM, van Berge Henegouwen MI, et al. Neoadjuvant therapy monitoring with PET and CT in Esophageal Cancer (NEOPEC-trial). BMC Med Phys.2008;8:3.
    26. Posner MC, Minsky BD, Ilson DH. Cancer of the Esophagus. Devita VT, Lawrence TS, Rosenberg SA. Devita, Hellman & Rosenberg's Cancer: Principles & Practice of Oncology,8th Edition. Lippincott Williams & Wilkins 2008.944-1044.
    1. Lu JJ. Esophageal cancer. In:Brady LW, Heilmann H-P, Molls M, Nieder C. Radiation oncology:an evidence-based approach. Berlin: Springer-Verlag; 2008. p.171-186.
    2. Greene FL, Page DL, Fleming ID, Fritz A, Balch CM, Haller DG, Morrow M, editors. American Joint Committee on Cancer:AJCC cancer staging manual. 6th ed. New York:Springer; 2002.
    3. Roedl JB, Harisinghani MG, Colen RR, et al. Assessment of treatment response and recurrence in esophageal carcinoma based on tumor length and standardized uptake value on positron emission tomography-computed tomography. Ann Thorac Surg 2008;86 (4):1131-8.
    4. Klaeser B, Nitzsche E, Schuller JC, et al. Limited predictive value of FDG-PET for response assessment in the preoperative treatment of esophageal cancer:results of a prospective multi-center trial (SAKK 75/02). Onkologie 2009;32(12):724-30.
    5. Zhao KL, Shi XH, Jiang GL, et al. Late course accelerated hyperfractionated radiotherapy plus concurrent chemotherapy for squamous cell carcinoma of the esophagus:a phase III randomized study. Int J Radiat Oncol Biol Phys 2005;62(4):1014-20.
    6. Schmidt M, Bollschweiler E, Dietlein M, et al. Mean and maximum standardized uptake values in [18F]FDG-PET for assessment of histopathological response in oesophageal squamous cell carcinoma or adenocarcinoma after radiochemotherapy. Eur J Nucl Med Mol Imaging 2009; 36 (5):735-44.
    7. Kwee RM. Prediction of tumor response to neoadjuvant therapy in patients with esophageal cancer with use of 18F FDG PET:a systematic review. Radiology 2010;254(3):707-17.
    8. Jingu K, Kaneta T, Nemo to K, et al. (18)F-f luorodeoxyglucose positron emission tomography immediately after chemoradiotherapy predicts prognosis in patients with locoregional postoperative recurrent esophageal cancer. Int J Clin Oncol 2010;15 (2):184-90.
    9. Rohatgi PR, Swisher SG, Correa AM, et al. Failure patterns correlate with the proportion of residual carcinoma after preoperative chemoradiotherapy for carcinoma of the esophagus. Cancer 2005;104 (7):1349-55.
    10. Westerterp M, Omloo JM, Sloof GW, et al. Monitoring of response to pre-operative chemoradiation in combination with hyperthermia in oesophageal cancer by FDG-PET. Int J Hyperthermia 2006;22(2):149-60.
    11. Javeri H, Xiao L, Rohren E, et al The higher the decrease in the standardized uptake value of positron emission tomography after chemoradiation, the better the survival of patients with gastroesophageal adenocarcinoma. Cancer 2009;115(22):5184-92.
    12. Duong CP, Hicks RJ, Weih L, et al FDG-PET status following chemoradiotherapy provides high management impact and powerful prognostic stratification in oesophageal cancer. Eur J Nucl Med Mol Imaging 2006;33(7):770-8.
    13. Chatterton BE, Ho Shon I, Baldey A, et al. Positron emission tomography changes management and prognostic stratification in patients with oesophageal cancer:results of a multicentre prospective study. Eur J Nucl Med Mol Imaging 2009;36(3):354-61.
    14. Choi NC, Fischman AJ, Niemierko A, et al. Dose-response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2002;54(4):1024-35.
