HMGB1在原发性肝细胞癌中的表达及其对肝癌细胞HCCLM3增殖和侵袭的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肝细胞癌(hepatocellular carcinoma, HCC),是我国最常见的恶性肿瘤之一,在各种恶性肿瘤的死亡率中位居第二。高迁移率族蛋白1(high-mobility group box1, HMGB1)作为一种非组蛋白核蛋白被发现在多种肿瘤中高表达,但它在肝癌中所扮演的角色目前并不清楚。在本次研究中,我们检测肝癌组织中HMGB1的表达情况,并分析HMGB1mRNA和肝癌临床病理因素之间的关系;探讨RNA干扰对人肝癌细胞株HCCLM3生物学活性的影响,并初步研究其可能的下游作用机制。
     方法:(1)收集11例正常肝脏组织、32例肝癌组织及其配对的癌旁组织,逆转录PCR(reverse transcription-polymerase chain reaction, RT-PCR)和Western-blot分析HMGB1的表达水平,免疫组织化学法检测HMGB1的定位,并分析HMGB1mRNA表达水平和肝癌临床病理因素之间的关系。(2)设计并合成了3对特异性针对HMGB1的小干扰RNA序列(HMGB1-siRNA-1、HMGB1-siRNA-2和HMGB1-siRNA-3),通过脂质体LipofectamineTM2000转染HCCLM3细胞,同时设置阴性对照组和空白对照组。实时荧光定量PCR(Real-time PCR)和Western-blot检测HMGB1干扰序列对HMGB1表达的影响;MTT法检测细胞的增殖并绘制生长曲线;流式细胞术检测细胞的凋亡;Transwell法检测细胞迁移和侵袭的能力。(3)Real-time PCR和Western-blot检测HMGB1干扰序列转染进入HCCLM3细胞后NF-KB/p65和VEGF-C的表达水平,间接免疫荧光法(indirect immunofluorescence)检测NF-κB/p65的定位,酶联免疫吸附测定法(enzyme-linked immunosorbent assay, ELISA)检测NF-KB/p65的活性。
     结果:(1)RT-PCR结果表明HMGB1mRNA的相对表达量在肝癌组织中最高,为0.859±0.159,明显高于癌旁组织的0.506±0.131和正常肝脏组织的0.413±0.086(P<0.001)。HMGB1mRNA的过表达与肝癌的TNM分期、Edmondson分级、血管侵犯和包膜侵犯密切相关。Western-blot结果显示HMGB1蛋白在肝癌组织中的表达也是三组中最高的。相关性分析表明,组织中的HMGB1mRNA与HMGB1蛋白表达呈明显正相关(R=0.833,P<0.01)。此外,免疫组化结果显示HMGB1在肝癌中过表达,免疫染色颗粒主要位于细胞核,正常肝脏组织中未见染色,在癌旁组织中有少量染色位于细胞浆。(2) Real-timePCR和Western-blot结果表明,3条特异性针对HMGB1的小干扰RNA序列都可以抑制HMGB1的表达,其中以HMGB1-siRNA-1抑制效率最高。MTT结果显示HMGB1-siRNA-1组细胞的生长速度明显低于阴性对照组和空白对照组(P<0.01);流式细胞术显示HMGB1-siRNA-1组细胞凋亡显著增加(P<0.01);Transwell法结果表明在HMGB1表达抑制的HMGB1-siRNA-1组细胞中,细胞迁移和侵袭的能力较阴性对照组和空白对照组明显下降(P<0.01)。(3)Real-time PCR和Western-blot结果表明,HCCLM3细胞转染HMGB1-siRNA-1后NF-KB/p65和VEGF-C的表达较阴性对照组和空白对照组明显下降(P<0.01);间接免疫荧光法结果显示HMGB1-siRNA-1组的NF-κB/P65核转位减少;ELISA结果显示HMGB1-siRNA-1组的NF-κB/P65活性降低。
     结论:(1)肝癌组织中HMGB1的表达明显升高;肝癌组织中的HMGB1表达水平与肝癌的TNM分期、Edmondson分级、血管侵犯、包膜侵犯正相关,其过表达可能与肝癌的发生、发展密切相关。(2)特异性针对HMGB1的siRNA序列可以有效地抑制HCCLM3细胞的增殖,促进细胞凋亡,同时抑制HCCLM3细胞迁移和侵袭的能力,HMGB1可能作为肝癌治疗的一个潜在靶点。(3)HMGB1表达抑制后,HCCLM3细胞中NF-KB/p65和VEGF-C的表达均降低,同时可以抑制HCCLM3细胞中NF-KB/p65的核转位并降低其活性,HMGB1可能通过NF-κB信号通路调节VEGF-C的表达。
Objectives:Hepatocellular carcinoma (HCC), one of the most common malignant tumors, is the second cause of cancer mortality in China. High-mobility group box1(HMGB1), as a non-histone nuclear protein, has been associated with many human cancers, but the role of HMGB1in HCC remains unclear. In this study, we investigated the expression of HMGB1in human HCC and analyzed the relationship between HMGB1mRNA and HCC clinicopathologic significance. We also examined the effects of RNA interference (RNAi) HMGB1on the bioactivity of HCC cell line HCCLM3and explored possible downstream mechanism.
