重金属铅胁迫对小麦种子萌发及幼苗生理生化特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属因制约植物生长发育和影响农产品安全问题而成为当今世界关注的焦点。铅是重金属污染中最严重和危害性较强的元素之一,具有移动性强、生物毒性大而且易被植物吸收的特点。植物在铅胁迫下生物大分子构象发生改变、引起电解质外渗、酶活性丧失及膜脂过氧化等,最终干扰植物的正常生理代谢和生长发育。此外,植物体内的铅可通过食物链进入人体内产生各种危害,包括造血功能、免疫功能及内分泌系统等多个系统的损伤。因此,植物在铅胁迫下的损伤与抗性机制的研究已成为研究热点。同时,如何缓解铅对植物的毒害作用,进而提高农作物的产量和品质也受到普遍关注。
     一氧化氮(Nitrogen oxide,NO)是一种广泛分布在生物体内的信号分子,参与植物体一系列生理过程的调控,如种子萌发、植物根和茎的生长发育、细胞凋亡以及植物防御病虫害、抵抗干旱、盐害、低温等一些生物与非生物胁迫的反应,因而其对植物种子萌发、生理生化特性影响的研究受到普遍关注,特别是关于NO缓解盐、干旱、高温等非生物胁迫对植物的影响。但有关NO对Pb~(2+)胁迫下小麦种子萌发和幼苗生理特性影响的研究报道很少。本实验以两种小麦西旱2号和宁春4号为材料,研究了不同浓度的Pb~(2+)、硝普钠(Sodium Nitroprusside,SNP)单独处理及SNP结合Pb~(2+)处理下小麦种子萌发和幼苗生理生化特性的变化,试图为探明铅胁迫对小麦造成的毒害作用或为深入了解和认识小麦抗重金属污染的生理生化机制提供理论依据,进而通过调节NO水平来提高植物抗重金属胁迫的能力,为研究农作物铅毒害的缓解技术提供理论依据。
     主要研究结果及结论如下:
     1.两种小麦在低浓度铅处理下幼苗叶片叶绿素含量及超氧化物歧化酶(SOD)活性均无显著变化,而高浓度铅胁迫使其叶绿素a(Chla)、叶绿素b(Chlb)及叶绿素总量明显减少,但SOD活性显著升高,且相同浓度铅胁迫对小麦宁春4号幼苗叶片叶绿素的破坏作用明显强于对西旱2号的作用;不同浓度硝酸铅处理诱导两种小麦幼苗过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)活性升高,但不影响丙二醛(MDA)含量;此外,Pb~(2+)处理使小麦幼苗叶片脯氨酸含量升高,此效应具有浓度依赖性,但铅处理不影响可溶性糖相对含量。结果表明,铅胁迫对小麦西旱2号和宁春4号幼苗叶片叶绿素造成了破坏,却不同程度诱导抗氧化酶活性及脯氨酸含量升高,即表现出较强的抗氧化能力和渗透调节能力,增强了小麦对铅的耐受性,因而胁迫诱导两种小麦叶片MDA含量变化与对照比无显著性差异。
     2.低浓度的SNP处理对西旱2号小麦种子的发芽势、发芽率、茎长及根长无显著影响,却不同程度地诱导小麦幼苗叶片中CAT和POD活性升高,高浓度的SNP处理明显提高小麦种子的发芽势和发芽率,抑制幼苗根和茎的生长,降低幼苗叶片脯氨酸含量。此外,不同浓度的SNP处理均诱导幼苗叶片可溶性蛋白的含量增多,但对MDA和可溶性糖相对含量无显著影响。结果表明,高浓度外源NO供体SNP处理促进了小麦西旱2号种子的萌发,抑制其幼苗生长,低浓度SNP处理提高抗氧化酶活性和渗透性调节物的含量,因而SNP处理对细胞膜未造成明显的氧化损害。
     3.在Pb~(2+)处理下,小麦种子发芽势、发芽率、幼苗根长和茎长均显著降低,25μmol/L SNP明显缓解Pb~(2+)胁迫对种子萌发及幼苗生长的抑制作用。SNP处理提高了Pb~(2+)胁迫下小麦幼苗叶绿素a、叶绿素b含量及叶绿素荧光参数F_v/F_m和F_v/F_0的比值,并诱导过氧化氢酶(CAT)活性升高,但100μmol/L SNP处理降低了过氧化物酶(POD)活性。此外,SNP诱导Pb~(2+)胁迫下小麦幼苗叶片可溶性蛋白含量升高。结果说明,外源NO促进Pb~(2+)胁迫下小麦种子萌发及幼苗生长,提高叶绿素和可溶性蛋白含量,诱导CAT活性升高,从而增强小麦对Pb~(2+)胁迫的适应性。
Heavy metal pollution was focused because of it’s inhibitory effect on plant growth and it’s safety problem on agriculture product. Lead is one of the most serious and stronger dangerous elements in heavy metal pollution, which shows strong mobility, high biology toxicity and easy absorbtion in plants. It has been indicated that lead stress leads to the biopolymer modification, electrolyte leakage, enzyme activity deficient and membrane lipid peroxidation, finally interfering with the growth and development of plant as well as normal physiological metabolism of plant. In addition, lead threatens human beings by entering food chain, leading to the injure of hematopoietic function, immune function and endocrine system. So the damage and resistance mechanism of plant in response to lead stress has become the hot spot issues. Meanwhile, it has been given attention at present that how do plant protect themselves against lead poisoning and then improve yield and quality of agriculture crops.