    15. Zhang YW, Chen L, Bai Y, Zheng X. Long-term outcomes of late course accelerated hyper-fractionated radiotherapy for localized esophageal carcinoma in Mainland China:a meta-analysis. Dis Esophagus.2011, doi: 10.1111/j.1442-2050.
    16. Smithers BM, Couper GC, Thomas JM, et al. Positron emission tomography and pathological evidence of response to neoadjuvant therapy in adenocarcinoma of the esophagus. Dis Esophagus.2008;21(2):151-8.
    17. Malik V, Lucey JA, Duffy GJ, et al. Early repeated 18F-FDG PET scans during neoadjuvant chemoradiation fail to predict histopathologic response or survival benefit in adenocarcinoma of the esophagus. J Nucl Med.2010; 51 (12):1863-9.
    1. Cooper JS, Guo MD, Herskovic A, Macdonald JS, Martenson JA Jr, Al-Sarraf M, et al. Chemoradiotherapy of locally advanced esophageal cancer:long-term follow-up of a prospective randomized trial (RTOG 85-01). Radiation Therapy Oncology Group. JAMA.1999;281 (17):1623-7
    2. Minsky BD, Pajak TF, Ginsberg RJ, Pisansky TM, Martenson J, Komaki R, etal. INT 0123 (Radiation Therapy Oncology Group 94-05) phase Ⅲ trial of combined-modality therapy for esophageal cancer:high-dose versus standard-dose radiation therapy. J Clin Oncol.2002; 20(5):1167-74
    3. Wang S, Liao Z, Chen Y, Chang JY, Jeter M, Guerrero T, et al. Esophageal cancer located at the neck and upper thorax treated with concurrent chemoradiation:a single-institution experience. J Thorac Oncol.2006; 1(3):252-9.
    4. Zhao KL, Shi XH, Jiang GL, Yao WQ, Guo XM, Wu GD, et al. Late course accelerated hyperfractionated radiotherapy plus concurrent chemotherapy for squamous cell carcinoma of the esophagus:a phase Ⅲ randomized study. Int J Radiat Oncol Biol Phys.2005; 62(4):1014-20.
    5. Kato H, Igaki H, Tachimori Y, Watanabe H, Tsubosa Y, Nakanishi Y. Assessment of cervical lymph node metastasis in the staging of thoracic esophageal carcinoma. J Surg Oncol.2000;74(4):282-5.
    6. Gu YJ, Wang JH, Xiang JQ, Ma LF. A study on clinical value of CT features of tracheoesophageal groove lymph node metastasis of thoracic esophageal carcinoma. Chinese Journal Of Radiology.2002; 36(2):141-143
    7. Romagnuolo J, Scott J, Hawes RH, Hoffman BJ, Reed CE, Aithal GP, et al. Helical CT versus EUS with fine needle aspiration for celiac nodal assessment in patients with esophageal cancer. Gastrointest Endosc.2002; 55(6):648-54.
    8. Liao Z, Helen L, Ritsuko K. Target delineation for esophageal cancer. J Women's Imaging.2003,5:177-186.
    9. Komaki R, Liao Z, Forster K, Lee HK, Stevens CW, Cox JD. Target definition and contouring in carcinoma of the lung and esophagus. Rays. 2003; 28(3):225-36.
    10. Lorchel F, Dumas JL, Noel A, Wolf D, Bossc t JF, Aletti P. Esophageal cancer:Determination of internal target volume for conformal radiotherapy. Radiother Oncol.2006; 80(3):327-32.
    11. Gloria Wood, Linda Casey and Andy Trotti. Skin Changes. William Small, Jr. and Gayle E. Woloschak. Radiation Toxicity:a practical guide. Springer Science+Media Business, Inc 2006.171-81.
    12. Skin. Luis Felipe Fajardo L-G, Morgan B, Robert EA. Radiation pathology. Oxford University Press, Inc2001.411-20.
    13. Yamada K, Murakami M, Okamoto Y, Okuno Y, Nakajima T, Kusumi F, et al. Treatment results of radiotherapy for carcinoma of the cervical esophagus. Acta Oncol.2006; 45(8):1120-5.
