利用滴定法研究自然水体生物膜和沉积物及其主要组分对铅、镉的吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用选择性萃取法分离净月潭培养的生物膜和采集的沉积物中的主要组分,对生物膜和沉积物及二者的主要组分分别进行酸碱滴定实验,应用表面络合理论分析生物膜和沉积物及主要组分的表面质子特征。研究发现生物膜和沉积物均具有四个表面质子结合点位,生物膜四个点位pKa分别为4.64、6.39、7.84、9.53,沉积物四个点位pKa为5.22、7.01、8.37、9.53。通过吸附热力学实验,结合表面质子特征分析生物膜和沉积物在不同pH条件下生物膜和沉积物吸附重金属的规律。生物膜的点位浓度要明显高于沉积物的点位浓度,结合重金属阳离子的能力更强,因此生物膜对铅、镉的吸附要大于沉积物。
     本文对于深入了解自然水体中重金属与生物膜和沉积物等固相物质间相互作用的机制具有重要意义,进而有助于分析和预测重金属在水环境中的迁移转化规律。
Investigation on the sorption rule of heavy metal onto nature surface coatings and sediments is helpful to analysis and forecast the transference rule of heavy metal in nature water, for they both posess distinct sorption with heavy metal.
     Selective extraction was applied to separate the major components of nature surface coatings and sediments. Acid-base titration method was carried on studing the proton-binding sites characteristic of nature surface coatings, sediments and their major components, according to linear programming with nonlinear least squares fitting. Analysis the characteristics of surface proton-binding sites of nature surface coatings, sediments and their major components, also the relations of the components points and nature surface coatings and sediments points.
     Nature surface coatings and sediments were bring up and collected in jingyue pool.Founding the volume and dry weight relation to mesure the nature surface coatings and sediments. Choosing the extraction method by dong to extract nature surface coatings, and choose the improving method to extract sediments. Then quanlitified the TOC, iron oxides and manganese oxides in nature surface coatings and sediments.
     Take acid-base titration method on fore-and-aft extraction nature surface coatings and sediments. Each acidified solution was titrated with a 0.05 mol/L CO2-free NaOH solution in an anaerobic chamber. Titration was carried out by increasing the pH stepwise at 0.2 increments. The charge excess in the solution at each step was calculated from the concentration of NaOH and the pH value, the titration range is from 3 to 11. Each sample solution was titrated in duplicate.The data of charge excess versus pH were then analyzed by the linear programming method, as discussed in the following section. Fitting the charge excess versus pKa with nonlinear least squares fitting, figure out the surface binding site pKa and density.
     The test result educed that both nature surface coatings and sediments have four surface proton-binding sites, but the pKa of them are various for the different growing background. The unit mass density of points on nature surface coatings is higher than that on sediments; also each density of point is different. So the components in nature surface coatings and in sediments are various.
     Analysis the characteristics of heavy metal binding on nature surface coatings and sediments in various pH, applied adsorption thermodynamics method, according to surface proton-binding character. Take adsorption thermodynamics method in choosen pH of various metal concentions and in choosen metal concentions of various pH. The adsorption background is 150mL 0.1 mol/L KNO3, with mesurable Pb(NO3)2, Cd(NO3)2 in to form various concentions. Put measurable sorbents in background solution, used HNO3 and NaOH to adjusted pH,shake the adsorption system for 24 h. The equilibrium solution should filtered by 0.45μm decline hole membrane, that was extract in 25ml 15%HNO3 shaking 24h. Then observed Pb and Cd adsorption were analyzed by FAAS.
     That was found adsorption of lead and cadmium on nature surface coatings is higher than on sediments from adsorption data, for the density of points on nature surface coatings are higher than sediments, and the ability of binding ion is stronger. Nature surface coatings and sediments adosopt lead higher than cadium in low pH, and when manganese oxides are extracted the adsorption decrese, so the point 1 in manganese oxides is important to adsorption in low pH. The adsorption rule of iron oxides and organic matters are the same to increase with pH rise. The binding site 2 gives the leading effects to the most adsorption of lead after pH6. The binding site 2 and 3 give the leading effects to the most adsorption of cadmium after pH7. Take the same way to analysis the the adsorption rule of iron oxides and organic matters in sediments. The binding site 2 gives the leading effects to the most adsorption of lead after pH6.5. The point 2 and 3 give the leading effects to the most adsorption of cadmium after pH7.5.
     The test haves significance for understanding the mechanism of heavy metal and nature surface coatings and sediments, moreover help to analysis and forecast the transference rule of heavy metal in nature water.
引文
[1] Percival S.L., Knapp J.S., EdyveanR.et al, Biofilm development on stainless steel in main water. Wat.Res., 1998,32(1):243~253.
