给水管网余氯衰减规律及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
给水管网是城市水循环的重要组成部分。研究城市给水管网中水质变化的规律,提高给水的安全可靠性已成为21世纪水工业的难点和热点问题之一。而消毒不论在水处理过程中,还是在管网输送过程中,都对保持水质具有不可或缺的作用。国际上使用最广泛的饮用水消毒剂是液氯,因为它价格便宜,消毒效率高,而且可以为给水管网提供一定的余氯浓度以防止细菌再生长。因此,对氯衰减规律的预测及模拟等方面的研究具有重要意义。
     给水管道在长年的运行中,沿管道内壁会逐渐形成不规则的环状混合物,称之为“生长环”,它是给水管道内壁由沉淀物、锈蚀物、黏垢及生物膜相互结合而成的混合体。水沿着管壁流动的过程中,并不是直接沿着管壁表面流动,而是沿着管道内壁的“生长环”进行流动,因此,生长环是造成管网水质变化的主要原因。
     本课题以保证给水管网的水质安全为研究目的,通过动态、静态实验,较为全面地探讨了余氯衰减规律。通过指数拟合对余氯衰减实验得到的数据进行拟合分析。实验中发现,余氯衰减与下列几种因素成正相关关系:水温、TOC浓度、水中氧的消耗、三卤甲烷、氨氮浓度。初始氯浓度和管径与主体水余氯衰减系数成负相关关系。此外,二次加氯后水样中余氯的衰减速率明显小于原水样的衰减速率。对于不锈钢管、PVC管、球墨铸铁管三种管材而言,球墨铸铁管余氯衰减速率最大。在普通铸铁管中,管径越大衰减系数受流速的影响越小,受pH值的影响越大,余氯的衰减主要发生在与管壁的反应中,pH值是影响普通铸铁管中余氯衰减的主要因素。
     分析了水力模型和水质模型的密切关系,在水力模型基础上,在分析和掌握给水管网余氯状况的前提下,构建余氯衰减模型。
     针对当前余氯衰减模型普遍存在的局限性,提出并验证了一种实用的氯衰减半经验数学模型——速率系数可变模型(Variable Rate Coefficient,VRC)。基于对余氯衰减影响因素的全面分析,结合实际工程中的情况,VRC模型的建立重点考虑温度、投氯量及二次加氯。VRC模型包含X0,0,kmin和四个参数,模型基于双分子二级反应动力学速率方程,同时定义了一个微分方程来描述t随时间的变化,通过二者结合来模拟氯的衰减过程。首先确定X0的值,0、kmin和的值由SCE法得到,使用局部搜索法,调整初始氯浓度,减小误差。采用6组余氯衰减数据集对VRC模型、一级模型以及由Boccelli等人建立的二级模型进行校核并比较三个模型的模拟结果。本研究将SCE法用于给水管网的研究和应用,采用SCE法进行余氯衰减模型的校核,实验结果表明:SCE法的校核结果很好;VRC模型6组数据集的拟合情况均明显优于另外两个模型,可以更准确的预测余氯的衰减过程。
Water distribution system (WDS) is a main part of urban water cycle. Research of water quality variations of WDS and how to enhance water supply security has become the focus of water industry in the 21st century. No matter in the process of water treatment or water distribution, disinfection plays an important role. The most widely used potable water disinfectant in the world is aqueous chlorine because of its relatively low cost, high disinfection efficiency and ability to provide a residual concentration in the network to protect against (further) bacterial growth. Therefore, it is significant to investigate the forecast and modeling of chlorine decay.
     During years of operation in water supply pipeline, anomalous annularity mixture will grow up along pipe wall, which is called‘growth ring’. It is the mix of sediment, erosion, dirty and biofilm inside pipeline. When water flows along pipeline wall, it is not the wall which directly contact with water, but“growth wing”. Therefore, it is the main reason why water quality will change in WDS.