    14. Yuan S, Sun X, Li M, Yu J, Ren R, Yu Y, et al. A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage Ⅲ nonsmall cell lung cancer. Am J Clin Oncol.2007;30(3):239-44.
    15. Fernandes AT, Shen J, Finlay J, Mitra N, Evans T, Stevenson J, et al. Elective nodal irradiation (ENI) vs. involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC):A comparative analysis of toxicities and clinical outcomes. Radiother Oncol. 2010;95(2):178-84.
    16. Rosenzweig KE, Sura S, Jackson A, Yorke E. Involved-field radiation therapy for inoperable non small-cell lung cancer. J Clin Oncol. 2007;25(35):5557-61.
    17. Joseph 0. Deasy and Jack F. Fowler. IMRT放射生物学.主编:Arno J. Mundt and John C. Roeske主译:姜炜,崔世民.临床调强放射治疗学.北京:人民卫生出版社,2011:49-68.
    18. Grills IS, Mangona VS, Welsh R, et al. Outcomes after stereotactic lung radiotherapy or wedge resection for stage I non-small-cell lung cancer. J Clin Oncol,2010(28):928-935.
    19. Meier I, Merkel S, Papadopoulos T, Sauer R, Hohenberger W, Brunner TB. Adenocarcinoma of the esophagogastric junction:the pattern of metastatic lymph node dissemination as a rationale for elective lymphatic target volume definition. Int J Radiat Oncol Biol Phys.2008; 70(5):1408-17.
    20. Crehange G, Maingon P, Bosset JF. Radiochemotherapy for oesophageal cancer:a locoregional failure history. Cancer Radiother.2008; 12(6-7):640-8.
    21. Lee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+T cell:changing strategies for cancer treatment. Blood,2009(114):114-595.
    22. Zhao KL, Ma JB, Liu G, Wu KL, Shi XH, Jiang GL. Three-dimensional conformal radiation therapy for esophageal squamous cell carcinoma:is elective nodal irradiation necessary? Int J Radiat Oncol Biol Phys. 2010;76(2):446-51.
    23. Uno T, Isobe K, Kawakami H, Ueno N, Kobayashi H, Shimada H, et al. Efficacy and toxicities of concurrent chemoradiation for elderly patients with esophageal cancer. Anticancer Res.2004; 24(4):2483-6.
    24. Onozawa M, Nihei K, Ishikura S, Minashi K, Yano T, Muto M, Ohtsu A, et al. Elective nodal irradiation (ENI) in definitive chemoradiotherapy (CRT) for squamous cell carcinoma of the thoracic esophagus. Radiother Oncol.2009;92(2):266-9.
    25. Huang SH, Lockwood G, Brierley J, Cummings B, Kim J, Wong R, et al. Effect of concurrent high-dose cisplatin chemotherapy and conformal radiotherapy on cervical esophageal cancer survival. Int J Radiat Oncol Biol Phys.2008;71(3):735-40.
    26. Nakagawa S, Nishimaki T, Kosugi S, Ohashi M, Kanda T, Hatakeyama K. Cervical lymphadenectomy is beneficial for patients with carcinoma of the upper and mid-thoracic esophagus. Dis Esophagus.2003; 16(1):4-8.
    27. Jiade JL. Esophageal Cancer. Editors:Baert AL, Brady LW, Heilmann H-P, Knauth M, Molls M, Nieder C. Radiation Oncology:An Evidenceased Approach.2008, Springer-Verlag Berlin Heidelberg.171-85.
    28. javeri H, Arora R, Correa AM, Hofstetter WL, Lee JH, Liao Z, et al. Influence of induction chemotherapy and class of cytotoxics on pathologic response and survival after preoperative chemoradiation in patients with carcinoma of the esophagus. Cancer.2008;113(6):1302-8.