     Nitric oxide, which is commonly found as a signaling molecule, is involved in series of the regulation of plant processes, including seed germination, growth and development of roots and stems, cell apoptosis, plant defense and resistance responses to biotic and abiotic stresses, therefore the effects of this molecular on seed germination and plant physiochemical characteristics were focused, especially on alleviating abiotic stresses including salt, drought and higher temperature. However, there were few reports about exogenous NO on seed germination and physiological characteristics of wheat seedlings under Pb~(2+). In the present study, two wheat cultivars (Xihan 2 and Ningchun 4) were used to investigate the changes of seed germination and seedlings growth in response to Pb~(2+) or SNP treatment alone and Pb~(2+) + SNP treatment, which was to indicate the phyotoxicity of lead on wheat and to provide theoretical basis for knowing and understanding the mechanism of physiochemical responses of plant to heavy metal pollution, even to improve the tolerance of plant against heavy metals by regulating NO levels and provide the basis on alleviating Pb~(2+) toxicity in agricultural production. The main results and conlusions were as follows:
     1. There were no changes of chlorophyll content and superoxide dismutase (SOD) activity in two wheat seedlings exposed to lower Pb(NO_3)_2 concentration, while the amount of chlorophyll a, chlorophyll b and total chlorophyll was decreased and SOD activity was significant increased when wheat seedlings were subjected to higher Pb(NO_3)_2 concentration. The destroy to chlorophyll of Ning Chun was more serious than that of Xi Han in responses to the same Pb(NO_3)_2 stress. Different Pb(NO_3)_2 concentration induced enhanced activities of catalase, peroxidase and ascorbate peroxidase, but no significant changes in malondialdehyde (MDA) content. In addition, the amount of proline was increased by Pb(NO_3)_2 in two wheat seedlings in a concentration-dependent manner, but no change in soluble sugar content. The results suggested that chlorophyll content was destroyed and that the activities of antioxidases and the amount of proline were enhanced in wheat seedlings under the stress of Pb(NO_3)_2, thus the stronger effects of antioxidanted role and osmotic regulations were existed and enhanced wheat seedlings tolerance to Pb~(2+) stress. Therefore there was no significant difference in MDA content between the control and Pb(NO_3)_2-stressed wheat seedlings.
     2. Lower SNP treatment had no significant effects on germination rate, energy, root and shoot length, but induced enhanced the activities of CAT and POD. Higher SNP concentration significantly increased seed germination rate and energy, inhibited the growth of root and shoot length, as well as decreased the content of proline. In addition, different SNP concentrations induced synthesis of soluble protein, but no significant changes in the contents of malondialdehyde and souble sugar. These results suggested that higher SNP treatment promoted seed germination, and inhibited the seedling growth, while lower SNP treatment enhanced the activities of antioxidant enzymes and osmotic regulations so there was no oxidative damage on cell membrane.
     3. The results showed that Pb~(2+) treatment resulted in significant decreases in seed germination and seedling growth of wheat, 25μmol·L~(-1) SNP could alleviate the inhibiton of Pb~(2+) on these indexes. Under Pb~(2+) stress, the levels of chlorophyll a, chlorophyll b and chlorophyll fluorescence decreased in wheat seedlings, whereas no significant changes in the activities of CAT and POD were observed in comparison with the control. The application of SNP abolished decreased rates of chlorophyll content and chlorophyll fluorescence, and induced increase of CAT activity. In addition, SNP led to increased soluble protein in wheat seedlings under Pb~(2+) treatment. Exogenous NO promoted wheat seed germination and seedling growth, improved the content of chlorophyll and soluble protein, increased the activities CAT so as to alleviate the poison of Pb~(2+) and enhance the adaptation of wheat seedlings to Pb~(2+) stress.
引文
Abedin MJ, Meharg AA. Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.)[J]. Plant and soil, 2002, 243: 57– 66.
    Aebi H. Catalase in vitro[J]. Methods in Enzymology, 1984, 105: 121– 126.
    Alscher RG, Hess JL. Antioxidants in higher plants[M]. CRC Press Boca Raton, FL, 1993.
    Aravind P, Prasad MNV. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: a free floating fresh water macrophyte[J]. Plant Physiology and Biochemistry, 2003, 41: 391– 397.
    Ashraf M,Harris PIC. Potential biochemical indicators of salinity tolerance in plants[J]. Plant Science, 2004, 166: 3–16.
    Baker NR. A possible role for photosystem II in environmental perturbations of photosynthesis[J]. Physiol Plant, 1991, 81, 563– 570.
    Beligni MV, Lamattina L. Is nitric oxide toxic or protective[J]. Trends in Plant Science, 1994, 4: 229– 300.