     Methods:(1)11cases of normal liver tissues,32cases of HCC and the corresponding liver tissue just around the tumor (LAT) were collected, Then, all the samples were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western-blot to analysis the expression of HMGB1. At the same time, immunohistochemisty was used to detect the location of HMGB1. The relationships between HMGB1mRNA expression and clinicopathologic parameters were analyzed.(2) We designed and synthesized three specific small interfering RNA of HMGB1(HMGB1-siRNA-1、HMGB1-siRNA-2and HMGB1-siRNA-3) and transfected these into HCCLM3cells by use of LipofectamineTM2000. Cells transfected with no significant homology with human gene sequences (negative group) and without transfection treatment (blank group) were treated in parallel. Real time-PCR and Western blot were performed to determine the effects of HMGB1-siRNAs on HMGB1expression. In vitro proliferation was assessed by MTT assay. Apoptosis was demonstrated by flow cytometry. Migration and invasive ability were determined by use of the Transwell assay.(3) RT-PCR and Western blot were performed to detect NF-κB/p65and VEGF-C expression after transfection of HMGB1-siRNA-1into HCCLM3. Indirect immunofluorescence assay was used to detect the location of NF-κB/p65. Then, we used enzyme-linked immunosorbent assay (ELISA) to detect NF-KB/p65activity.
     Results:(1) RT-PCR demonstrated that the expression of relative HMGB1mRNA was0.859±0.159; the highest in the tissue of HCC, significantly up-regulated compared with that of0.506±0.131in LAT and of0.413±0.086in normal liver tissues (P<0.001). HMGB1mRNA overexpression was significantly associated with Edmondson stage, TNM stage, vascular invasion and capsule invasion. Western-blot showed the expression of HMGB1protein in HCC also as the highest among all the groups. Correlation analysis between HMGB1mRNA and protein indicated that the expression of HMGB1mRNA had a positive correlation with HMGB1protein (Person correlation analysis, R=0.833, P<0.01). Furthermore this overexpression revealed by immunostaining was predominantly localized in the nuclei of HCC; whereas, none of the stains were seen in normal liver tissues and only a trace of it was detected in the cytoplasm of LAT cells.(2) Real-time PCR and Western-blot showed that all three specific HMGB1-siRNAs significantly inhibited HMGB1expression, with inhibition by HMGB1-siRNA-1being highest. MTT assay revealed that the HMGB1-siRNA-1group significantly reduced cell proliferation compared with the negative group or blank group cells (P<0.01). FCM revealed that apoptosis was significantly increased in HMGB1-siRNA-1-transfected cells compared with negative group or blank group cells (P<0.01). The Transwell assay revealed that HCCLM3cells transfected with HMGB1-siRNA-1had much lower migratory ability and invasive activity than the negative group or blank group cells (P<0.01).(3) Real-Time PCR and Western-blot analysis showed that the mRNA and protein levels of NF-κB/p65and VEGF-C of HCCLM3cells transfected with HMGB1-siRNA-1were significantly decreased compared with the negative group or blank group cells (P<0.01). Indirect immunofluorescence assay revealed that NF-κB/p65nuclear translocation was decreased after HCCLM3cells transfected with HMGB1-siRNA-1. At the same time, ELISA showed that NF-κB/p65activity was also decreased.
     Conclusions:(1) HMGB1levels in HCC were significantly elevated. HMGB1overexpression was significantly associated with Edmondson stage, TNM stage, vascular invasion and capsule invasion. Overexpression of HMGB1might associated with HCC development and progress.(2) Downregulation of HMGB1by specific small interfering RNA could obviously inhibit the growth and of promotes the apoptosis of HCCLM3cells. It also obviously inhibits their migration and invasion ability. HMGB1may serve as a potential target for treatment of HCC.(3) Downregulation of HMGB1can inhibit the expression of NF-κB/p65and VEGF-C in HCCLM3cells. Meanwhile, NF-κB/p65nuclear translocation and activity were also decreased. HMGB1possibly via the NF-κB signaling pathway that regulates VEGF-C expression.
引文
[1]陈孝平.肝胆外科学[M].北京:人民卫生出版社,2005:449
    [2]Parkin DM, Bray F, Ferlay J, et al. Global Cancer statistics,2002. CA Cancer J Clin.2005;55(2):74-108
    [3]Parkin DM. Global Cancer statistics in the year 2000. Lancet Oncol. 2001;2(9):533-543
    [4]El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis. Gastroenterology.2007; 132:2557-2576
    [5]陈建国,宋新明.中国肝癌发病水平的估算及分析.中国肿瘤.2005;14(1):28-31
    [6]Yuen MF, Hou JL, Chutaputti A. Hepatocellular carcinoma in the Asia pacific region. J Gastroenterol Hepatol.2009;24(3):346-353
    [7]Vero V, Racco S, Biolato M, et al. The treatment of hepatocellular carcinoma: an update. Minerva Med.2009; 100(3):173-193
    [8]Fan ST, Lo CM, Liu CL, et al. Hepatectomy for hepatocellular carcinoma: toward zero hospital deaths. Ann Surg.1999;229(3):322-330
    [9]Rampone B, Schiavone B, Martino A, et al. Current management strategy of hepatocellular carcinoma. World J Gastroenterol.2009; 15(26):3210-3216
    [10]杨秉辉,夏景林,黄力文等.我国肝癌“临床相”30年的变迁一原发性肝癌3250例的对比研究.中华医学杂志.2003;83(12):1053-1057.