    1. Minsky BD, Pajak TF, Ginsberg RJ, Pisansky TM, Martenson J, Komaki R, Okawara G, Rosenthal SA, Kelsen DP. INT 0123 (Radiation Therapy Oncology Group 94-05) phase Ⅲ trial of combined-modality therapy for esophageal cancer:high-dose versus standard-dose radiation therapy. J Clin Oncol 2002; 20(5):1167-1174
    2. Zhao KL, Shi XH, Jiang GL, Yao WQ, Guo XM, Wu GD, Zhu LX. Late course accelerated hyperfractionated radiotherapy plus concurrent chemotherapy for squamous cell carcinoma of the esophagus:a phase Ⅲ randomized study. Int J Radiat Oncol Biol Phys.2005;62(4):1014-1020.
    3. Roedl JB, Harisinghani MG, Colen RR, et al. Assessment of treatment response and recurrence in esophageal carcinoma based on tumor length and standardized uptake value on positron emission tomography-computed tomography. Ann Thorac Surg.2008;86(4):1131-1138.
    4. Roedl JB, Halpern EF, Colen RR, et al. Metabolic tumor width parameters as determined on PET/CT predict disease-free survival and treatment response in squamous cell carcinoma of the esophagus. Mol Imaging Biol. 2009:11(1):54-60.
    5. Roedl JB, Harisinghani MG, Colen RR, et al. Assessment of treatment response and recurrence in esophageal carcinoma based on tumor length and standardized uptake value on positron emission tomography-computed tomography. Ann Thorac Surg.2008;86(4):1131-1138.
    6. Roedl JB, Halpern EF, Colen RR, et al. Metabolic tumor width parameters as determined on PET/CT predict disease-free survival and treatment response in squamous cell carcinoma of the esophagus. Mol Imaging Biol. 2009;11(1):54-60.
    7. Roedl JB, Colen RR, Holalkere NS, et al. Adenocarcinomas of the esophagus:response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT. Comparison to histopathologic and clinical response evaluation. Radiother Oncol. 2008:89(3):278-286.
    8. Rizk NP, Tang L, Adusumilli PS, et al. Predictive value of initial PET-SUVmax in patients with locally advanced esophageal and gastroesophageal junction adenocarcinoma. J Thorac Oncol. 2009:4(7):875-9.
    9. Smithers BM, Couper GC, Thomas JM, et al. Positron emission tomography and pathological evidence of response to neoadjuvant therapy in adenocarcinoma of the esophagus. Dis Esophagus.2008;21(2):151-158.
    10. Kato H, Fukuchi M, Miyazaki T, et al. Prediction of response to definitive chemoradiotherapy in esophageal cancer using positron emission tomography. Anticancer Res.2007;27(4C):2627-2633.
    11. Westerterp M, Omloo JM, Sloof GW, et al. Monitoring of response to pre-operative chemoradiation in combination with hyperthermia in oesophageal cancer by FDG-PET. Int J Hyperthermia.2006;22(2):149-160.
    12. Swisher SG, Erasmus J, Maish M, et al.2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma. Cancer.2004;101(8):1776-1785.
    13. Wieder HA, Brucher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol.2004;22(5):900-908.
    14.袁双虎,于金明,于甬华,等.18F-脱氧葡萄糖PET—CT检测食管癌病变长度的临床价值.中华放射肿瘤学杂志.2006,15(5):389-392.
    15. Buchmann I, Haberkorn U, Schmidtmann I, et al. Influence of cell proportions and proliferation rates on FDG uptake in squamous-cell esophageal carcinoma:a PET study. Cancer Biother Radiopharm. 2008:23(2):172-180.
    16.穆殿斌,王绍平,杨文锋,等.食管癌组织中葡萄糖转运蛋白1表达和Ki-67抗原标记指数与PET/CT显示的18F-FDG摄取水平相关.中华肿瘤杂志.2007,1:30-33.
    17. Wieder HA, BrUcher BL, Zimmermann F, et al. Time course of tumor metabolic activity during chemoradiotherapy of esophageal squamous cell carcinoma and response to treatment. J Clin Oncol.2004;22(5):900-908.