     In this research, in order to ensure water quality of WDS, chlorine decay rule was discussed through dynamic and static experiments. The measured chlorine decay data was analysed throuh exponentially fitted method. Results show that chlorine decay has positive correlation with factors such as: temperature, TOC, oxygen consume, THMs and ammonia nitrogen. Initial chlorine concentration and pipe diameter has negative correlation with chlorine decay coefficient. Furthermore, chlorine decay rate after re-chlorination was distinctly less than that before re-chlorination. Chlorine decay in cast iron pipes was the most between stainless steel, PVC and cast iron pipes. For common cast iron pipes, in bigger diameter pipe, the effect of flow velocity on decay coefficient is less and that of pH value is more. Chlorine decay is mainly occurred in the reaction with pipe wall. pH value is the main factor that effects chlorine decay in cast iron pipes.
     The close relationship between hydraulic model and water quality model was analysed. On the basis of hydraulic model, chlorine decay model was built on the premise of overall analysis of chlorine residual status.
     Aiming at the localization of current chlorine decay models, a practical and very reliable semi-empirical numerical chlorine decay model was proposed, which will be defined as the variable rate coefficient (VRC) model. Based on analysis of influence factors of chlorine decay, factors such as temperature, chlorine dosage and re-chlorination was mainly considered during the establishment of VRC model. The proposed model requires the calibration of 4 coefficients: X0,κ0, kmin andα. The model was based on second order bimolecular decay kinetics, and a differential equation was defined to describe the change in the average rate coefficient. Chlorine decay process was simulated by the combination of the two factors. The model coefficientsκ0、kmin andαare calibrated using the Shuffled Complex Evolution (SCE) algorithm for a range of given X0. The optimal values for the initial and booster chlorine concentrations for each data set are determined by using a local search method. The VRC model, the first order chlorine decay model and a second order reactive species model by Boccelli et al. are calibrated and compared using experimental data from 6 water sources. In this research, SCE algorithm was first used in the research and application of WDS. The results show that calibration results of SCE method is better and VRC model shows very good agreement with observation and outperforms the other models in all cases.
引文
1齐晶瑶,李欣,赵洪宾.关于供水管道内余氯消耗机理的探讨.给水排水. 2000,26(8):66~69
    2李欣,宋雪峰,赵洪宾.配水管网水质变化的研究(Ⅱ)—余氯消耗动力学机制的研究.哈尔滨建筑大学学报. 1999,32(3):52~56
    3曾慧丽.水中三卤代甲烷的测定及其形成探讨.理化检验-化学分册. 2001,37(5):234~235
    4徐涛,肖贤明,刘红英.饮用水消毒副产物-卤乙酸的分析检测.环境科学与技术. 2004,27(6):45~48
    5刘勇建,侯小平,牟世芬.饮用水消毒副产物研究状况.环境污染治理技术与设备. 2001,2(2):31~40
    6李欣,顾大明,王郁萍,赵洪宾.用RS分析法进行THM生成预测.哈尔滨建筑大学学报. 2000,33(5):72~74
    7 R. M. Clark, M. Sivaganesan. Chlorine Demand and TTHM Formation Kinetics: A Second-Order Model. Journal of Environment Engineering-ASCE. 1998, 124(1): 16~24
