铜耐性植物内生和根际细菌的生物多样性及其强化植物富集铜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染土壤的植物修复是一种操作简便、环境友好的新兴原位修复技术,植物体内及根际微生物可通过多种作用方式影响重金属污染环境中植物的生长和土壤重金属的形态及植物对土壤重金属的吸收,从而影响植物对重金属的修复效率。研究重金属超积累或耐性植物内生及根际细菌的生物多样性及其与植物的相互关系,不仅有助于对微生物资源及生物多样性的深入认识,丰富微生物资源库,揭示微生物多样性与植物富集重金属的关系,而且可筛选高效植物促生细菌,为重金属污染土壤植物修复特别是内生细菌强化植物联合修复重金属铜污染土壤提供理论依据和基础材料。
     对不同铜污染区采集的海州香薷和鸭跖草根直接提取细菌总DNA,以799F和1492R为引物扩增部分16SrDNA片段并构建16SrDNA克隆文库,16SrDNA序列系统发育分析揭示海州香薷根部内生细菌主要包括a-, β-, y-Proteobacteria和Bacteroidetes两大类群。y-Proteobacteria在海州香薷根部细菌克隆文库中占绝对优势,分别占高、低污染区根部克隆文库的73.9%和79.0%;鸭跖草根部内生细菌主要包括a-, β-, γ-Proteobacteria、Firmicutes和Actinobacteria三大类群。属于y-Proteobacteria的克隆分别占高、低污染及无污染鸭跖草根部细菌克隆文库的41.0%、77.1%和89.9%,是本研究中检测到的最多的一大类序列,在鸭跖草根部克隆文库中占绝对优势。属于Firmicutes的克隆分别占高、低及无污染鸭跖草根部细菌克隆文库的4.8%、22.9%和10.1%。属于Actinobacteria的克隆仅在矿区高污染鸭跖草根部细菌克隆文库发现,占文库的38.6%。随着土壤铜污染程度的增加,两种植物根部y-Proteobacteria细菌数量有递减的趋势,而鸭跖草根部革兰氏阳性细菌(Firmicutes和Actinobacteria)比例逐渐增大。
     通过构建16SrDNA克隆文库对铜矿废弃地海州香薷和鸭跖草根际土壤细菌群落及多样性进行研究,结果表明两种植物根际细菌群落主要可归属于10大细菌类群,其中Proteobacteria在整个克隆文库中占绝对优势。Nitrospira、Chloroflexi、 Actinobacteria是仅在海州香薷根际发现的细菌类群,Cyanobacteria是仅在鸭跖草根际发现的细菌类群。通过DGGE对不同污染区两种植物根际细菌群落的研究,发现海州香薷根际细菌主要包括四大类群:a-, β-, y-Proteobacteria、Bacteroidetes、Chloroflexi及TM7门。鸭跖草根际细菌主要包括四大类群:Acidobacteria、Bacteroidetes、a-, y-Proteobacteria、Firmicutes。植物根际细菌群落多样性可能与植物种类、重金属浓度、土壤性质等有关。随着污染程度的减轻,海州香薷根际γ-Proteobacteria细菌比例逐渐增大;鸭跖草根际细菌多样性有增加的趋势,Firmicutes所占的比例逐渐下降,而Acidobacteria所占比例逐渐增大,且在低度和无污染区逐渐出现了α-,γ-Proteobacteria。
     通过平板分离法,从铜耐性植物海州香薷和鸭跖草体内和根际土壤中分离筛选出抗铜64mg.L-1的细菌62株及能以ACC为唯一氮源生长的菌株19株。利用细菌通用引物对分离筛选的供试菌株16S rDNA进行PCR扩增,获得约1500bp片段,并用限制性内切酶HaeⅢ和MspⅠ对扩增片段分别进行了限制性酶切。根据酶切聚类分析结果挑选代表性菌株测序并进行16S rDNA序列系统发育分析,结果表明铜抗性内生细菌和根际细菌具有较丰富的物种多样性。分离于海州香薷的铜抗性细菌以不动杆菌属、肠杆菌属、泛菌属等γ-Proteobacteria占优势;分离于鸭跖草的铜抗性细菌以芽孢杆菌为主的Firmicutes占优势。
     通过菌株生物学特性、重金属抗性及碳酸铜溶解试验以及砂培试验初步筛选出对植物具有促生和增强铜吸收效果的3株菌株并分别鉴定为Burkholderia sp.GL12, Bacillus megaterium JL35和Sphingomonas sp.YM22。该3株菌株均能产生ACC脱氨酶、精氨酸脱羧酶、IAA和铁载体,并且能够耐受多种重金属;它们能够活化培养液中的沉淀态碱式碳酸铜。
     盆栽试验表明,内生菌株GL12, JL35和YM22均能促进铜污染土壤中油菜和玉米的生长,与对照相比供试植物地上部和根部干重分别增加11-56%和48-125%。接菌处理使油菜和玉米对Cu的吸收积累量分别比对照增加31%-48%和42%-91%。
     菌株GL12、JL35、YM22能在油菜和玉米根际和根内定殖,菌株JL35能在油菜和玉米叶部定殖。接菌处理的油菜和玉米根际土壤水溶性铜含量分别比对照增加16%-113%和63-94%,菌株GL12还分别使油菜和玉米根际乙酸铵提取态铜浓度增加51%和14%。接菌处理可能主要通过增强玉米根部SOD活性及ASA浓度来缓解过多重金属铜引起的过氧化伤害。玉米根际及根内生细菌群落的DGGE分析表明,与未接菌对照相比,菌株对玉米根际及根内生细菌群落有一定影响。
Phytoremediation is an emerging in-situ remediation technology due to its friendly-environment, less cost and convenient operation for remediation of heavy metal-contaminated soils. A large number of microorganisms which could colonize plant tissue interiors or rhizosphere soils, can affect growth and heavy metal accumulation of plants and metal formation in heavy metal-polluted environments by many approaches, and then improve phytoremediation efficiency. Research on endophytes and rhizobacteria diversity of hyperaccumulator or metal-tolerant plants and their interaction with plants will further understand microbial resource and biodiversity, clarify the relationship between diversity and heavy metal accumulation of plants, and can obtain and applicate plant growth promoting bacteria, offer the theoretical and experimental basis for endophytic bacteria-assisted phytoremediation of Cu-contaminated soil.