    [11]Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature. 2004;431(7006):338-342
    [12]Couzin J. Small RNAs make big splash. Science.2002;298(5602):2296-2297
    [13]Hannon GJ. RNA interference. Nature.2002;418(6894):244-251
    [14]Bak D. RNAi-RNA interference--an efficient way for silence. Postepy Biochem. 2003;49(3):136-146
    [15]Harborth J, Elbashir SM, Bechert K, et al. Identification of essential gene in cultured mammalian cells using small interfering RNAs. J Cell Sci. 2001;114(Pt24)4557-4565
    [16]Javaherian K, Liu JF, Wang JC. Nonhistone proteins HMG1 and HMG2 change the DNA helical structure. Science.1978;199(4335):1345-1346
    [17]Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1):nuclear weapon in the immune arsenal. Nat Rev Immunol.2005;5(4):331-342
    [18]Bianchi ME, Beltrame M. Flexing. DNA:HMG-box proteins and their partners. Am J Hum Genet.1998;63(3):1573-1577
    [19]Bonaldi T, Langst G, Strohner R, et al. The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J.2002;21(24): 6865-6873
    [20]Gardelaa S, Andrei C, Ferrera D, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep.2002;3(10):995-1001
    [21]Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22(20):5551-5560
    [22]Zeh HJ III, Lotze MT. Addicted to death:invasive cancer and the immune response to unscheduled cell death. J Immunother.2005;28(1):1-9
    [23]Yang H, Wang H, Czura CJ, et al. The cytokine activity of HMGB1. J Leukoc Biol.2005;78(1)1-8
    [24]Kostova N, Zlateva S, Ugrinova I, et al. The expression of HMGB1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem. 2010;337(1-2):251-258
    [25]Muller S, Scaffidi P, Degryse B, et al. The double life of HMGB1 chromatin protein:architectural factor and extracellular signal. EMBO J. 2001;20(16):4337-4340
    [26]Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279(9):7370-7377
    [27]Akaike H, Kono K, Sugai H, et al. Expression of high mobility group box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res. 2007;27(1A):449-457
    [28]Volp K, Brezniceanu ML, Bosser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut. 2006;55(2):234-242
    [29]黄庆先,王国斌,孙念峰等.胰腺癌组织中高迁移率族蛋白1和基质金属蛋白酶2的表达研究.肿瘤防治杂志.2005;12(5):2365-2368
    [30]Brezniceanu ML, Volp K, Bosser S, et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J.2003; 17(10):1295-1297
    [31]Wu D, Ding Y, Wang S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol.2008;216(2):167-175
    [32]Liu Y, Xie C, Zhang X, et al. Elevated expression of HMGB1 in squamous-cell carcinoma of the head and neck and its clinical significance. Eur J Cancer. 2010;46(16):3007-3015
    [33]Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J.1999; 13(8):781-792
    [34]Jiang W, Wang Z, Li X, et al. Reduced high-mobility group box 1 expression induced by RNA interference inhibits the bioactivity of hepatocellular carcinoma cell line HCCLM3. Dig Dis Sci.2012;57(1):92-98
    [35]Srivatanakul P, Sriplung H, Deerasamee S. Epidemiology of liver cancer:an overview. Asian Pac J Cancer Prev.2004;5(2):118-125
    [36]Yao DF, Dong ZZ, Yao M. Specific molecular markers in hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int.2007;6(3):241-247
    [37]Bosch FX, Ribes J, Cleries R, et al. Epidemiology of hepatocellular carcinoma. Clin Liver Dis.2005;9(2):191-211
    [38]Czura CJ, Wang H, Tracey KJ. Dual roles for HMGB1:DNA binding and cytokine. J Endotoxin Res.2001;7(4):315-321
    [39]Schlueter C, Weber H, Meyer B, et al. Angiogenetic signaling through hypoxia: HMGB1:an angiogenetic switch molecule. Am J Pathol.2005; 166(4):1259-1263
    [40]Dong Xda E, Ito N, Lotze MT, et al. High mobility group box 1 (HMGB1) release from tumor cells after treatment:implications for development of targeted chemoimmunotherapy. J Immunother.2007;30(6):596-606
    [41]Kuniyasu H, Oue N, Wakikawa A, et al. Expression of receptors for advanced glycation end-products (RAGE) is closely associated with the invasive and metastatic activity of gastric cancer. J Pathol.2002; 196(2):163-170
    [42]Edmondson HA, Steiner PE. Primary carcinoma of the liver:a study of 100 cases among 48,900 necropsies. Cancer.1954;7(3):462-503
    [43]Greene FL, Page DL, Fleming ID, et al. AJCC cancer staging manual,6th ed. Springer-Verlag, New York,2002
    [44]Kawahara N, Tanaka T, Yokomizo A, et al. Enhanced coexpression of thioredoxin and high mobility group protein 1 genes in human hepatocellular carcinoma and the possible association with decreased sensitivity to cisplatin. Cancer Res.1996;56(23):5330-5333
    [45]Fashena SJ, Reeves R, Ruddle NH. A poly(dA-dT) upstream activating sequence binds high-mobility group I protein and contributes to lymphotoxin (tumor necrosis factor-beta) gene regulation. Mol Cell Biol.1992;12(2):894-903
    [46]Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell. 1992;71(5):777-789
    [47]Brunetti A, Manfioletti G, Chiefari E, et al. Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y). FASEB J. 2001;15(2):492-500
    [48]Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein:Friend and foe. Cytokine Growth Factor Rev.2006;17(3):189-201
    [49]Yu Y, Xie M, He YL, et al. Role of high mobility group box 1 in adriamycin-induced apoptosis in leukemia K562 cells. Ai Zheng. 2008;27(9)929-933
    [50]Cheng BQ, Jia CQ, Liu CT, et al. Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Dig Liver Dis.2008;40(6):446-452
    [51]韩红莉,赵中夫,杨柳絮等.高迁移率族蛋白B1在肝纤维化发生发展中的作用研究.长治医学院学报.2008;22(5)321-324
    [52]Evans A, Lennard TW, Davies BR, et al. High-mobility group protein 1(Y): metastasis-associated or metastasis-induding? J Surg Oncol.2004;88(2):86-99
    [53]Kuniyasu H, Chihara Y, Kondo H, et al. Amphoterin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer. Oncol Rep.2003; 10(6):1863-1868
    [54]Meyer A, Staratschek-Jox A, Springwald A, et al. Non-Hodgkin lymphoma expressing high levels of the danger-signalling protein HMGB1. Leuk Lymphoma.2008;49(6):1184-1189
    [55]Poser I, Golob M, Buettner R et al. Upregulation of HMG1 leads to melanoma inhibitory activity expression in malignant melanoma cells and contributes to their malignancy phenotype. Mol Cell Biol.2003;23(8):2991-2998
    [56]Nestl A, Von Stein OD, Zatloukal K, et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res. 2001;61(4):1569-1577
    [57]Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature. 2000;405(6784):354-360
    [58]刘懿,张鹏,吴志浩等.RNA干扰抑制HMGB1基因表达对肺癌细胞L9981增殖和侵袭的影响.中国肺癌杂志.2009;12(6):549-554
    [59]贺新春,范学工,刘洪波等.小干扰RNA干扰高迁移率族蛋白1对HepG2细胞增殖和凋亡的影响.中华肝脏病杂志.2010;18(5):359-363
    [60]Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature.2004;431(7006):338-342
    [61]Timmons L, Fire A. Specific interference by ingested dsRNA. Nature. 1998;395(6705):854.