    Beligni MV, Lamattina L. Nitric oxide protects against cellular damage produced by methylviologen herbicides in potato plants[J]. Nitric oxide, 1999, 3: 199– 208.
    Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants[J]. Planta, 2000, 210: 215– 221.
    Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleuronelayers[J]. Plant Physiology, 2002, 129: 1642– 1650.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248– 254.
    Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean[J]. Physiologia Plantarum, 1991, 83: 463– 468.
    Carri MT, Galiazzo F, CirioloMR. Evidence for co-regulation of Cu, Zn superoxide dismutase and metallothionein gene expression in yeast through transcriptional control by copper via the ACE 1 factor[J]. Febs Letters, 1991, 2278: 263– 266.
    Carter DR, Cheeseman JM. The effect of extemal NaCl on thylakoid stacking in lettuce plants[J]. Plant Cell and Environment, 1993, 16: 215– 223.
    Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF. The pathogen inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex[J]. Cell, 2003, 113: 469– 482.
    Chaney RL, Minnie M, Li Y M. Phytoremediation ofs oil metals[J]. Current Opinion in Biotechnology, 1997, 8, 279– 284.
    Cheeseman JM. Mechanism of salinity tolerance in plant[J]. Plant Physiology, 1988, 87, 547– 550.
    Chers B, Marc VH, Dirk I. Superoxide dimmtase and stress tolerance[J]. Annual Review of Plant Biology, 1992, 43: 83– 87.
    Clark D, Durner J, Navarre DA, Klessig DF. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase[J]. Molecular Plant-Microbe Interactions, 2000, 13: 1380– 1384.
    Delledonne M, Xia YJ, Dixon RA. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998, 394, 585– 588.
    Desikan R, A-H-Mackerness S, Hancock JT, Neill SJ. Regulation of the Arabidopsis transcriptome by oxidative stress[J]. Plant Physiology, 2001, 127: 159– 172. Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativ um L. cv.Azad) [J]. Journal of Experimental Botany, 2001, 52: 1101– 1109.
    Dumer J, Klessig DF. Nitric oxide as a signal in plants[J]. Current Opinion in Plant Biology, 1999, 2, 369– 374.
    Durner J, Wendehenne D, Klessigd F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclicADP-ribose[J]. Proceedings of the National Academy of Sciences. 1998, 95: 10328– 10333.
    Fang WC, Kao CH. Enhanced peroxidase activity in rice leaves in response to excess iron, Copper and Zinc[J]. Plant Science, 2000, 158: 71– 76.
    Fernsndos JC, Henriques FS. Biochemical, physiological and structural effcts of excess copper in plants[J]. The Botany Review, 1991, 57: 246– 273.
    Firea XUS, Montgomer YM K. Potent and specifec genetic interference by double stranded RNA in caenorhabditis elegans [J]. Nature, 1998: 806– 811.
    Floyd RA, Nagy I. Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a Fenton reaction[J]. Biochim Biophys Acta, 1984, 790: 94– 97.
    Foy CD, White MC. The physiology of metal toxicology in plants[J]. Annual Review of Plant Physiology, 1978, 29, 511– 556.
    Furchgott RF. A research trail over half a century[J]. Annual Review of Phamacology and Toxicology, 1995, 35: 1– 27.
    Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta, 1989, 990, 87– 92.
    Giba Z, Grubisic D, Todorovic S, Sajc L, Stojakovic D, Konjevic R. Effect of nitric oxide-releasing compounds on phytochrome-controlled gemiination of Empress tree seeds[J]. Plant Growth Regulation, 1998, 26: 175– 181.
    Hall JL. Cellular mechanisms for heavy meatal detoxification and tolerance[J]. Journal of Experimental Botany, 2002, 53: 1– 11.
    Han KS, Xie ZM, Huang CY. Effect of cadmium, lead, and zinc on size of microbial biomass in red soil[J]. Pedosphere, 1998, 8: 27– 32.
    Hsu YT, Kao KH. Cadmium toxicity is reduced by nitric in rice leaves[J]. Plant Growth Regulation, 2004, 42, 227– 238.
    Keeley JE, Fotheringham CJ. Trace gas emissions and smoke-induced seed germination[J]. Science, 1997, 276, 1248– 1250.
    Kellogg EW, Fridovich I. Hydrogen peroxide, and single oxygen in lipid peroxidation byaxanthine oxidase system[J]. Biochemistry, 1975, 250: 8812– 8817.
    Kneer R, Zenk MH. Phytochelatins protect plant enzymes from heavy metal poisoning[J]. Phytochemistry, 31: 2663– 2667.
    Kopyra M, Edward A, Gwozdz. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus lutrus[J]. Plant Physiology and Biochemistry, 2003, 41, 1011– 1017.
    Krupa Z, Siedlecka A, Mathis P. Cd /Fe interaction and its effects on photosynthetic capacity of primary bean leaves [A]. In: Proceedings of the Xth International Photosynthesis Congress [C]. Netherlands: Kluwer Academic Publishers, 1995, 621– 624.
    Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plant[J]. Experimental Botanical, 1996, 47: 259 – 266.