     Total DNA were extracted from plant roots of Elsholtzia splendens and Commelina communis growing on different contaminated sites, partial16S rDNA were amplified with the primers799F and1492R, and then16S rDNA clone libraries were constructed. Phylogenetic analysis based on16S rDNA sequences showed that endophytic bacteria of Elsholtzia splendens roots belonged to two major groups:a-, β,γ-Proteobacteria and Bacteroidetes. Clones belonging to γ-Proteobacteria accounted for73.9%and79.0%in the high-and low-contaminated clone libraries respectively, and were predominant in clone libraries of Elsholtzia splendens roots; Endophytic bacteria of Commelina communis roots belonged to three major groups:a-,β, γ-Proteobacteria, Firmicutes and Actinobacteria. Clones belonging to y-Proteobacteria accounted for41.0%,77.1%and89.9%in the high-, low-and non-contaminated clone libraries respectively, and were predominant in clone libraries of Commelina communis roots. In addition, clones belonging to Firmicutes accounted for4.8%,22.9%and10.1%in the high-, low-and non-contaminated clone libraries of Commelina communis roots respectively.38.6%of clones affiliated with Actinobacteria were only found in the high-contaminated clone library of Commelina communis roots. An increasing abundance of gram-positive bacteria (Firmicutes and Actinobacteria) was found in Commelina communis roots, and root bacterial communities of the two plant species exhibited a decrease in y-Proteobacteria with increasing copper contamination.
     Bacterial community and diversity of rhizosphere soils were studied from Elsholtzia splendens and Commelina communis growing on copper mine wasteland by16S rDNA clone libraries, the results showed that rhizobacterial communities from the two plant species were affiliated with ten major groups. Proteobacteria were the most abundant group in the clone libraries. Nitrospira, Chloroflexi and Actinobacteria were only found in the rhizosphere soil of Elsholtzia splendens, and Cyanobacteria were only found in Commelina communis. Study on bacterial community of rhizosphere soils from the two plant species in different contaminated sites by DGGE found that rhizosphere bacteria from Elsholtzia splendens belonged to four major groups:a-, β-, γ-Proteobacteria, Bacteroidetes, Chloroflexi and TM7; Rhizosphere bacteria from Commelina communis belonged to four major groups:Acidobacteria, Bacteroidetes, a-, y-Proteobacteria and Firmicutes. Community composition of rhizosphere bacteria may be related to plant species, metal concentration and soil conditions. As copper contamination decreased, an increasing abundance of y-Proteobacteria was found in Elsholtzia splendens rhizosphere, rhizosphere communities of Commelina communis exhibited a decrease in Firmicutes, but an increase in Acidobacteria, and a-, γ-Proteobacteria appeared in low-, non-contaminated sites.