    [62]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494-498
    [63]Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference- based therapeutics. Nature.2009;457(7228):426-433
    [64]李雁,汤钊猷,叶胜龙等.体内连续筛选法建立自发性肺转移人肝癌细胞系.中华医学杂志.2002:82(9):601-605
    [65]Tuschi T. Expanding small RNA interference. Nat Biotechnol.2002;20(5):446-448
    [66]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) method. Methods 2001;25(4):402-408.
    [67]McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet.2002;3(10):737-747
    [68]Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmentaltiming in C. elegans. Genes Dev.2001;15(20):2654-2659
    [69]Hannon GJ. RNA interference. Nature.2002;418(6894):244-251
    [70]Takasaki S, Kawamura Y, Konagaya A. Selecting effective siRNA sequences based on the self-organizing map and statistical techniques. Comput Biol Chem. 2006;30(3):169-178.
    [71]Bologna JC, Dorn G, Natt F, et al. Linear polyethylenimine as a tool for comparative studies of antisense and short double-stranded RNA oligonucleotides. Nucleosides Nucleotides Nucleic Acids.2003;22(5-8):1729-1731.
    [72]Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res.2004;32(19):e149.
    [73]Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA.2002;99(23):14943-14945
    [74]Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA.2003;9(4):493-501
    [75]Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284(4):C870-879
    [76]Kuniyasu H, Chihara Y, Kondo H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer. 2003;104(6):722-727
    [77]Fan J, Li Y, Levy RM, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils:role of HMGB1-TLR4 signaling. J Immunol. 2007;178(10):6573-6580
    [78]Degryse B, Bonald T, Scaffidi P, et al. The high mobility group (HMG) boxes of the nuclear protein HMGB 1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol.2001; 152(6):1197-206
    [79]Guerin R, Arseneault G, Dumont S, et al. Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast. Mol Biol Cell. 2008; 19(10)4404-4420
    [80]Gnanasekar M, Thirugnanam S, Ramaswamy K. Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int J Oncol. 2009;34(2):425-431
    [81]Andersson U, Erlandsson-Harries H, Yang H, et al. HMGB1 as a DNA-binding Cytokine. J Leukoc Biol.2002;72(6):1084-1091
    [82]Yan W, Chang Y, Liang X, et al. High mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology.2012 Jan 11. doi:10.1002/hep.25572.
    [83]van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis.2008;11(1):91-99
    [84]Wake H, Mori S, Liu K, et al. Histidine-rich glycoprotein inhibited high mobility group box 1 in complex with heparin-induced angiogenesis in matrigel plug assay. Eur J Pharmacol.2009;623 (1-3) 89-95
    [85]李焱,蒋勇,史立群等.HMGB1和VEGF-C/D在结肠癌组织中的表达及与淋巴结转移之间的关系.第三军医大学学报.2006;28(11):1237-1239
    [86]Dvorak HF, Brown LF, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol.1995;146(5):1029-1039
    [87]Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med(Berl).2005;83(11):876-886
    [88]Bonizzi G, Karin M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol.2004;25(6):280-288
    [89]Gilmore TD. Introduction to NF-kappaB:players, pathways, perspectives. Oncogene.2006; 25(51):6680-6684
    [90]Egan LJ, Toruner M. NF-kappaB signaling:pros and cons of altering NF-kappaB as a therapeutic approach. Ann N Y Acad Sci.2006; 1072:114-122
    [91]张世栋,徐美林.HMGB1和NF-κB p65在非小细胞肺癌组织中的表达及意义.山东医药.20111;51(8):17-20
    [92]陈贵,于颖彦,谢岳林等.NF-κB上调VEGF表达影响胃癌预后.世界华人消化杂志.2005;13(11):1275-1277
    [93]Huang S, Robinson JB, Deguzman A, et al. Blockade of nuclear factor-kappaB signaling inhibats angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res.2000;60(19):5334-5339
    [94]徐圣葆,梅晓冬.HMGB1、VEGF-C在肺癌组织中的表达及临床意义山东医药.2009;49(12):50-51
    [95]Sasahira T, Kirita T, Bhawal UK, et al. The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch.2007;450 (3):287-295
    [96]Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Invest.2001;107(3):247-254
    [97]Palumbo R, Galvez BG, Pusterla T. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. J Cell Biol. 2007;179(1):33-40
    [98]waddick KG, Uckun FM. Innovative treatment programs against cancer:Ⅱ. Nuclear factor-kappaB (NF-kappaB) as a molecular target. Biochem Pharmacol. 1999;57(1):9-17
    [99]Yamaguchi R, Yano H, Nakashima O, et al. Expression of vascular endothelial growth factor-C in human hepatocellular carcinoma. J Gastroenterol Hepatol. 2006;21(1 Pt1):152-160
    [100]Yonemura Y, Fushida S, Bando E, et al. Lymphangiogenesis and the vascular endothelial growth factor receptor (VEGFR)-3 in gastric cancer. Eur J Cancer. 2001;37(7):918-923
    [101]Kitadai Y, Amioka T, Haruma K, et al. Clinicopathological significance of vascular endothelial growth factor (VEGF)-C in human esophageal squamous cell carcinomas. Int J Cancer.2001;93(5):662-666
    [102]Furudoi A, Tanaka S, Haruma K, et al. Clinical significance of vascular endothelial growth factor C expression and angiogenesis at the deepest invasive site of advanced colorectal carcinoma. Oncology.2002;62(2):157-166