    8 Nieuwenhuijsen, M. J., Toledano, M. B., Eaton, N. E., Fawell, J., P., P. E., Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review. Occupational and Environmental Medicine, 2000, 57: 73~85
    9 Dunnick, J. K., Melnick, R. L. Assessment of carcinogenic potential of chlorinated water: Experimental studies of chlorine, chloramine, and trihalomethanes. Journal of the National Cancer Institute. 1993,85(10):817~822
    10 Takako N., Satoshi S. Effect of bromide ions on genotoxicity of halogenated by-products from chlorination of humic acid in water. Wat. Res. 2001,35(18): 4293~4298
    11甘日华. WHO和世界主要国家生活饮用水卫生标准介绍.中国卫生监督杂志. 2007,14(5): 353~356
    12 World Health Organization. Guidelines for Drinking—water Quality First Addendum to 3rd Edition. WHO Press. 2006:58~68
    13 National Health and Medical Research Council. National Water QualityManagement Strategy Australian Drinking Water Guidelines. NHMRC Press. 2004:10~16
    14金银龙等. GB5749-2006《生活饮用水卫生标准》释义.中国标准出版社. 2007:115~127
    15中华人民共和国卫生部.《生活饮用水卫生标准》(GB5749-2006).中国标准出版社. 2006:2~10
    16张文芸.氯化条件对三卤甲烷生成量的影响.科技情报开发与经济. 2004,14(9):219~220
    17赵恒彦.试论水的氯消毒及副产物的控制方法.低温建筑技术. 2005, (3):104~105
    18周建华,赵洪宾,薛罡.配水管网中与有机物反应的余氯衰减动力学模型.环境科学. 2003,24(3):45~49
    19 Li X., Gu D. M., Qi J. Y. Modeling of residual chlorine in water distribution system[J]. Journal of Environmental Sciences. 2003,15(1):136~144
    20赵志领,赵洪宾,何文杰等.天津市给水管网余氯衰减模型研究.给水排水. 2006,32(5):36~39
    21 Zhao H. B., ZhaoZ. L., Ren Y. M. HAAs Formation kinetics in water distribution system in ShenZhen. CWI conference. 2003: 277~279
    22 Sophie C., Bernard B. Paul morel simulation and control of chlorine levels in water distribution networks. Jour. Water Resource Planning and Management. 2003, (3/4):135~145
    23 Lin T.F., Hoang S. W. Inhalation exposure to THMs from drinking water in south Taiwan. Science of The Total Environment. 2000,246(1): 41~49
    24 Xu X., Thomas M. M., Jeffrey D. L., Clifford P. W. Percutaneous Absorption of Trihalomethanes, Haloacetic Acids, and Haloketones. Toxicology and Applied Pharmacology. 2002,184(1):19~26
    25 Park K. G., Park K. S., Kim M. J. et al. Relationship between serum adiponectin and leptin concentrations and body fat distribution. Diabetes Research and Clinical Practice. 2004,63(2):135~142
    26 Gary R. K., Juan D. S., Naomi L. R., Anthony B. D. Preliminary screening for the potential of drinking water disinfection byproducts to alter male reproduction. Reproductive Toxicology. 1995,9(6):571~578
    27 Hsua C. H., Jengb W. L., Changc R. M., Chiena L. C., Han B. C. Estimation of Potential Lifetime Cancer Risks for Trihalomethanes from ConsumingChlorinated Drinking Water in Taiwan. Environmental Research. 2001,85(2):77~82
    28 Aggazzotti G., Righi E., Fantuzzi G. et al. Chlorination by-products (CBPs) in drinking water and adverse pregnancy outcomes in Italy. J. Water Health. 2004,2(4):233~247
    29杨艳玲,李星,孙丽欣等.高锰酸钾与氯胺联用预处理控制三卤甲烷生成.哈尔滨工业大学学报. 2005,37(12):1735~1738
    30李星,杨艳玲,彭永臻等.高锰酸钾与氯联用预处理控制三卤甲烷形成的效能与机理. 2005,31(10):24~27