     Sixty two strains that were resistant to Cu (64mg.L-1) and19strains that can grow on ACC as the sole N source were screened out from plant tissue interiors and rhizosphere soils of copper-tolerant plant species Elsholtzia splendens and Commelina communis by conventional plate culture technique.16S rDNA of the tested strains were amplified by PCR with the universal bacterial primers, and were digested with the restriction endonucleases Msp I and Hae III respectively.16S rDNA sequences phylogenetic analysis of representative strains with diverse ARDRA patterns indicated that the Cu-resistant-endophytic bacteria and rhizobacteria showed abundant diversity. γ-Proteobacteria (mainly Acinetobacter, Enterobacter and Pantoea) was predominant in Cu-resistant bactaria isolates from Elsholtzia splendens; Firmicutes (mainly Bacillus) was predominant in Cu-resistant bactaria isolates from Commelina communis.
     Three strains with plant growth promotioning characteristics, heavy metal resistance and copper solubilization were screened out based on plant growth promotion and improvement of copper uptake of the plant and identified as Burkholderia sp.GL12, Bacillus megaterium JL35, Sphingomonas sp.YM22. Strains GL12, JL35and YM22could produce ACC deaminase, arginine decarboxylase, IAA, siderophore, and be resistant to metals; In the Cu2(OH)2CO3solubilization experiment, inoculation with the strains was found to increase the Cu2+concentration compared to the controls.
     The effects of Strains GL12, JL35and YM22on plant growth and Cu uptake were studied by pot experiment. The results showed that the inoculation with tested endophytic bacteria GL12, JL35and YM22could promote rape and maize growth in Cu-contaminated soils, and increase dry weights by11-56%in shoots and by48-125%in roots compared to the controls. The Cu uptakes of inoculated rape and maize plants were increased from31%to48%and from42%to91%compared to the uninoculated control, respectively.
     Strains GL12, JL35and YM22could colonize in rhizosphere and root interiors of the rape and maize, and strain JL35could colonize in leaves of rape and maize. The water-extracted Cu concentration of rhizosphere soils of the inoculated rape and maize plants was increased from16%to113%and from63%to94%compared to the controls, respectively. Moreover, the inoculation with strain GL12was found to significantly increase NH4OAc-extracted Cu concentration by51%for rape and by14%for maize, compared to the controls, respectively. The inoculation with the strains can alleviate peroxidation level under copper stress by the improvement of SOD activity and ASA concentration in maize roots. Furthermore, the research on rhizosphere bacterial and root endophytic bacterial community from maize by DGGE showed that there were some influences of the inoculation with strains on rhizosphere bacterial and root endophytic bacterial community compared to the uninoculated control.
引文
1. Abeles F B, Morgan P W, Saltveit Jr. M E. Regulation of ethylene production by internal, environmental and stress factors [M]. In Ethylene in Plant Biology (2nd edn) pp.1992,56-119. Academic Press, San Diego.
    2. Abou-Shanab R A, Angle J S, Delorme T A, Chaney R L, van Berkum P, Moawad H, Ghanem K, Ghozlan H A. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale [J]. New Phytologist,2003 a,158:219-224.
    3. Abou-Shanab R I, Delorme T A, Angle J S, Chaney R L, Ghanem K, Moawad H, Ghozlan H A. Phenotypic characterization of microbes in the rhizosphere of Alyssum murale [J]. International Journal of Phytoremediation,2003,5:367-379.
    4. Agathe C, Charles M, Xavier N. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatednesswithin genospecies Ⅲ of Pseudomonas syringae [J]. Applied and Environmental Microbiology,1998,64: 1180-1187.
    5. Aiken A M, Petersen J M, Peyton B M, Apel W A, Camper A K. (2003). Siderophore mediated metal transport in subsurface environments. Poster abstract W03-P302, CBE Technical Advisory Conference, Bozeman, MT.