    Laspina NV, Groppa MD, Tomaro ML, Benavides MP. Nitric oxide protects sunflower leaves against Cd-induced oxidativestress[J]. Plant Science, 2005, 169: 323– 330.
    Leshem YY, Haramaty E, Iluz D, Malik Z, Sofer Y, Roitman L, Leshem Y. Effect of stress nitric oxide(NO): interaction between chlorophyll fluorescence,galactolipid fluidity and lipoxygenase activity[J]. Plant Physiology and Biochemistry, 1997, 35: 573– 579.
    Leshem YY, Willsr BH. Harnessing senescence delaying gases nitric oxide and nitrous oxide a novel approach to postharvest control of fresh horticultural produce[J]. Biologia Plantarum, 1998, 41: 110– 117.
    Leshem YY, Wills R, Ku V. Applications of nitric oxide (NO) for postharvest control[J]. Acta Horticulturae, ISHS. 2001, 553: 571– 575.
    Li WQ, Liu XJ, Khan MA, Yamaguchi S. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions[J]. Plant Research, 2005, 118, 207– 214.
    Liao XY, Chen TB, Xiao XY. Spatial distributions of arsenic in contam inated paddy soils[J]. Geographical Research, 2003, 22: 635–643.
    Lichtenthaler HK. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods Enzymol, 1987, 148: 350– 382.
    Macnair MR, Smith SE, Cumbes QJ. Hereditablity and copperoplis, California. Heredity, 1993, 71: 445– 456.
    Manaham SE. Environmental Chemistry[M]. Forth edition. Boston, America: Boston Willard Grent Press, 1984, 3: 154– 155.
    Mathys W. Vergleichende untersuchugen der zinkaufnah me von die sistenten und sensitive population von agrostis tenuis sibth[J]. Flora, 1973, 162: 492– 499.
    Mehra RK, Tabet EB, Gray WR, Winge DR. Metal-specifiic synthesis of two metalloothioneins and glutamy peptides in Candida glabrata[J]. Proceedings of the NationalAcademy of Sciences, 85: 8815– 8819.
    Mukherji S, Maitra P. Toxic effect of lead on growth and metabolism of germinating rice(Oryza sativa L.) seeds and mitosis of onion(Allium cepa L.)[J]. India Joutnal of Experimental Biology, 1976, 14: 519– 521.
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorabate specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22: 867– 880.
    Naverre DA, Wendehenne D, Durner J, Noad R, Klessig DF. Nitric oxide modulates the activity of tobacco aconitase[J]. Plant Physiology, 2000, 122: 573– 582.
    Nishi B, Singh RP, Sinha SK. Effect of calcium chloride on heavy metal induced alteration in growth and nitrate assimilation of Sesamum indicum seedlings[J]. Phytochemistry, 1996, 41: 105– 109.
    Noctor G, Foyer CH. Ascorbate and glutathione: Keeping active oxygen under control[J].
    Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249– 279.
    Pagnussat GC. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventious root development[J]. Plant Physiology, 2004, 135: 279– 286.
    Palma JM, Gomez M, Yanez J, Del Reio LA. Increased levels of peroxisomal active oxygen-related enzymes in copper-tolerant pea plants[J]. Plant Physiology, 1987, 85: 570 – 574.
    Panjw, Zheng K, Yed. Aluminum-induced ultraweak luminescence changes and sister-chromaid exchanges in root tip cells of barely[J]. Plant Science, 2004, 167: 1391– 1399.
    Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG. Uptake and effects of five heavy metal on seed germination and plant growth in alfalfa (Medicago sativa L.)[J]. Environmental Contamination and Toxicology, 2001, 66: 727– 734.
    Perfus-Barbeooch L, Leonhanrdt N, Vavasseur A. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbsv the plant water status[J]. Plant Janmal, 2002, 32: 539– 548.
    Pettersson O. Differences in cadmium uptake between plant species and caltivars[J]. Seaweed Argricultural Research, 1997, 7, 21– 24.
    Pignocchic, Fletcher JM, Wilkinson JE. The function of ascorbate oxidase in tobacco[J]. Plant Physiology, 2003, 132: 1631–1641.
    Prasad DDK, Prasa ARK. Effect of lead and mercury on chlorophylls synthesis in mung bean seedllings[J]. Phytochemistry, 1987, 26: 881– 883.
    Punz WF, Sieghardt H. The response of roots of herbaceous plant species to heavy metals[J]. Environmental and Experimental Botany, 1993, 33: 85– 98.
    Rao MV, Paliyath C, Ormrod DP. Ultraviolet-B and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana[J]. Plant Physiol, 1996, 110: 125– 136.
    Rascio N. Metal accumulation by some plants growing on zinc mine deposits[J]. Oikos, 29: 250– 253.
    Rauser WE. Phytochelations and related peptides structure, biosynthesis and function[J]. Plant physiology, 1995, 109: 1141– 1149. Reddy AM, Kumar SG, Jythsnakumari G. Lead induced changes in antioxidant metabolism
    of horsegram (Macrotylana uniflonum (Lam.) Verdc) and bengalgram (Cicer arietinum L.) [J]. Chemosphere, 2005, 60, 97– 104.