    31 Ma Y. S., Lin J. G. Effect of pre-sonication on removal of organic matters resulting from chlorinated humic acids. Water Science and Technology. 1998,38(6):253~260
    32 Kitis M., Kiduff J. E., Karanfil T. J. Isolation of dissolved organic matter (dom) from surface waters using reverse osmosis and its impact on the reactivity of dom to formation and speciation of disinfection by-products. Water Research. 2001,35(9):2225~2234
    33 Shemer H., Narkis N. Sonochemical removal of trihalomethanes from aqueous solutions. Ultrasonics sonochemistry. 2005,12(6):495~499
    34童俊,臧道德.饮用水中消毒剂及无机消毒副产物.城市公用事业. 2003,17(1):17~20
    35 Douglas Rittmann, Anthony Tarquin. Impact of Mixing Chlorine with Chlorine Dioxide on TTHMS Formation in Drinking Water. World Water & Environmental Resources Congress 2003 and Related Symposia. 2003, Philadelphia: 110~115
    36 Peter J. V., Kenan O., Richard L. V. Monochloramine decay in model and distribution system saters. Water Research. 2001,35(7):1766~1776
    37郑文华.二氧化氯的研究进展.河北化工. 2007, 3(2):5
    38王擎,梁爽,郑爽英,张驰.饮用水消毒技术研究与应用.中国消毒学杂志. 2006, 23(4):349-351
    39 R.Foschino, I.Nervegna, A.Motta, et al. Bactericidal activity of chlorine dioxide against Escherichia coli in water and on hard surfaces. Food Prot. 1998, 61(6):668
    40刘南.二氧化氯消毒研究进展.重庆医学. 2005, 34(3):449-451
    41 Chang C. Y., Shih I. C., Hsu S. S., Wang K. H., Hsieh Y. H. The formation andcontrol of disinfection by-products using chlorine dioxide. Chemosphere. 2000,41(8):1181~1186
    42王海鸥,王海鹏,吕岩,陈忠林.液氯、二氧化氯和氯胺消毒饮用水卤乙酸生成规律的研究.内蒙古工业大学学报. 2006, 25(1):17~20
    43孙洪伟,康宇炜,李秋霞.新水质标准的特点及水厂工艺改造方案分析.科技信息. 2008,12(20):129~132
    44郝建英.氯消毒的副产物及可替代剂.科技情报开发与经济. 2003,13(5):94~95
    45焦中志,陈忠林,陈杰,刘丽君,卢伟强,李圭白.氯胺消毒对消毒副产物的控制研究.哈尔滨工业大学学报. 2005,37(11):1486~1488
    46刘志琪.全面执行国家标准确保供水水质安全.建设科技. 2008, (14):3~4
    47王延勇.我国饮用水水质标准存在的问题及发展方向.职业与健康. 2007,23(11):956~958
    48张金松.饮用水新国标与净水工艺改建.城镇供水. 2007, (4):18~22
    49陈国光.《生活饮用水卫生标准》修改制定的迫切性和必要性及其特点分析.城镇供水. 2007, (4): 25, 26, 96
    50张媛嫒,杨祝红,文高飞等.我国饮用水水质标准研究进展及新增项目检测.中国公共卫生. 2007,23(3):275~276
    51高凌玲,俞国平.供水系统中软垢对管网水质的影响探讨.城镇供水. 2008, (7):52~54
    52赵洪宾.给水管网系统理论与分析.中国建筑工业出版社. 2003:28-33
    53赵志领,赵洪宾,高金良等.天津市给水管网水质在线监测系统.中国给水排水. 2008,24(23):99~101
    54何文杰,李伟光,张晓健等.安全饮用水保障技术.中国建筑工业出版社. 2006:77~81
    55许阳.杭州管网水质实时监测系统.给水排水. 2002,28(2):91~92
    56吴文燕,解守志,赵洪宾.给水管网水质监控的理论研究.哈尔滨建筑大学学报. 1997,30(1): 57~61
    57李欣,马建薇,袁一星.城市给水管网水质研究与进展.哈尔滨工业大学学报. 2004,36(10):1392~1396
    58张土乔,黄亚东,吴小刚.供水管网水质检测点优化选址研究.浙江大学学报(工学版). 2007,41(1):1~5
    59 Ostfeid A. Enhancing water distribution system security through modeling. Journal of Water Resources Planning and Management. 2006,132(4):209~210
    60赵志领,赵洪宾,何文杰等.城市给水管网的水质变化规律研究.中国给水排水. 2006,22(19):44~46
    61 Hallam, N. B., West, J. R., Forster, C. F., Powell, J. C., Spencer, I., The decay of chlorine associated with the pipe wall in water distribution systems. Water Research. 2002, 36: 3479~3488
    62张土乔,王鸿翔,郭帅.给水管网水质模型管壁余氯衰减系数校正.浙江大学学报(工学版). 2008,42(11):1977~1982
    63 Thomas L. O., John T. O. Water quality deterioration in distribution systems. environmental and pipeline engineering. 2000, Washington: 127~136
    64 Lechevallier M. W. Disinfecting biofilms in a model distribution system. JAWWA. 1990, (7):87~93