    6. Akihiro I, Takashi M, Yoshie H, Takashi A, Masanori T, Hikaru S, Yumiko S, Tomohiko K, Hiroaki H, Daisuke S, Satoshi T, Yoshibumi K, Taku T. Spermidine synthase genes are essential for survival of Arabidopsis [J]. Plant Physiology Review,2004,135 (9):1565-1573.
    7. Al Agely A, Sylvia D M, Ma L Q. Mycorrhizae increase arsenic uptake by hyperaccumulator (Pterisvittata L.) [J]. Journal of Environmental Quality,2005,34:2181-2186.
    8. Araujo W L, Marcon J, Maccheroni Jr. W, van Elsas J D, van Vuurde J W L, Azevedo J L. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants [J]. Applied and Environmental Microbiology,2002,68:4906-4914.
    9. Arica M, Bayramoglu G, Yilmaz M, Bekta S, Genc O. Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii [J]. Journal of Hazardous Materials, 2004,109:191-199.
    10. Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate elements-A review of their distribution, ecology and phytochemistry [J]. Biorecovery,1989,1:81-126.
    11. Baraac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert J V, Vangronsveld J, van der Lelie D. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants [J]. Nature Biotechnology,2004,22:583-588.
    12. Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii [J]. Microbial Ecology,2007,53:306-316.
    13. Belimov A A, Safronova V I, Sergeyeva T A, Egorova T N, Matveyeva V A, Tsyganov V E, Borisov A Y, Tikhonovich I A, Kluge C, Preisfeld A, Dietz K J, Stepanok V V. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-l-carboxylate deaminase [J]. Canadian Journal of Microbiology,2001,47: 242-252.
    14. Belimov A A, Hontzeas N, Safronova V I, Demchinskaya S V, Piluzza G, Bullitta S, Glick B R. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) [J]. Soil Biology and Biochemistry,2005,37:241-250.
    15. Bradley R, Burt A J, Read D J. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris [J]. Nature,1981,292:335-337.
    16. Branco R, Chung A-P, Verissimo A, Morais P V. Impact of chromium-contaminated wastewaters on the microbial community of a river [J]. FEMS Microbiology Ecology,2005,54:35-46.
    17. Burd G I, Dixon D G, Glick B R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants [J]. Canadian Journal of Microbiology,2000,46:237-245.
    18. Chen J. Review on methods for investigation of microbial diversity [J]. Biotechnology,2005,15(4): 85-87.
    19. Chen Y H, Shen Z G, Li X D. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals [J]. Applied Geochemistry,2004,19: 1553-1565.
    20. Chen Y X, Wang Y P, Lin Q, Luo Y M. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens [J]. Environment International, 2005,31:861-866.
    21. Chien C C, Kuo Y M, Chen C C, Hung C W.Yeh C W, Yeh W J. Microbial diversity of soil bacteria in agricultural field contaminated with heavy metals [J]. Journal of Environmental Sciences,2008, 20:359-363.
    22. Franco B, Marco F, Gregory O J. Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters [J]. Microbial Ecology,1989,17:263-274.
    23. Garbeva P, Van Overbeek L S, Van Vuurde J M L, Van Elsas J D. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis(DGGE)of 16S rDNA based PCR fragments [J]. Microbial Ecology,2001,41:369-383.
    24. Germaine K, Keogh E, Garcia-Cabellos G, Borremans B, Van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore F P, Moore E R B, Campbell C D, Ryan D, Dowling D N. Colonisation of poplar trees by gfp expressing bacterial endophytes [J]. FEMS Microbiology Ecology,2004,48: 109-118.
    25. Germaine K J, Liu X M, Cabellos G G, Hogan J P, Ryan D, Dowling D N. Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid [J]. FEMS Microbiology Ecology,2006,57:302-310.
    26. Gillan D C, Danis B, Pernet P, Joly G, Dubois P. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment [J]. Applied and Environmental Microbiology,2005,71:679-690.
    27. Glick B R. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase [J]. FEMS Microbiology Letters,2005,251:1-7.
    28. Gonzalez-Chavez C, Harris P J, Dodd J, Meharg A A. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus [J]. New Phytologist,2002,155:163-171.
    29. Gordon S A, Weber R P. Colorimetric estimation of indoleacetic acid [J]. Plant Physiology,1951,26: 192-195.
    30. Gremion F, Chatzinotas A, Harms H. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil [J]. Environmental Microbiology,2003,5:896-907.