    [103]崔晓楠,候力.组织微阵列方法检测CD105、VEGF-C在肝癌组织中的表达.医学与哲学(临床决策论坛版).2006;27(5):39-41,48
    [104]El-Assal ON, Yamanoi A, Soda Y, et al. Clinical significance of microvessel density and vascular endothelial growth factor expression in hepatocellular carcinoma and surrounding liver:possible involvement of vascular endothelial growth factor in the angiogenesis of cirrhotic liver. Hepatology. 1998;27(6):1554-1562
    [1]Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem. 1973;38(1):14-19
    [2]Sparrow DB, Wells JR. Sequence of a cDNA encoding chicken high-mobility-group protein-2. Gene.1992;114(2):289-290
    [3]Maher JF, Nathans D. Multivalen DNA-binding properties of the HMG-1 proteins. Proc Natl Acad Sci USA.1996;93(13):6717-6720
    [4]Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci.2001;26(3):152-153
    [5]VaccariT, BeltrameM, Ferrari S, et al. Hmg4, a new member of the Hmgl/2 gene family. Genomics.1998;49(2):247-52
    [6]Yotov WV, St-Arnaud R. Nucleotide sequence of a mouse cDNA encoding the nonhistone chromosomal high mobility group protein-1 (HMG1). Nucleic Acids Res.1992;20(13):3516
    [7]Ferrari S, Finelli P, Rocchi M, et al. The active gene that encodes human high mobility group 1 protein (HMG1) contains introns and maps to chromosome 13. Genomics.1996;35(2):367-371
    [8]Lum HK, Lee KL. The human HMGB1 promoter is modulated by a silencer and an enhancer-containing intron. Biochim Biophys Acta.2001;1520(1):79-84
    [9]Bustin M, Lehn DA, Landsman D. Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta. 1990; 1049(3):231-243
    [10]Weir HM, Kraulis PJ, Hill CS, et al. Structure of the HMG box motif in the B-domain of HMG1.EMBO J.1993;12(4):1311-1319
    [11]Ellerman JE, Brown CK, de Vera M, et al. Masquerader:high mobility group box-1 and cancer. Clin Cancer Res.2007;3(10):2836-2848
    [12]Stott K, Tang GS, Lee KB, et al. Structure of a complex of tandem HMG boxes and DNA. J Mol Biol.2006;360(1):90-104
    [13]Li J, Kokkola R, Tabibzadeh S, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med.2003;9(1-2):37-45
    [14]van Groningen JJ, Bloemers HP, Swart GW. Identification of melanoma inhibitory activity and other differentially expressed messenger RNAs in human melanoma cell lines with different metastatic capacity by messenger RNA differential display. Cancer Res.1995;55(24):6237-6243
    [15]Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med.2004;255(3):332-343
    [16]Sterner R, Vidali G, Allfrey VG. Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1. J Biol Chem.1979;254(22):11577-11583
    [17]Pasheva E, Sarov M, Bidjekov K, et al. In vitro acetylation of HMGB-1 and-2 proteins by CBP:the role of the acidic tail. Biochemistry.2004;43(10): 2935-2940
    [18]Muller S, Scaffidi P, Degryse B, et al. The double life of HMGB 1 chromatin protein:architectural factor and extracellular signal. EMBO J. 2001;20(16):4337-4340
    [19]Ulloa L, Messmer D. High-mobility group box 1 (HMGB1) protein:Friend and foe. Cytokine Growth Factor Rev.2006; 17(3):189-201
    [20]Friedmen SG, Czura CJ, Tracey KJ. The gesture life of high mobility group box 1. Curr Opin Clin Nutr Metab Care.2003;6(3)283-287
    [21]Yang H, Wang H, Czura CJ, et al. The cytokine activity of HMGB 1. J Leukoc Biol.2005;78(1)1-8
    [22]Huttunen HJ, Kuja-Panula J, Rauvala H. Receptor for advanced glycation end products (RAGE) signaling induces CREB dependent chromogranin expression during neuronal differentiation. J Biol Chem.2002;277(41):38635-38646
    [23]Arumugam T, Simeone DM, Schmidt AM, et al. S100P stimulates cell proliferation and survival via receptor for activated glycation end products (RAGE). J Biol Chem.2004;279(7):5059-5065
    [24]van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis.2008;11(1):91-99
    [25]Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med.2007; 13(11)460-469
    [26]Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279(9):7370-7377
    [27]Brezniceanu ML, Volp K, Bosser S, et al. HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J.2003;17(10):1295-1297
    [28]Yuan F, Gu L, Guo S, et al. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J Biol Chem.2004;279(20):20935-20940
    [29]Melvin VS, Harrell C, Adelman JS, et al. The role of the C-terminal extension (CTE) of the estrogen receptor alpha and beta DNA binding domain in DNA binding and interaction with HMGB. J Biol Chem.2004;279(15):14763-14771
    [30]Bianchi ME, Beltrame M. Flexing DNA:HMG-box proteins and their partners. Am J Hum Genet.1998;63(6):1573-1577
    [31]Bonaldi T, Langst G, Strohner R, et al. The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J.2002;21(24):6865-6873
    [32]Pasqualini JR, Sterner R, Mercat P, et al. Estradiol enhanced acetylation of nuclear high mobility group proteins of the uterus of newborn guinea pigs. Biochem Biophys Res Commun.1989;161(3):1260-1266