    65 Clark R. M. Managing Water quality in distribution systems: simulating TTHM and Chlorine Residual propagation. J. Water SRT-AQUA. 1994, (4):182~189
    66 Munavalli G. R., Mohan K. M. S. Dynamic simulation of multicomponent reaction transport in water distribution systems. Water Research. 2004,38(8):1971~1988
    67 Beatty R., Bliss P. J., Vintage D. C. Analysis of factors influencing shlorine decay in piped distribution systems. AWWA. 1996, 16:159~165
    68 Biswas P., Clark R. M. A model for chlorine concentration decay in pipes.Water Research. 1993, 27:1715~1724
    69黄赛琴.天津市供水管网余氯衰减变化规律的研究.哈尔滨工业大学硕士学位论文. 2005,22(5):51~55
    70 Psaha M. F. K. Uncertainty analysis and calibration of water distribution quality models. Tucson: University of Arizona. 2006:26~30
    71吴晨光,孙雨石,赵洪宾等.环状管网模拟余氯衰减模型.中国给水排水. 2006,22(1):9~12
    72 Tuovinen O. H. Baterial. Chemical and mineralogical characteriatics of tubercles in distribution pipelines. JAWWA. 1980, (11):626~632
    73 Chen X. Stewart P. S. Chlorine Penetration into Artifical Biofilm is Limited by a Recation-diffusion Interaction. Envir. Sci and Technol. 1996, (6):2083~2087
    74 Kays W. M., Crawford M.E. Convective Heat and Mass Transfer, McGraw-Hill. 1993:172~173
    75 Kiene L., Lu W., Levi Y.. Relative importance of the phenomena responsible for chlorine decay in drinking water distribution systems. Water Sci. Technol. 1998,38:219~227
    76 Lu W., Kiene L., Levi Y. Chlorine demand in water distribution systems. Water Res. 1999, 33:827~835
    77 Brammer L. F., Tansley N. S. Chlorine residual modelling in distribution: the improvement of taste and the maintenance of effective disinfection. International Conference on Computer Applications for Water Supply and Distribution. Leicester, 1993: 111~126
    78 Gotoh K. Residual chlorine decreasing rate coefficients for various pipe materials. Water Supply. 1989, 7:164~172
    79 Sharp W. W., Pfeffer J., Morgan M. In situ chlorine decay rate testing. Proceedings of the AWWARF and USEPA Conference on Water Quality Modelling in Distribution Systems. Cincinatti, 1991:311~322
    80 Vasconcelos J. J., Boulos P. F. Characterization and Modeling of Chlorine Decay in Distribution Systems. AWWA, 1996:45~47
    81 Wable O., Dumoutier N., Duguet J. P., et al. Modelling chlorine concentrations in a network and applications to Paris distribution network. Proceedings of the AWWARF and USEPA Conference on Water Quality Modelling in Distribution Systems. Cincinatti, 1991:77~87
    82 Zhang, G. R., Ki′en′e, L., Wable, O., Chan, U. S., Duget, J. P., Modeling of chlorine residual in the water distribution system network of macao. Environmental Technology. 1992, 13:937~946
    83 Clark R. M., Sivaganesan M. Predicting Chlorine Residuals in Drinking Water: Second Order Model. Journal of Water Resources Planning and Management. 2002,128(2):152~161
    84 Feben, D., Taras, M. J. Studies on chlorine demand constants. Journal of the American Water Works Association , 1951,43(11):922~932