    31. Han X M, Wang R Q, Liu J, Wang M C, Zhou J, Guo W H. Effects of vegetation types on soil microbial community composition and catabolic diversity assessed by polyphasic methods in North China [J]. Journal of environmental Sciences,2007,19:1228-1234.
    32. Hardoim P R, van Overbeek L S, van Elsas J D. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trends in Microbiology,2008,16:467-471.
    33. He L Y, Chen Z J, Ren G D, Zhang Y F, Qian M, Sheng X F. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria [J]. Ecotoxicology and Environmental Safety,2009,1343-1348.
    34. Hinojosa M B, Carreira J A, Garcia-Ruiz R, Dick R P. Microbial response to heavy metal polluted soils [J]. Journal of Environmental Quality,2005,34:1789-1800.
    35. Hochella Jr. M F, White A F. Mineral-water interface geochemistry:An overview [J]. Reviews in Mineralogy,1990,23:1~16.
    36. Holland S. Analytic rarefaction. http://www.uga.edu/strata/software/.[Online].22 July 2004.
    37. Idris R, Trifonova R, Puschenreiter M, Wenzel W W, Sessitsch A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense [J]. Applied and Environmental Microbiology,2004,70:2667-2677.
    38. Jiang C Y, Sheng X F, Qian M, Wang Q. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil [J]. Chemosphere,2008,72: 157-164.
    39. Kaiser O, Puhler A, Selbitschka W. Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv. Westar) employing cultivation-dependent and cultivation-independent approaches [J]. Microbial Ecology,2001,42:136-149.
    40. Kamnev A A, Tugarova A V, Antonyuk L P, Tarantilis P A, Polissiou M G, Gardiner P H E. Effects of heavy metals on plant-associated rhizobacteria:comparison of endophytic and non-endophytic strains of Azospirillum brasilense [J]. Journal of Trace Elements in Medicine and Biology,2005,19: 91-95.
    41. Kemp P F, Aller J Y. Bacterial diversity in aquatic and other environments:what 16S rDNA libraries and tell us [J]. FEMS Microbiology Ecology,2004,47:167-177.
    42. Khan M S, Zaidi A, Wani P A, Oves M. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils [J]. Environmental Chemistry Letters,2009,7:1-19.
    43. Kloke A., Sauerbeck D R, Vetter H. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains [M]. In:Nriagu, J.O. (Ed.), Changing Metal Cycles and Human Health. Springer-Verlag, Berlin,1984, pp.113-119.
    44. Kumar K V, Singh N, Behl H M, Srivastava S. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil [J]. Chemosphere, 2008,72:678-683.
    45. Kunito T, Nagaoka K, Tada N, Saeki K, Senoo K, Oyaizu H, Matsumoto S. Characterization of Cu-resistant bacterial communities in Cu-contaminated soils [J]. Soil Science and Plant Nutrition, 1997,43:709-717.
    46. Kunito T, Saeki K, Nagaoka K, Oyaizu H, Matsumoto S. Characterization of copper-resistant bacterial communities in rhizosphere of highly copper-contaminated soil [J]. European Journal of Soil Biology,2001,37:95-102.
    47. Li M S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China:a review of research and practice [J]. Science of the Total Environment,2006, 357:38-53.
    48. Li Z J, Xu J M, Tang C X, Wu J J, Muhammad A, Wang H Z. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils [J]. Chemosphere,2006,62:1374-1380.
    49. Lichtenthaler H K. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes [M]. In:Baltscheffsky, M. (Ed.), Current Research in Photosynthesis. Kluwer Academic Publishers, Dordrecht,1987,471-474.
    50. Lim H S, Lee J S, Chon H T, Sager M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea [J]. Journal of Geochemical Exploration,2008,96:223-230.
    51. Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, Van der Lelie D. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria[J]. International Journal of Phytoremediation,2002a,4:101-105.
    52. Lodewyckx C, Vangronsveld J, Porteous F, Moore E R B, Taghavi S, Van der Lelie D. Endophytic bacteria and their potential applications [J]. Critical Reviews in Plant Sciences,2002,21:583-606.
    53. Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure [J]. Soil Biology and Biochemistry,2006,38:1430-1437.
    54. Ma Y, Rajkumar M, Freitas H. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea [J]. Journal of Environmental Management,2009,90:831-837.