    Schickler H, Caspi H. Response of antioxidative enzymes to nickel and cadmium stress in hyperaccumulator plants of the genus Alyssum[J]. Physiologia Plantarum, 1999, 105: 39 - 44.
    Schreiber U, Hormann H, Neubauer C, Klughammer C. Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis[J]. Australian Journal of Plant Physiology, 1995, 22, 209– 220.
    Schutzendubel A, Nikolova P, Rudolf C, Polle A. Cadmium and H2O2-induced oxidative stress in Populus canescens roots[J]. Plant Physiology and Biochemistry, 2002, 40: 577– 584.
    Sekiya J, Mizuno K, Kimura O, Shimose N. Ascorbate oxidase in cucumber calli and enhancement of enzyme activity by copper sulfate [J]. Soil Science and Plant Nutrition, 1990, 36: 43– 51.
    Smarrelli JJ, Campbell WH. Heavymetal inactivation and chelator stimulation of higher plant nitrate reductase [J]. Biochimica et Biophysica Acta, 1993, 742: 435– 445.
    Smith E, Naidu R, Alston AM. Arsenic in the soil environment[J]. A review advance in agronomy, 1998, 64: 149 - 195.
    Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated form[J]. Scinece, 1992, 258: 1898– 1901.
    Teisseire H, Guy V. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor)[J]. Plant Science, 153: 65– 72.
    Thisseire H, Gu YV. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor)[J]. Plant Science, 2000, 153: 65– 72.
    Uchida A, Jagendorf AT, Hibino T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Science, 2002, 163: 515– 523.
    Van Assche F, Clijster H. Effects of metal on enzyme activity in plants[J]. Plant Cell and Environment, 1990, 13: 195– 206.
    Wang B, Liu CQ, Wu Y. Effect of heavy metals on the activity of external carbonic anhydrase of microalga chlamydomonas reinhardtii and microalga from Karst Lakes[J]. Bulletin of Environmental Contamination and Toxicology, 2005, 74: 227– 233.
    Wendehenne D, Pugin A, Klessig D F, Durmer J. Nitric oxide:comparative synthesis and signaling in animal and plant cells[J]. Trends in Plant Science, 2001, 6 (4): 177– 183.
    Wierzbicka M. The effect of lead on the ultrastructure changes in the root tip of onion[J]. Cytobiol, 1986, 24: 340– 341.
    Xylaender M. Influence of mercury on the green alga Haematococcus lacustris. Inibition effects and recovery of inpact[J]. Botanica Acta, 1998, 111: 467– 473l.
    Yamasaki H, Shaniohi S, Takahashi S. An alternative path way for nitric oxide p roduction in plants: new feature of an old enzyme[J]. Trends in Plant Science, 1999, 4: 128– 129.
    Zhao LQ, Zhang F, Guo JK, Yang YL, Li BB, Zhang LX. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed[J]. Plant Physiology, 2004, 134: 849– 857.
    Zhang MK, Ke ZX. Copper and zinc enrichment in different size fractions of organic matter from polluted soils[J]. Pedosphere, 2004, 14: 27– 36.
    安志装,王校常,施卫明,严蔚东,曹志洪.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392– 396.
    安媛,王林.铅污染及其防治措施[J].内蒙古水力,2008,4(7):12– 12.
    曹莹,黄瑞冬,蒋文春,曹志强.重金属铅和镉对玉米品质的影响[J].沈阳农业大学学报,2005,36 (2):218– 220.
    慈恩,高明,王子芳,吴云,秦建成.镉对紫花苜蓿种子萌发与幼苗生长的影响研究[J]. 中国生态农业学报,2007,15(1):96– 98.
    崔桂霞,甄润英.国内外小麦生产现状及发展趋势[J].食品研究与开发,2005,26(2):13– 17.
    陈国祥,施国新. Hg、Cd对蔬菜越冬芽光合膜光合作用活性及多肽组分的影响[J].环境科学学报,1999,19(5):521– 525.
    陈世军,张明生,韦美玉. SNP处理的辣椒幼苗对Cd2+胁迫的生理响应[J].植物生理学通讯,2009,45(3):229– 232.
    杜连彩.植物耐铅生态型及对铅胁迫的耐性机理[J].生物学教学,2007,32(2):2– 3.
    杜连彩.铅对平邑甜茶·八楞海棠抗氧化物质和质膜相对透性的影响[J].安徽农业科学,2008,36(11):4395– 4396.
    邓丽英,邓西平,山仑.活性氧清除系统对干旱胁迫的响应机制[J].西北植物学报,2005,25(2):413– 418.
    付晓记,赵会杰,张秀月,张超男.外源一氧化氮供体硝普钠对涝害胁迫下牛膝叶细胞膜脂过氧化和光合作用的影响[J].植物生理学通讯,2007,43(4):717– 718.
    洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70– 75.
    胡正义,沈宏,曹志洪.不同Cu污染对花生POD、SOD活性及土壤酶活性的影响[J].环境科学,2000,21(2):62– 65.
    何述尧,胡学铭.浅论广州土壤环境Cd、砷、汞元素的残留农业[J].环境保护,1991,10(2):71– 72.