    85 Grayman, W. M., Clark, R. M., Males, R. M. Modeling distribution-system water quality: Dynamic approach. Journal of Water Resources Planning and Management. 1988,114(3):295~312
    86 Hunt, W. A., Kroon, J. R.,. Model calibration for chlorine residuals in distribution systems. In: Water quality modeling in distribution systems. AWWARF and USEPA. Cincinnati, 1991:237~263
    87 Hart, F. L., Wheeler, W. A., Daley, W. J., 1992. Chlorine residual distribution in a municipal water network. In: NEWWA Computer Symposium
    88 Haas, C. N., Karra, S. B., Kinetics of microbial inactivation by chlorine-I: Review of results in demand-free systems. Water Research. 1984,18(11):1443~1449
    89 Jadas-H′ecart, A., Morer, A., Stitou, M., Bouillot, P., Legube, B., The chlorine demand of a treated water. Water Research. 1992,8:1073~1084
    90 Zhang, G. R., Ki′en′e, L., Wable, O., Chan, U. S., Duget, J. P., Modeling of chlorine residual in the water distribution system network of macao. Environmental Technology. 1992,13:937~946
    91 Dharmarajah H., Patania N., Jacangelo J., Aieta, E., Montgomery J., Empirical modeling of chlorine and chloramine residual decay. In: Proceedings AWWA Annual Conference. Philadelphia, PA. 1991:114~122
    92 Powell, J. C., Hallam, N. B., West, J. R., Forster, C. F., Simms, J., Factors which control bulk chlorine decay rates. Water Research. 2000, 34:117~126
    93 Hallam, N. B., Hua, F., West, J. R., Forster, C. F., Simms, J., Bulk decay of chlorine in water distribution systems. Journal of Water Resources Planning and Management. 2003,129(1):78~81
    94 Ki′en′e, L., Lu, W., L′evi, Y., Relative importance of the phenomena responsible for chlorine decay in drinking water distribution systems. Water Science and Technology. 1998,38(6):219~227
    95 Boccelli, D. L., Tryby, M. E., Uber, J. G., Summers, R. S., A reactive species model for chlorine decay and THM formation under rechlorination conditions. Water Research. 2003,37(11):2654~2666
    96 Fang Hua, J. R. West, R. A. Barker, C. F. Forster. Modelling of Chlorine Decay in Municipal Water Supplies. Water Research. 2003,33(12):2735~2746
    97 Dugan, N. R., Summers, R. S., Miltner, R. J., Shukairy, H. M., An alternative approach to predicting chlorine residual decay. In: Proceedings of the Water Quality Technology Conference. New Orleans, 1995: 1317~1337
    98 Koechling, M. T., Assessment and modeling of chlorine reactions with natural organic matter: Impact of source water quality and reaction conditions. Ph.D. thesis, Department of Civil and Environmental Engineering, University of Cincinatti. 1998:65~67
    99 Jonkergouw, P. M. R., Khu, S. T., Savic D., Chlorine: A possible indicator of intentional chemical and biological contamination in a water distribution network? In: Proceedings AutMoNet, 2nd International IWA Conference onAutomation in Water Quality Monitoring. Vienna, 2004
    100 Clark, R. M., Grayman, W. M., Goodrich, J. A., Deininger, R. A., Skov, K. Measuring and modeling chlorine propagation in water distribution systems. Journal of Water Resources Planning and Management. 1994,120(6),871~887