    55. Ma Y, Rajkumar M, Freitas H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. [J]. Chemosphere,2009,75:719-725.
    56. Madhaiyan M, Poonguzhali S, Ryu J, Sa T. Regulation of ethylene levels in canola (Brassica campestris) by l-aminocyclopropane-l-carboxylate deaminase-containing Methylobacterium fujisawaense [J]. Planta,2006,224:268-278.
    57. Madhaiyan M, Poonguzhali S, Sa T. Metal tolerating methylotrophicbacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.) [J]. Chemosphere.2007,69:220-228.
    58. Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity [J]. International Journal of Phytoremediation.2009,11:251-267.
    59. Mengoni A, Barzanti A, Gonnelli C, Gabrielli R, Bazzicalupo M. Characterization of nickel-resistant bacteria isolated from serpentine soil [J]. Environmental Microbiology,2001,3: 691-698.
    60. Mengoni A, Grassi E, Brazanti A, Biondi E G, Gonnelli C, Kim C K, Bazzicalupo M. Genetic diversity of microbial communities of serpentine soil and of rhizosphere of the Ni-hyperaccumulator plant Alyssum bertolonii [J]. Microbial Ecology,2004,48:209-217.
    61. Lim H S, Lee J S, Chon H T, Sager M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au-Ag mine in Korea [J]. Journal of Geochemical Exploration,2008,96:223-230.
    62. Moffett B F, Nicholson F A, Uwakwe N C, Chambers B J, Harris J A, Hill T C J. Zinc contamination decreases the bacterial diversity of agricultural soil [J]. FEMS Microbiology Ecology, 2003,43:13-19.
    63. Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993,59:695-700.
    64. Piotrowska-Seget Z, Cycon M, Kozdroj J. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil [J]. Applied Soil Ecology,2005,28:237-246.
    65. Polymenakou P N, Bertilsson S, Tselepides A, Stephanou E G. Links between geographic location, environmental factors, and microbial community composition in sediments of the Eastern Mediterranean Sea [J]. Microbial Ecology,2005,49 (3):367-378.
    66. Rajkumar M, Freitas H. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard [J]. Bioresource Technology,2008,99:3491-3498.
    67. Rajkumar M, Nagendran R, Lee K J, Lee W H, Kim S Z. Influence of plant growth promoting bacteria and Cr6+on the growth of Indian mustard [J]. Chemosphere,2006,62:741-748.
    68. Rodriguez H, Vessely S, Shah S, Glick B R. Effect of a Nickel-Tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic Canola Plants [J]. Current Microbiology,2008,57:170-174.
    69. Safronova V I, Stepanok V V, Engqvist G L, Alekseyev Y V. Belimov AA. Root-associated bacteria containing 1-aminocyclopropane-l-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil [J]. Biology and Fertility of Soil,2006,42: 267-272.
    70. Saleem M, Arshad M, Hussain S, Bhatti A S. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture [J]. Journal of Industrial Microbiology and Biotechnology,2007,34:635-648.
    71. Sheng X F, Xia J J, Jiang C Y, He L Y, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape [J]. Environmental Pollution,2008,156:1164-1170.
    72. Sheng X F, Xia J J. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria [J]. Chemosphere,2006,64:1036-1042.
    73. Smit E, Leeflang P, Wernars K. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis [J]. FEMS Microbiology Ecology,1997,23:249-261.
    74. Stout L M, Nusslein K. Shifts in rhizoplane communities of aquatic plants after cadmium exposure [J]. Applied and Environmental Microbiology,2005,71 (5):2484-2492.
    75. Sun L, Qiu F B, Zhang X X, Dai X, Dong X Z, Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis [J]. Microbial Ecology,2008, 55:415-424.
    76. Taghavi S, Baraac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene [J]. Applied and Environmental Microbiology,2005,71:8500-8505.
    77. Thomas J C, Davies E C, Malick F K, Endreszl C, Williams C R, Abbas M,Petrella S,Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N,. Wiesend W N, Murray K S. Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils [J]. Biotechnology Progress,2003,19 (2):273-280.
    78. Tripathi M, Munot H P, Shouche Y, Meyer J M, Goel R. Isolation and functional characterization of siderophore-producing Lead-and Cadmium-resistant Pseudomonas putida KNP9 [J]. Current Microbiology,2005,50:233-237.
    79. Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. [J]. Chemosphere,2006,65 (1):74-81.