    郝怀庆,施国新,杜开和. Hg2+对水鳖(Hydrocharis dubia)叶片生理生化及超微结构的毒害效应[J].湖波科学,2001,13(2):163– 168.
    蒋文智.重金属镉对叶绿体超微结构的影响[J].广西科学,1995,2(2):21– 23.
    蒋帅英,陈瑛.镉对白菜种子萌发及幼苗生长的影响[J]. 2007,27(8):68– 72.
    江行玉,赵可夫.植物重金属伤害及其抗性机理[J].营养与环境生物学报,2001,(1):92– 99.
    敬岩,孙宝腾,符建荣.一氧化氮改善铁胁迫玉米光合组织机构及其活性[J].植物营养与肥料学报,2007,13(5):809– 815.
    李功藩,蔡琬平,吴亚君.叶绿体结构状态与光化学活性的关系[J].植物生理学报,1987,13(3):295– 301.
    李荣春. Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生
    态学报,2000,24(2):238– 242. 李合生,孙群,赵世杰.植物生理生化实验原理及技术[M].北京:高等教育出版社,2000,134– 137.
    李六林,杨佩芳,田彩芳.新红星苹果不同枝类叶片中叶绿素含量的变化[J].果树科学,1999,16(1):78– 80.
    李荣春. Cd、Pb及其复合污染对烟叶生理生化指标的影响[J].云南农业大学学报,1997,12(1):45– 49.
    李燕,马宗琪,王兴安,籍霞.植物对镉的耐性机理研究进展.现代农业科技,2008,2(5):112– 113.
    李铭心.重金属镉对莲藕生长发育的影响[J].华中农业大学,2005
    李秀珍,李珊.重金属对植物生长发育及其品质的影响[J].四川林业科技,2008,29 (4):59– 65.
    李锋民,熊治廷,王狄,王新立.铜铁铅单一及复合污染对铜草幼苗生长的影响[J].农业环境保护,2001,20(2):71– 73.
    刘家尧,衣艳君,张其德.盐胁迫对不同植物盐性小麦叶片荧光诱导动力学的影响[J]. 植物学通报,1998,15(20):46– 49.
    刘霞,刘树庆,王胜爱.河北主要土壤中Cd和Pb的形态分布及其影响因素[J].土壤学报,2003,40(3):393– 400.
    刘建新,王鑫,雷蕊霞.外源一氧化氮供体SNP对黑麦草种子萌发和幼苗生长的影响[J]. 生态学杂志,2007,26(3):393– 398.
    刘友良,毛才良,汪良驹.植物耐盐性研究进展[J].植物生理学通讯,1987,(4):1 – 6.
    刘建新.镉胁迫下玉米幼苗生理生态的变化[J].生态学杂志,2005,24(3):265– 268.
    刘素纯,萧浪涛,廖柏寒,鲁旭东,匡逢春,赵文魁,童建华.铅胁迫对黄瓜幼苗抗氧化酶活性及同工酶的影响[J]. 2006,17(2):300– 304.
    刘延盛,鲁家米,周晓阳. Pb在豌豆幼苗细胞中的超微结构分布与毒性研究[J]. 应用与环境生物学报,2007,13(5):647– 651.
    黎晓红,兰利琼,吴巧玉,刘翔,傅华龙.镉胁迫对小麦不同生育期活性氧代谢的影响[J].四川大学学报,2007,44(2):421– 424.
    卢声.土壤因素对蔬菜中重金属含量的影响分析[J].丹东纺专学报,2004,9(3):34– 38.
    梁五生,李德葆.一氧化氮对植物的生理和病理功能[J].植物生理学通讯,37(6):562– 569.
    梁英等,王帅,冯力霞,田传远.重金属胁迫对三角褐指藻生长及叶绿素荧光特性的影响[J].海洋环境科学,2009,28(4):374– 382.
    龚双姣,马陶武,姜业芳,陈军,刘应迪,李菁.镉胁迫下3种藓类植物抗氧化酶活性变化的比较研究[J].西北植物学报,2008,28(9):1765– 1771.
    龚红梅,李卫国.锌对植物的毒害及机理研究进展[J].安徽农业科学,2009,37(29):14009– 14015.
    郭笃发.环境中Pb和Cd的来源及其对人和动物的危害[J].环境科学,1994,12(3):71 – 76.
    柯世省.植物体内一氧化氮的来源和生理效应[J].生物学教学,2008,33(11):7– 9.
    马文丽,金小弟,王转花.镉处理对乌麦种子萌发幼苗生长及抗氧化酶的影响[J].农业环境科学学报,2004,23(1):55– 59.
    马剑敏,李今,张改娜,杨柯金,王林,吴振斌. Hg2+与POD复合处理对小麦萌发及幼苗生长的影响[J].植物学通报,2004,21(5):531– 538.
    马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探[J].植物生态学报,1998,22(4):373– 378.
    马俊莹,周睿,程炳蒿.类胡萝卜素与活性氧代谢的关系[J].山东农业大学学报,1997,28(4):518– 522.
    秦天才,吴玉树.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46– 50.