    [33]Prendergast P, Onate SA, Christensen K, et al. Nuclear accessory factors enhance the binding of progesterone receptor to specific target DNA. J Steroid Biochem Mol Biol.1994;48(1):1-13
    [34]Zhang CC, Krieg S, Shapiro DJ. HMG-1 stimulates estrogen response element binding by estrogen receptor from stably transfected HeLa cells. Mol Endocrinol.1999;13(4):632-643
    [35]Ciubotaru M, Schatz DG. Synapsis of recombination signal sequences located in cis and DNA underwinding in V(D)J recombination. Mol Cell Biol. 2004;24(19):8727-8744
    [36]Stros M, Ozaki T, Bacikova A, et al. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem.2002;277(9):7157-7164
    [37]Zong WX, Ditsworth D, Bauer DE, et al. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev.2004;18(11):1272-1282
    [38]Stros M, Muselikova-Polanska E, Pospisilova S, et al. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry.2004;43(22):7215-7225
    [39]Calogero S, Grassi F, Aguzzi A, et al. The lack of chromosomal protein HMGB 1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet.1999;22(2):276-280
    [40]Kostova N, Zlateva S, Ugrinova I, et al. The expression of HMGB 1 protein and its receptor RAGE in human malignant tumors. Mol Cell Biochem. 2010;337(1-2):251-258
    [41]Gardelaa S, Andrei C, Ferrera D, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep.2002;3(10):995-1001
    [42]Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22(20):5551-5560
    [43]Zeh HJ III, Lotze MT. Addicted to death:invasive cancer and the immune response to unscheduled cell death. J Immunother.2005;28(1):1-9
    [44]Qin S, Wang H, Yuan R, et al. Role of HMGB 1 in apoptosis-mediated sepsis lethality. J Exp Med.2006;203(7):1637-1642
    [45]Barkauskaite V, Ek M, Popovic K, et al. Translocation of the novel cytokine HMGB1 to the cytoplasm and extracellular space coincides with the peak of clinical activity in experimentally UV-induced lesions of cutaneous lupus erythematosus. Lupus.2007; 16(10):794-802
    [46]Jiang W, Bell CW, Pisetsky DS. The relationship between apoptosis and high-mobility group protein 1 release from murine macrophages stimulated with lipopolysaccharide or polyinosinic-polycytidylic acid. J Immunol. 2007;178(10):6495-6503
    [47]Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science.1999;285(5425):248-251
    [48]Rouhialnen A, Kuja-Panula J, Wilkman E, et al. Regulation of monocyte migration by amphoterin (HMGB1). Blood.2004; 104(4):1174-1182
    [49]Rangarma K, Yousefipou Z, Yatsu FM, et al. Gene expression profile of butyrate-inhibited vascular smooth muscle cell proliferation. Mol Cell Biochem. 2003;254(1-2):21-36
    [50]Palumbo R, Sampaoles M, De Marchis E. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol. 2004255(3):320-331
    [51]Xiang YY, Wang DY, Tanaka M, et al. Expression of high-mobility group-1 mRNA in human gastrointestinal adenocarcinoma and corresponding non-cancerous mucosa. Int J Cancer.1997;74(1):1-6
    [52]Stefania G, Antonella S, Adriano T, et al. HMGB1, all architectural cllromatin protein and extracellular signaling factor, has a spatially and temporally restricted expression pattern in mouse brain. Gene Expr Patterns. 2003;3(1):29-33
    [53]Sparatore B, Passalacqua M, Patrone M, et al. Extracellular high-mobility group 1 protein is essential for murine erythroleukaemia cell differentiation. Biochem J.1996;320(Pt 1):253-256
    [54]Griffiths M, Neal JW, Gasque P. Innate immunity and protective neuroinflammation:New emphasis on the role of neuroimmune regulatory proteins. Int Rev Neurobiol.2007;82:29-55
    [55]Degryse B, Bonald T, Scaffidi P, et al. The high mobility group (HMG) boxes of the nuclear protein HMGB 1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol.2001; 152(6):1197-1206
    [56]Andersson U, Erlandsson-Harries H, Yang H, et al. HMGB1 as a DNA-binding Cytokine. J Leukoc Biol.2002;72(6):1084-1091
    [57]Taguchi A, Blood DC, del Toro G, et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature.2000;405(6784): 354-360
    [58]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell.2000;100(1):57-70
    [59]Mantovani A. Cancer:inflaming metastasis. Nature.2009;457(7225):36-37
    [60]Mantovani A, Allavena P, Sica A, et al. Cancer-related inflammation. Nature. 2008;454 (7203):436-444
    [61]Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol.2004;4 (8):641-648
    [62]Blasco MA, Telomeres and human disease:ageing, cancer and beyond. Nat Rev Genet.2005;6 (8):611-622
    [63]Stewart SA, Weinberg RA. Telomeres:cancer to human aging. Annu Rev Cell Dev Biol.2006;22:531-557
    [64]Pallier C, Scaffidi P, Chopineau-Proust S, et al. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Mol Biol Cell.2003;14(8):3414-3426
    [65]Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284(4):C870-879
    [66]Kuniyasu H, Chihara Y, Kondo H. Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer. 2003;104(6):722-727