    80. Vogel-Mikus K, Pongrac P, Kump P, NecemerM, Regvar M. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake [J]. Environmental Pollution,2006,139 (2) 362-371.
    81. Wang Y P, Shi J Y, Wang H, Lin Q, Chen X C, Chen Y X. The influence of soil heavy metals pollution on soil microbial biomass enzyme activity, and community composition near a copper smelter [J]. Ecotoxicology and Environmental Safety,2007,67:75-81.
    82. Whiting S N, de Souza M P, Terry N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens [J]. Environmental Science and Technology,2001,15:3144-3150.
    83. Wong M H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils [J]. Chemosphere,2003,50 (6):775-780.
    84. Zaidi S, Usmani S, Singh B R, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea [J]. Chemosphere,2006,64:991-997.
    85. Zhang H B, Shi W, Yang M X, Sha T, Zhi Z W. Bacterial diversity at different depths in Lead-Zinc mine tailings as revealed by 16S rRNA gene libraries [J]. The Journal of Microbiology,2007,45: 479-484.
    86.鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    87.毕江涛,贺达汉.植物对土壤微生物多样性的影响研究进展[J].中国农学通报,2009,25(09):244-250.
    88.曹慧,孙辉,杨浩,孙波,赵其国.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    89.陈丽莉,俄胜哲.中国土壤重金属污染现状及生物修复技术研究进展[J].现代农业科学,2009,16(3):139-140,146.
    90.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210.
    91.程国玲,杜葳,马晓凤,王大业.重金属污染土壤植物修复技术及其与辅助措施的结合应用[J].东北林业大学学报,2008,36:101-103.
    92.高增贵,庄敬华,陈捷,刘限,唐树戈.玉米根系内生细菌种群及动态研究[J].应用生态学报,2004.15(8):1344-1348.
    93.戈峰.现代生态学[M].北京:科学出版社,2002,251-254.
    94.关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    95.郭学军,黄巧云,赵振华,陈雯莉.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110.
    96.何红,邱思鑫,胡方平,关雄.植物内生细菌生物学作用研究进展[JJ.微生物学杂志,2004,24(3):40-45.
    97.何琳燕,黄为一.发光酶基因luxAB标记硅酸盐细菌NBT菌株的研究[J].应用生态学报,2004,15(7):]241-1244.
    98.胡学玉,孙宏发,陈德林.大冶矿区土壤重金属积累对土壤酶活性的影响fJ].生态环境,2007,16(5):1421-1423.
    99.黄长干,邱业先.江西德兴铜矿铜污染状况调查及植物修复研究[J].土壤通报,2005,36(6)991-992.
    100.黄静.植物内生解磷细菌的分离筛选及其生物多样性[D].南京农业大学硕士学位论文,2009.
    101.贾彦博,芮昶,季天委,黄凌云,陈郊,罗春林.土壤铜污染的微生物及酶学指标研究[J].广东微量元素科学,2009,16(3):44-47.
    102.姜理英,石伟勇,杨肖娥,傅承新,陈伟光.铜矿区超积累Cu植物的研究[J].应用生态学报,2002,13(7):903-908,
    ]03.蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景[J].农业环境保护,2000,19(3):179-183.
    104.柯文山,熊治廷,金则新,柯世省.海州香薷(Elsholtzia haichouensis Sun)不同生态型Cu吸收和酸性磷酸酶活性差异[J].生态学报,2007,27(8):3172-3181.
    105.李朝周,粱恕坤,焦健,王根轩.逆境胁迫下多胺与乙烯代谢的相关性及其对细胞膜保护系统影响的研究进展[J].甘肃农业大学学报,2002,37(3):265-271.
    106.李合生.植物生理生化实验原理和技术[M].高等教育出版社,2000.
    107.李宁,吴龙华,李法云,骆永明.不同铜污染土壤上海州香薷生长及铜吸收动态[J].土壤,2006,38(5):598-601.
    108.李万立,罗海吉.微量元素铜与人类疾病关系的研究进展[J].微量元素与健康研究,2008,25(1):62-65.
    109.李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-99.
    110.林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能[J].土壤学报,2008,45(5):892-900.
    111.刘威,束文圣,蓝崇钰.宝山茧菜(ViolaBaoshanensis}一一种新的镉超富集植物[J].科学通报,2003,48(19):2046-2048.
    112.刘小红,周东美,郝秀珍,司友斌,仓龙,王玉军,陈怀满.九华铜矿重金属环境污染状况研究[J].土壤,2007,39(4):497-502.