    秦天才,吴玉树.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18 (3):320– 325.
    邱琳,王娜,周青.镧对酸雨胁迫下高粱种子萌发及POD活性和MDA含量的影响[J].中国生态农业学报,2009,17(2):343– 347.
    全先庆,张渝洁,单雷,毕玉平.脯氨酸在植物生长和非生物胁迫耐受中的作用[J].生物技术通讯,2007,18(1):159– 162.
    彭金英,黄勇平.植物防御反应的两种信号转导途径及其相互作用[J].植物生理与分子生物学报,2005,31(4):347– 353.
    彭鸣,王焕校.镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426– 431.
    祁忠占,彭永康,宋玖雪.汞对蔬菜幼苗生长及抗氧化酶同工酶的研究[J].环境科学学报,1991,11(3):370– 374.
    任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112– 116.
    孙小霞.高羊茅对铅递进胁迫的生理响应[J].河南科技大学学报,2006,27(6):75– 78.
    孙塞初,王焕校,李启任.水生微管植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113– 121.
    苏桐,魏小红,丁学智,李源.外源NO与蔗糖对盐胁迫下番茄(Lycopersicon esculenturn Mill)幼苗氧化损伤的保护效应[J].生态学报,2008,28(4):1558– 1563.
    孙永林,刘法彬.梯度铅胁迫对黄瓜叶片脯氨酸和可溶性总糖含量的影响[J].化学与生物工程,2008,25(12):75– 76.
    邵云,姜丽娜,李向力,鲁旭阳,李春喜.五种重金属在小麦植株不同器官中的分布特征[J].生态环境,2005,14(2):204– 207.
    孙光闻.重金属污染及治理研究进展[J].南方农业,2007,1(2):41– 43.
    孙立荣,郝福顺,吕建周,吕鹏飞,赵世领.外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响[J].生态学报,2008,28(11):5714– 5722.
    唐东民,伍钧,唐勇,宗贵仪,曾容.重金属胁迫对植物的毒害及其抗性机理研究进展[J].四川环境,2008,27(5):79– 83. 汤章城.现代植物生理学实验指南[M].北京:科学出版社,1999:75– 81.
    谭晓荣,戴媛,李欢庆,冷进松.重金属镉对小麦幼苗生物大分子损伤的研究[J].安徽农业科,2006,34(17):4227– 4228.
    唐秀梅,龚春风,刘鹏,徐根嘀,蔡妙珍,吴琼鸯.镉胁迫下龙葵叶中三种抗氧化酶的活性和抗坏血酸含量的变化[J].植物生理学通讯,2008,44(6):1135– 1136.
    王焕校.污染生态学基础[M].昆明:云南大学出版社,1990:91– 108 .
    王国成,曹娴.镉胁迫下植物的应答和调控[J].内蒙古环境科学,2007,19(2):40– 43.
    王鹏程,杜艳艳,宋纯鹏.植物细胞一氧化氮信号转导研究进展[J].植物学报,2009,44(5):517– 525.
    汪健飞,邢素芝,段立珍,杨久峰.镉在杂交苏丹草中的积累和毒害效应[J].南京农业大学学报,2005,28(2):64– 68.
    魏学玲,史如霞,杨颖丽,王效维,张园园,刘艳,张辉. Pb2+胁迫对两种小麦幼苗生理特性影响的研究[J].植物研究,2009,29(6):714– 720.
    王友保,刘登义,张莉,郭虎.铜﹑砷及其复合污染对黄豆影响的初步研究[J].应用生态学报,2001,12(1):117– 120.
    王自霞,周小梅,范玲娟.几种环境胁迫对小麦生理生化特性的影响[J].山西大学学报,2008,31(1):128– 132.
    魏小红,王利民,龙瑞军,王根轩.外源一氧化氮、水杨酸和过氧化氢对烟草叶片游离氨基酸和可溶性蛋白含量的影响[J].植物生理与分子生物学学报,2006,32(2):257– 260.
    王松华. Cu对印度芥菜根中POD和SOD同工酶的影响[J].安徽技术师范学院学报,2004,18(2):34– 36.
    吴雪霞,朱月林,朱为民,陈建林.外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响[J].西北植物学报,2006,26(6):1206– 1211.
    王淼,李秋荣,付士磊,董白丽.外源一氧化氮对干旱胁迫下杨树光合作用的影响[J].应用生态学报,2005,16(2):218– 222.
    徐兆发,裴秀丛,杨敬华,李北利,李革新,陈爱莉,蔺心芳.镉污染区成年妇女肾功能状况追踪观察[J].环境与健康杂志,2003,20(30):131– 133.
    谢建治,张书延,刘树庆,李博文,赵新华.潮褐土重金属Cd污染对小白菜营养品质指标的影响[J].农业环境科学学报,2004,23(4):678– 682.
    谢传俊,杨集辉,周守标,柳后起,徐礼生.铅递进胁迫对假俭草和结缕草生理特性的影响[J].草业学报,2008,17(4):65– 70.
    肖强,郑海雷,陈瑶,黄伟滨,朱珠.盐度对互花米草生长及脯氨酸、可溶性糖和蛋白质含量的影响[J].生态学杂志,2005,24(4):373– 376.