    [67]Fan J, Li Y, Levy RM, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils:role of HMGB1-TLR4 signaling. J Immunol. 2007;178(10):6573-6580
    [68]Kalinina N, Agrotis A, Antropova Y, et al. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions:role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol. 2004;24(12)2320-2325
    [69]Tang D, Kang R, Xiao W, et al. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol.2007; 179 (2):1236-1244
    [70]Tang D, Kang R, Xiao W, et al. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB 1 cytoplasmic translocation and release. J Immunol.2007;178 (11):7376-7384
    [71]Tang D, Shi Y, Jang L, et al. Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophages. Shock.2005;23(5):434-440
    [72]Guerin R, Arseneault G, Dumont S, et al. Calnexin is involved in apoptosis induced by endoplasmic reticulum stress in the fission yeast. Mol Biol Cell. 2008;19(10):4404-4420
    [73]Gnanasekar M, Thirugnanam S, Ramaswamy K. Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis. Int J Oncol. 2009;34(2):425-431
    [74]Yu Y, Xie M, He YL, et al. Role of high mobility group box 1 in adriamycin- induced apoptosis in leukemia K562 cells. Ai Zheng.2008;27(9):929-933
    [75]Xie M, Kang R, Yu Y, et al. Enhancive effect of HMGB1 gene silence on adriamycin-induced apoptosis in K562/A02 drug resistance leukemia cells. Zhong Hua Xue Ye Xue Za Zhi.2008;29 (8):549-552
    [76]Volp K, Brezniceanu ML, Bosser S, et al. Increased expression of high mobility group box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut. 2006;55(2):234-242
    [77]Weinberg, RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323-330
    [78]Jiao Y, Wang HC, Fan SJ. Growth suppression and radiosensitivity increase by HMGB1 in breast cancer. Acta Pharmacol Sin.2007;28(12):1957-1967
    [79]Schlueter C, Weber H, Meyer B, et al. Angiogenetic signaling through hypoxia: HMGB1:an angiogenetic switch molecule. Am J Pathol.2005;166(4):1259-1263
    [80]Wake H, Mori S, Liu K, et al. Histidine-rich glycoprotein inhibited high mobility group box 1 in complex with heparin-induced angiogenesis in matrigel plug assay. Eur J Pharmacol.2009;623(1-3):89-95
    [81]Sasahira T, Kirita T, Bhawal UK, et al. The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch.2007;450(3):287-295
    [82]Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J.1999; 13(8):781-792
    [83]Yan W, Chang Y, Liang X, et al. High mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology.2012 Jan 11. doi:10.1002/hep.25572
    [84]Liu L, Zhao L, Zhang Y, et al. Proteomic analysis of Tiaml-mediated metastasis in colorectal cancer. Cell Biol Int.2007;31(8):805-814
    [85]Harada O, Suga T, Suzuki T, et al. The role of trophinin, an adhesion molecule unique to human trophoblasts, in progression of colorectal cancer, Int J Cancer. 2007;121(5):1072-1078
    [86]de Visser KE, Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol.2006;13:118-137
    [87]Lotze MT, Zeh HJ, Rubartelli A, et al. The grateful dead:damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev.2007;220:60-81
    [88]Ito N, Demarco RA, Mailliard RB, et al. Cytolytic cells induce HMGB1 release from melanoma cell lines. J Leukoc Biol.2007;81(1):75-83
    [89]Dong Xda E, Ito N, Lotze MT, et al. High mobility group box I (HMGB1) release from tumor cells after treatment:implications for development of targeted chemoimmunotherapy. J Immunother.2007;30(6):596-606
    [90]Takada M, Hirata K, Ajiki T, et al. Expression of receptor for advanced glycation end products (RAGE) and MMP-9 in human pancreatic cancer cells. Hepatogastroenterology.2004;51(58):928-930
    [91]黄庆先,王国斌,孙念峰等.胰腺癌组织中高迁移率族蛋白1和基质金属蛋白酶2的表达研究.肿瘤防治杂志.2005;12(5):2365-2368
    [92]黄庆先,王国斌,孙念峰等。高迁移率族蛋白框1反义抑制人胰腺癌细胞系PCNA-1侵袭的研究.癌症.2004;23(9):1036-1040
    [93]Chung HW, Lee SG, Kim H, et al. Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer. J Transl Med.2009;7:38
    [94]李焱,蒋勇,史立群等.HMGB1和VEGF-C/D在结肠癌组织中的表达及与淋巴结转移之间的关系.第三军医大学学报.2006;28(11):1237-1239
    [95]Kuniyasu H, Chihara Y, Takahashi T. Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep.2003; 10(2):445-448
    [96]Dolde CE, Mukherjee M, Cho C, et al. HMG-1/Y in human breast cancer cell lines. Breast Cancer Res Treat.2002;71(3):181-191
    [97]Cheng BQ, Jia CQ, Liu CT, et al. Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma. Dig. Liver Dis.2008;40(6):446-452
    [98]Jiang W, Wang Z, Li X, et al. Reduced high-mobility group box 1 expression induced by RNA interference inhibits the bioactivity of hepatocellular carcinoma cell line HCCLM3. Dig Dis Sci.2012;57(1):92-98
    [99]Wu D, Ding Y, Wang S, et al. Increased expression of high mobility group box 1(HMGB1) is associated with progression and poorprognosis in human nasopharyngeal carcinoma. J Pathol.2008;216(2):167-175
    [100]Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med.2005;83(11):876-886
    [101]Bartling B, Hofmann HS, Weigle B, et al. Down-regulation of the receptor for advanced glycation end-products (RAGE) supports non-small cell lung carcinoma. Carcinogenesis.2005;26(2):293-301