    [2] Hunt A.P., ParryJ.D., The effect of substratum roughness and river flowrate on the development of a fresh water biofilm community. Biofouling,1998,12(4):287~303.
    [3] Wimpenny J., Ecological determinants of biofilm formation. Biofoul-ing, 1996, 10(1-3):43~63.
    [4] Headley J.V., Gandrass J., Kuballa J. et a1., Rates of sorption and partitioning of contaminants in river biofilm. Environ. Sci. Technol, 1998, 32:3968~3973.
    [5] Schorer M., Eicele M., Accumulation of inorganic and organic pollutants by biofilm in the aquatic environment. Water ,Air and Soil Pollution,1997,99:651~659.
    [6] Dong, D., Nelson, Y.M., Lion, M.L., et al., Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides . Water Res. 2000,(34):427~436.
    [7] Dong D, Li Y, Hua X., Investigation of Fe, Mn Oxides and Organic Material in Surface Coatings and Pb, Cd Adsorption to Surface Coatings Developed in Different Natural Waters. Microchemical Journal, 2001, 70 (1): 25~33.
    [8] 董德明, 李鱼, 花修艺, 张菁菁. 自然水体中生物膜不同化学组分与铅、镉最大吸附量的关系.高等学校化学学报, 2001, 22(8):1379~1381.
    [9] Spath R.. Sorption properties of biofilms. Wat Sci Tech, 1998, 37(4~5):207
    [10] Moto yuki S.. Role of adsorption in water environment processes. Wat Sci Tech, 1997, 35(7):1~11.
    [11] NelsonYM, LionLW, ShulerML, etal. Environ Sci Technol, 1996, 30(6):2027
    [12] 董德明, 李鱼, 花修艺, 张菁菁. 自然水体中生物膜主要化学组分与水体中相关化学物质的关系. 高等学校化学学报. 2002, 23, 1507~1509.
    [13] Hunt, A.P., Parry, J.D. The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community. Biofouling. 1998, 12: 287~303.
    [14] Fuchs, S., Haritopoulou, T., Wilhelmi, M., Biofilms in freshwater ecosystems and their use as a pollutant monitor. Water Sci. Tech. 1996, 34, 137~140.
    [15] Rao, T.P.G., Venugopalan, V.P., Nair, K.V.K. Biofilm formation in a freshwater environment under photic and aphotic conditions. Biofouling. 1997, 11, 265~282.
    [16] 董德明, 李鱼, 花修艺, 张菁菁. 铁、锰氧化物在自然水体中生物膜上的分布.应用化学,2002,19(9):902~904.
    [17] 董德明,杨帆, 李鱼, 陈辉, 花修艺, 张菁菁. 自然水体生物膜上铁、锰氧化物生长速率的研究. 重庆环境科学, 25(4):10~13.
    [18] 黄岁梁, 万兆惠, 张朝阳, 王兰香. 泥沙粒径对重金属污染物吸附影响研究. 水利学报, 1994(10):53~60
    [19] Farag A.M., Woodward D.F., Goldstein J.M., et al, Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates and fish from the Coeur d’Alene River Basin, Idaho. Arch. Environ. Contam. Toxicol. , 1998. 34: 119~127.
    [20] 孟翊, 刘苍字, 程江. 长江口沉积物重金属元素地球化学特征及其底质环境评价. 海洋地质与第四纪地质, 23(3):37~43
    [21] Ditroro. AVS predictst the acute toxicity of Cd and Ni in sediments. Environ. Sci. Technol., 1992, 26:96~101.
    [22] Allen HE, G Fu, B Deng, Analysis of AVS and SEM of the estimation of potential toxicity in aquatic sediment. Environ. Toxicol. Chem., 1993, 12:1441~1453.
    [23] Chapman PM, Wang FW. Eco toxicology of Metal in Aquatic Sediments: Binding and Release, Bioavailability, Risk Assessment and Remediation. Can.J. Fish Aquat. Sci., 1999, 55:2221~2243.
    [24] G.A.BurtonJr, Sediment Toxicity Assessment. Lewis Publishers, Chelsea Michigan. 1992,241~266.
    [25] 李煌元, 吴思英. 镉的雌性性腺生殖毒性研究现状. 中国公共卫生. 2002. 18: 379~381.
    [26] 刘秀英, 王翔朴, 贺全仁. 镉对肝、肾毒性与谷胱甘肽含量的关系. 卫生毒理学杂志. 2001, 15: 31~32.