    101 Chambers, V. K., Creasey, J. D., Joy, J. S.,. Modelling free and total chlorine decay in potable water distribution systems. Journal of Water Supply: Research and Technology–AQUA. 1995,44(2):60~69
    102 Vasconcelos J. J., L. A. Rossman, W. M. Grayman, P. F. Boulos, R. M. Clark. Kinetics of Chlorine Decay. Journal of Journal of the American Water Works Association. 1997,89(7):54~65
    103 Rossman L. A., Clark R. M., Grayman W. M.. Modeling Chlorine Residuals in Drinking Water Distribution Systems. Journal of Environment Engineering. 1994,120(4):803~820
    104 Maier S. H., Powell R., Woodward P. C. W. Calibration and Comparison of Chlorine Decay Models for a Test Water Distribution System. Water Research. 2000,34(8):2301-2309
    105鲁巍,唐峰,张晓健等.研究供水管壁生物膜的模拟系统.中国给水排水. 2005,21(1):22~24
    106张向谊,刘文君,高圣华等.模拟配水管网中管材和余氯对生物膜形成的影响.中国环境科学. 2006,26(3):303~307
    107鲁巍,姜登岭,张晓健.配水管网中AOC与细菌再生长的关系.中国给水排水. 2004,20(5):5~8
    108 Graham A. G., Robin M. S. An eficient biofilm removal method for bacterial cells exposed to drinking water. Microbiological Methods. 1999, 34:203~214
    109 Lawrence J. R., Swerhone G. D. W., Neu T. R. A simple rotating annular reactor for replicated biofilm studies. Microbiological Methods. 2000, 42:215~224
    110 Sharp R. R., Camper A. K., Crippen J. J. et a1. Evaluation of drinking water biostability using biofilm methods. Environ Engrg. 2001, (5):403~410
    111 Digiano F. A., zhang W. D. Pipe Section Reactor to Evaluate Chlorine-Wall Reaction. Journal of AWWA. 2005,97(1):74~85
    112 Koch B. B., Krasner S. W. Sclimenti, Predicting the Formation of DBPs by the Simulated Distribution System. Journal of AWWA. 1991,83(10):62~70
    113 Gagnon G. A., Huck P. M.. Removal of Easily Biodegradable OrganicCompounds by Drinking Water Biofilms: Analysis of Kinetics and Mass Transfer. Water Research. 2001,35(10):2554~2563
    114 Baribeau H., Prevost M., Desjardins R., Lafrance P. Changes in Chlorine and DOX Concentrations in Distribution Systems. Journal of AWWA. 2001,93(12):102~114
    115孙雨石.配水系统中余氯衰减模型及其影响因素研究.哈尔滨工业大学硕士论文. 2005: 22~24
    116 Rossman L. Brown A., R. A., Singer P. C., Nuckols J. R. DBP Formation Kinetics in a Simulated Distribution System. Water Research. 2001,35(14):3483~3489
    117吴艳.配水管网系统中消毒副产物的研究.哈尔滨工业大学硕士论文. 2006: 16~18
    118赵洪宾,李欣,赵明.给水管道卫生学.中国建筑工业出版社. 2008: 135~136
    119吴晨光,孙雨石,赵洪宾等.环状管网模拟余氯衰减模型.中国给水排水. 2006, 22(1):9~12
    120杨春英,杭义萍,钟新林.离子色谱法同时测定饮用水中5种消毒剂副产物.分析化学研究简报. 2007, 35(11):1647-1650
    121 USEPA Method 300.1: Determination of Inorganic Anions in Drinking Water by Ion Chromatography. Washington DC: USEPA. 1997
    122苏宇亮,方黎,吴杰.离子色谱法测定水中5种消毒副产物和6种阴离子.净水技术. 2008, 27(1): 69-70, 73
    123顾大明,鲍治宇,赵晓旭.大学化学.北京人民交通出版社, 1998, 10: 6
    124王家玲.饮水中非挥发性有机污染物致突变性的防治对策.中国环境科学, 1999, 19(2): 114-118
    125张维佳,潘大林.工程流体力学.黑龙江科学技术出版社,2001, 6:88~90, 98
    126徐洪福.配水管网系统水质变化规律与水质模型研究.哈尔滨工业大学博士学位论文. 2003, 11:23~30
    127赵洪宾,李欣,赵明.给水管道卫生学.中国建筑工业出版社, 2008, 11:236~244
    128 Duan, Q. Y., Gupta, V. K., Sorooshian, S., 1993. Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications 76 (3): 501–521
    129刘军.网级高速公路路面养护的经济分析与决策优化.东南大学硕士学位论文. 2006, 12: 20~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700