    113.龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762.
    114.马海艳.铜矿废弃地优势植物根际土壤细菌多样性及铜抗性菌株强化植物富集铜作用的研究[D].南京农业大学硕士学位论文,2008.
    115.潘惠霞,程争鸣,王芳,牟书勇,齐晓玲,尹林克,张元明,王毅,赵金山.甘草、麻黄根际土 壤微生物的生态分布特征[J].西北植物学报,2003,23(10):1792-1795.
    116.彭红云,杨肖娥.香薷植物修复铜污染土壤的研究进展.水土保持学报,2005,19:195-199.
    117.沈振国,陈怀满.土壤重金属污染生物修复的研究进展[J].农村生态环境,2000,16(2):39-44.
    118.施积炎.海州香薷和鸭跖草铜吸收机理和分子形态研究[D].浙江大学博士学位论文,2004.
    119.束文圣,杨开颜,张志权,杨兵,蓝崇钰.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报,2001,7(1):7-12.
    120.孙瑞莲,周启星,高等植物重金属耐性与超积累特性及其分子机理研究[J].植物生态学报,2005,29(3):497-504.
    121.孙小峰,吴龙华,骆永明EDDS对海州香薷修复重金属符合污染土壤的田间效应[J].土壤,2006,38(5):609-613.
    122.滕应,黄昌勇,龙健,姚槐应,刘方.矿区侵蚀土壤的微生物活性及其群落功能多样性研究[J].水土保持学报,2003,17:115-118.
    123.滕应,黄昌勇,龙健,姚槐应,刘方.铜尾矿污染区土壤酶活性研究[J].应用生态学报,2003,14(11):1976-1980.
    124.滕应,骆永明,李振高.污染土壤的微生物多样性研究[J].土壤学报,2006,43(6):1018-1026.
    125.王发园,林先贵,尹睿.丛枝菌根真菌对海州香薷生长及其Cu吸收的影响[J].环境科学,2005,26:174-180.
    126.王平,董飚,李阜棣,胡正嘉.小麦根圈细菌铁载体的检测[J].微生物学通报,1994,21(6)323-326.
    127.王庆仁,崔岩山,董艺婷.植物修复重金属污染土壤整治有效途径[J].生态学报,2001,21(2):326-331.
    128.王曙光,林先贵.菌根在污染土壤生物修复中的作用[J].农村生态环境,2001,17(1):56-59.
    129.王瑶瑶,韩烈保,曾会明.禾本科植物内生菌研究进展[J].生物技术通报,2008,3:33-38.
    130.王远鹏.重金属污染土壤的微生物分子生态及对修复效应的影响[D].浙江大学博士学位论文,2006.
    131.韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2001,17(6):833-839.
    132.韦朝阳,陈同斌,黄泽春,张学青.大叶井口边草—一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.
    133.夏月,Sardar Khan,贺纪正,朱永官.限制性片段长度多态性分析(ARDRA)方法对重金属污染土壤中细菌群落多样性的研究[J].环境科学学报,2007,27:953-960.
    134.薛生国,陈英旭.中国首次发现的锰超积累植物——商陆[J].生态学报,2003,23(5):935-937.
    135.颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43:851-858.
    136.杨瑞先,葛晓燕.植物内生细菌生物学作用研究进展及应用前景[J].洛阳大学学报,2006,21(4):78-81.
    137.杨肖娥,龙新宪.东南景天(Sedumalfredii)——一种新的锌超积累植物[J].科学通报,2003,47(13):1003-1006.
    138.杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60-63.
    139.叶海仁,钟卫鸿,陈建孟.绿色荧光蛋白分子标记在环境微生物学研究中的应用[J].环境污染与防治,2003,25(6):353-355.
    140.尹军霞,陈瑛,郑丽.Cd胁迫下油菜土壤微生物区系及主要生理类群研究[J].农业环境科学学报,2006,25(6):1529-1534.
    141.湛方栋,何永美,祖艳群,李元,马琼.铅锌矿区和非矿区毛萼蝇子草(Silene pubicalycina)根际细菌群落结构研究[J].农业环境科学学报,2007,26:524-528.
    142.赵中秋,崔玉静,朱永官.菌根和根分泌物在植物抗重金属中的作用[J].生态学杂志,2003,22(6):81-84.
    143.周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700