    18.邹长林,胡美龙.后程加速超分割放射治疗食管癌疗效荟萃分析,中华放射肿瘤学杂志;2001(10)1:18-20.
    19. Titz B and Jeraj R. An imaging-based tumour growth and treatment response model:investigating the effect of tumour oxygenation on radiation therapy response. Phys. Med. Biol.2008,53:4471-4488.
    20. Li ZP, Meng QF, Sun CH, et al. Tumor angiogenesis and dynamic CT in colorect carcinoma:radiologic-pathologic correlation. World J Gastroenterol 2005;11:1287-1291.
    21. Stamatakos GS, Zacharaki El, Makropoulou MI, et al. Modeling tumor growth and irradiation response in vitro--a combination of high-performance computing and web-based technologies including VRML visualization. IEEE Trans Inf Technol Biomed.2001;5(4):279-89.
    22. Nordsmark M, Bentzen SM, Rudat V, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol.2005;77(1):18-24.
    23. Goh V, Sanghera B, Wellsted DM., et al. Assessment of the spatial pattern of colorectal tumour perfusion estimated at perfusion CT using two-dimensional fractal analysis. Eur Radiol; 2009,19:1358-1365.
    24. d'Assignies G, Couvelard A, Bahrami S, et al. Pancreatic endocrine tumors:tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology.2009;250(2):407-16
    25. Meijerink MR, van Cruijsen H, Hoekman K, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients. Eur Radiol.2007;17(7):1700-13.
    26. Hayano K, Okazumi S, Shuto K, et al.Perfusion CT can predict the response to chemoradiation therapy and survival in esophageal squamous cell carcinoma:initial clinical results. Oncol Rep.2007;18(4):901-8.
    27. Makari Y, Yasuda T, Doki Y, et al. Correlation between tumor blood flow assessed by perfusion CT and effect of neoadjuvant therapy in advanced esophageal cancers.J Surg Oncol.2007;96(3):220-9.
    28. Sahani DV, Kalva SP, Hamberg LM, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT:initial observations. Radiology 2005;234:785-792.
    29. Bisdas S, Medov L, Baghi M, et al. A comparison of tumour perfusion assessed by deconvolution-based analysis of dynamic contrast-enhanced CT and MR imaging in patients with squamous cell carcinoma of the upper aerodigestive tract. Eur Radiol; 2008,18:843-850.
    30. Zima A, Carlos R, Gandhi D, et al. Can Pretreatment CT Perfusion Predict Response of Advanced Squamous Cell Carcinoma of the Upper Aerodigestive Tract Treated with Induction Chemotherapy? AJNR Am J Neuroradiol.2007;28(2):328-34. Makari Y, Yasuda T, Doki Y, et al. Correlation Between Tumor Blood Flow Assessed by Perfusion CT and Effect of Neoadjuvant Therapy in Advanced Esophageal Cancers. Journal of Surgical Oncology; 2007,96:220-229.
    31. Bellomi M, Petralia G, Sonzogni A, et al. CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma:initial experience. Radiology.2007;244(2):486-93.
    32. Ng CS, Kodama Y, Mullani NA, Barron BJ, Wei W, Herbst RS, Abbruzzese JL, Charnsangavej C. Tumor Blood Flow Measured by Perfusion Computed Tomography and 150-Labeled Water Positron Emission Tomography:A Comparison Study. J Comput Assist Tomogr.2009;33(3):460-465.
    33. Wong TZ, Lacy JL, Petry NA, et al. PET of Hypoxia and Perfusion with 62Cu-ATSM and 62Cu-PTSM Using a 62Zn/62Cu Generator. AJR Am J Roentgenol. 2008 Feb;190(2):427-32.
    34. Gagel B, Piroth M, Pinkawa M, Reinartz P, et al. p0 polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography:validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia? BMC Cancer. 2007;7:113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700