    肖强,茹巧美,吴飞华,黄旋,裴真明,郑海雷.一氧化氮对水稻叶片中由镧引起的氧化胁迫的缓解作用[J].中国稀土学报,2007,25(6):745– 750.
    叶文景,肖强,朱珠,茹巧美,姜学霞,郑海雷.一氧化氮对NaCl处理下白骨壤幼苗活性氧代谢的调节[J].厦门大学学报,2006,45(21):105– 108.
    颜宏,矫爽,赵伟,闫修民,周道玮,姜百川.不同大小碱地肤种子的萌发耐盐性比较[J].草业学报, 2008,17(2):26– 32. 余国营,吴燕玉,王新.重金属复合污染对大豆生长的影响及其综合评价研究[J].应用生态学报,1995,6(4):433– 439.
    姚婧,陈雪梅,王友保.铅污染土壤对高羊茅种子萌发及幼苗生长的影响[J].上海交通大学学报,2008,26(1):61– 65.
    严重玲,洪业汤. Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488– 492.
    杨晓杰,张洪伟.水杨酸对盐胁迫下管花蒲公英的保护作用[J].植物研究,2006,26(2):222– 224.
    杨卫东,陈益泰.镉胁迫对旱柳细胞膜透性和抗氧化酶活性的影响[J].西北植物学报,2008,28(11):2263– 2269.
    杨丹慧.重金属对高等植物光合膜结构和功能的影响[J].植物学通报,1991,8(3):26– 29.
    杨居荣,鲍子平,张素芹.镉铅在植物体内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263– 268.
    杨居荣,贺建群,黄翌,蒋婉茹.农作物Cd耐性种内和种间差异Ⅰ种间差[J].应用生态学报,1994,5(2):192– 196.
    杨居荣,贺建群,张国祥,毛显强.农作物对毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87– 91.
    杨居荣,贺建群,张国祥,毛显强.不同耐性物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113– 117.
    尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,23(1):105– 110.
    阎成仕,李德全,张建华.冬小麦旗叶旱促衰老过程中氧化伤害与抗氧化系统的响应[J]. 西北植物学报,2000,20(4):568– 576.
    张霞,李妍.铅胁迫对补血草种子萌发和幼苗初期生长及膜透性的影响[J].德州学院学报,2007,23,(2):23– 25.
    张鑫荣,杨洪强,隋静,乔海涛,姜倩倩,冉昆,由淑贞,张龙.葡萄根系钙处理对叶片镉伤害的保护作用[J].园艺学报,2008,35(10):1405– 1410.
    张海燕,赵可夫.盐分和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究[J].植物学报,1998,40(1):56– 61.
    张远兵,刘爱荣,张雪平,黄守程.外源一氧化氮对铅胁迫下高羊茅生长和无机离子含量的影响[J].广西植物,2009,29(3):360– 365.
    张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学,2004,30(4):455– 459.
    张明生,谢波,谈锋.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13– 16.
    张玲玲,肖强,叶文景,杨建,朱珠.外源一氧化氮对氯化钠处理下秋茄幼苗抗氧化系统的调节效应[J].生态学杂志,2007,26(11):1732– 1737.
    张颖,高景惠.镉胁迫对红三叶种子萌发及幼苗生理特性的影响[J].西北农业学报,2007,16(3):57– 59.
    张华,沈文飚,徐朗莱.一氧化氮对渗透胁迫下小麦种子萌发及其活性氧代谢的影响[J].植物学报,2003,45(8):901– 905.
    张义贤.重金属对大麦(Hordeum vulgare)毒性的研究[J].环境科学学报,1997,17(2):199– 205.
    张义贤,张丽萍.重金属对大麦幼苗膜脂过氧化及脯氨酸和可溶性糖含量的影响[J].农业环境科学报,2006,25(4):857– 860.
    张玉秀,柴团耀,Ge rard Burkard.植物耐重金属机理研究进展[J].植物学报,1999,41(5):453– 457. 职明星,李秀菊.脯氨酸测定方法的改进[J].植物生理学通讯,2005,41(3):355– 357.
    朱志诚,贾东林.艾蒿群落生物量初步研究[J].中国草地,1997,5(9):6– 13.
    周鸿,曲仲湘,王焕校.铅对几种农作物的影响及迁移积累初探[J].环境科学学报,1983,3(3):222– 233.
    郑海龙,陈杰,邓文靖.六合蒋家湾蔬菜基地重金属污染现状与评价[J].土壤,2004,36(5):557– 560.
    郑春荣,陈怀满. Pb的植物效应.见陈满怀著土壤-植物系统中的重金属污染.北京:科学出版社,1996,238– 247.
    周永斌,殷有,苏宝玲,陈志坚,刘立伟.外源一氧化氮供体对几种植物种子的萌发和幼苗生长的影响[J].植物生理学通讯,2005,41(3):316– 318.
    赵鸿彬,张正斌,徐萍,曹红星. HgCl2胁迫对小麦幼苗水分利用效率和叶绿素含量的影响[J].西北植物学报,2007,27(12):2478– 2483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700