    [102]Liu Y, Xie C, Zhang X, et al. Elevated expression of HMGB1 in squamous-cell carcinoma of the head and neck and its clinical significance. Eur J Cancer. 2010;46(16):3007-3015
    [103]van Beijnum JR, Dings RP, van der Linden E, et al. Gene expression of tumor angiogenesis dissected:specific targeting of colon cancer angiogenic vasculature. Blood.2006;108(7):2339-2348
    [104]Yang H, Wang H, Czura CJ, et al. HMGB1 as a cytokine and therapeutic target. J Endotoxin Res.2002;8(6):469-472
    [105]Yang H, Ochani M, Li J, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA. 2004;101(1):296-301
    [106]Mitkova E, Ugrinova I, Pashev IG, et al. The inhibitory effect of HMGB-1 protein on the repair of cisplatin-damaged DNA is accomplished through the acidic domain. Biochemistry.2005;44(15):5893-5898
    [107]Huang JC, Zamble DB, Reardon JT, et al. HMG-domain proteins specifically inhibit the repair of the major DNA adduct of the anticancer drug cisplatin by human excision nuclease. Proc Natl Acad Sci USA.1994;91(22):10394-10398
    [108]Hanford LE, Enghild JJ, Valnickova Z, et al. Purification and characterization of mouse soluble receptor for advanced glycation end products (sRAGE). J Biol Chem.2004;279(48):50019-50024
    [109]Bierhaus A, Schiekofer S, Schwaninger M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001;50(12):2792-2808
    [110]Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis:a central cell surface receptor for S100/calgranulin polypeptides. Cell 1999;97(7):889-901
    [111]Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. J Biol Chem.1999;274(28):19919-19924
    [112]姚咏明,张立天,陆家齐等.脓毒症大鼠肾组织高迁移率族蛋白-1对肿瘤坏死因子-α表达的影响.解放军医学杂志.2002;27(9):757-759
    [113]宋舟,刘屹,包国强等.HMGB1在大肠癌组织中的表达及其意义.现代肿瘤医学.2008;16(7):1191-1194
    [114]Zhang LT, Yao MY, Lu JQ, et al. Sodium butyrate prevents lethality of severe sepsis in rats. Shock.2007;27(6):672-677
    [115]Ulloa L, Ochani M, Yang H, et al. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci USA.2002;99(19):12351-12356
    [116]Liang X, Chavez AR, Schapiro NE, et al. Ethyl pyruvate administration inhibits hepatic tumor growth. J Leukoc Biol.2009;86(3):599-607
    [117]Lim SC, Choi JE, Kim CH, et al. Ethyl pyruvate induces necrosis-to-apoptosis switch and inhibits high mobility group box protein 1 release in A549 lung adenocarcinoma cells. Int J Mol Med.2007;20(2):187-192
    [118]Zhang J, Zhu JS, Zhou Z, et al. Inhibitory effects of ethyl pyruvate administration on human gastric cancer growth via regulation of the HMGB1-RAGE and Akt pathways in vitro and in vivo. Oncol Rep.2012;27(5):1511-1519
    [119]Zhang Y, Weiler-Guettler H, Chen J, et al. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 1998;101(7):1301-1309
    [120]Ito T, Kawahara K, Okamoto K, et al. Proteolytic cleavage of high mobility group box 1 protein by thrombin-thrombomodulin complexes. Arterioscler Thromb Vasc Biol.2008;28(10):1825-1830
    [121]Mantell LL, Parrish WR, Ulloa L. Hmgb-1 as a therapeutic target for infectious and inflammatory disorders. Shock.2006;25(1):4-11
    [122]Wang H, Liao H, Ochani M. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med.2004;10(11):1216-1221
    [123]Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov.2005;4(8):673-684
    [124]Chen G, Li J, Qiang X, et al. Suppression of HMGB1 release by stearoyl lysophosphatidylcholine:an additional mechanism for its therapeutic effects in experimental sepsis. J Lipid Res.2005;46(4):623-627
    [125]Yan JJ, Jung JS, Lee JE, et al. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med.2004; 10(2):161-167
    [126]Dias AS, Porawski M, Alonso M, et al. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr.2005;135(10):2299-2304
    [127]Manjeet KR, Ghosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophages. Int J Immunopharmacol.1999;21 (7):435-443
    [128]Tang D, Kang R, Xiao W, et al, Quercetin prevents LPS-induced high-mobility group box 1 release and proinflammatory function. Am J Respir Cell Mol Biol. 2009;41 (6):651-660
    [129]Lamson DW, Brignall MS. Antioxidants and cancer, Part 3:quercetin. Altern Med Rev.2000;5(3):196-208
    [130]Avila MA, Velasco JA, Cansado J, et al. Quercetin mediates the downregulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res.1994;54(9):2424-2428
    [131]Chien SY, Wu YC, Chung JG, et al. Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Human Exp Toxicol.2009;28(8):493-503
    [132][133]余跃,任大宾,孙仁宇等.调控高迁移组蛋白1诱导大鼠肺泡巨噬细胞表达诱生型一氧化氮合酶的信号通路.中国医学科学院学报.2006;28(6):781-785
    [133]姚咏明,胥彩林,任爱兰等.内毒素休克大鼠组织生物喋呤与高迁移率族蛋白B1表达的关系.中华急诊医学杂志.2004;13(8):525-528
    [134]曾益新.肿瘤学[M].北京:人民卫生出版社,2003:1
    [135]Reeves R, Beckerbauer LM. HMGA proteins as therapeutic drug targets. Prog Cell Cycle Res.2003;5:279-286
    [136]Erlandsson Harris H, Andersson U. The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol.2004;34(6):1503-1512

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700