    [27] 朱凤鸣, 刘芳邹, 学贤. 昆明西郊镉污染对人体健康的影响. 中国卫生检验杂志. 2002, 12(5): 602~603
    [28] 韦佩珠. 铅的生殖毒性研究进展. 广西预防医学,2001, 7(增刊): 127~130.
    [29] 常学秀, 施晓东. 土壤重金属污染与食品安全. 云南环境科学. 2001, 20(增刊): 20~24.
    [30] 王鸿飞.环境镉污染及镉对环境暴露人群影响的研究.广东微量元素科学. 2002,9(7) : 24~28.
    [31] Forstner, V., Wittman, G.T.W. Metal Pollution in the Aquatic Environment. Springer~Verlag, Heidelberg, Germany, 1981.
    [32] Florence T.M. Trace element speciation and aquatic toxicology. Trends in Anal. Chem. 1983, 2: 162~166.
    [33] Schorer, M., Eisele, M., Accumulation of inorganic and organic pollutants by biofilms in the aquatic environment. Water Air Soil Pollut. 1997,99: 651~659.
    [34] 董德明, 李鱼, 花修艺, 张菁菁, 刘莉, 娄大伟.自然水体中生物膜对铜、锌、镉的富集作用. 科学技术与工程. 2002, 2 (3): 61~62.
    [35] 董德明, 纪亮, 花修艺, 李鱼, 郑娜.自然水体生物膜吸附 Co, Ni 和 Cu 的特征研究. 高等学校化学学报. 2004, 25 (2): 247~251.
    [36] 董德明, 李鱼, 花修艺, 邱立民, 张菁菁, 杨帆.pH 对湿地水环境中生物膜吸附铅、镉的影响. 吉林大学学报(理学版). 2002, 40 (3): 303~307.
    [37] 李鱼, 刘亮, 董德明, 杨帆, 花修艺, 张菁菁,有机氯类农药对自然水体生物膜吸附Pb、Cd能力的影响. 自然科学进展. 2003, 13 (8): 866~869.
    [38] K. Kr?pfl, Gy. Zaray, é. ács, Investigation of lead and nickel contaminated natural biofilms. Spectrochimica Acta Part B . 2003, 58: 2177~2181.
    [39] Meyers Philip A. ; Quinn James G. Organic matter on clay minerals and marine sediments-effect on adsorption of dissolved copper, phosphate, and lipids from saline solutions.Chemical Geology ,1974, 13(1): 63~68
    [40] Martinez, Carmen Enid; McBride, Murray B. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in aged ferrihydrite~organic matter systems. Environmental Science and Technology, 1999, 33(5):745~750
    [41] Farrah H., Hatton D. , Pickering W. F. The affinity of metal ions for clay surfaces.Chemical Geology , 1980, 28: 55~68
    [42] Aualiitia, T. U. , Pickering, W. F. The specific sorption of trace amounts of Cu, Pb, and Cd by inorganic particulates. Water, Air, & Soil Pollution, 1987,35 : 171 ~ 185
    [43] Adediran, Sulleiman A. , Kramer ,James R. Copper adsorption on clay, iron~manganese oxide and organic fractions along a salinity gradient . Applied Geochemistry, 1987,2(2): 213~216
    [44] 李改枝, 郭博书, 李景峰. 黄河水中沉积物与锌、镉液—固界面的作用. 环境污染与防治, 2001, 3(4):143~145.
    [45] 何江, 李朝生, 王新伟, 孙卫国, 米娜. 多离子体系中黄河沉积物对重金属的竞争吸附研究. 沉积学报, 2003, 21(3):500~505.
    [46] Hansen A. M.; Maya P. Adsorption-desorption behaviors of Pb and Cd in Lake Chapala, Mexico, Environment International, 1997, 23(4):553~ 564.
    [47] 文湘华, 杜青, 李莉莉, 汤鸿霄. 天然水体沉积物的表面特征.环境化学,1996,15(2):97 一 106.
    [48] 文湘华, 杜青, 汤鸿霄. 乐安江沉积物对重金属的吸附模式研究. 环境科学学报,1996,16(1):13 一 21
    [49] 杜青,文湘华,李莉莉,汤鸿霄.天然水体沉积物对重金属离子的吸附特性.环境化学,1996,15(3):199 一 200
    [50] Wen X.; Wu L.; Tang H. Adsorption of Copper on Polluted River Sediment .Environmental contamination and Toxicology,2001 67:913—920
    [51] 金相灿. 黄河中游悬浮物对铜、铅和锌的吸附与释放的研究. 中国环境科学. 1984, 4(4):
    [52] 庄云龙, 张沪春. 重金属在淀山湖沉积物上的吸附研究. 安全与环境学报. 2003, 3(1):37~39.
    [53] 翁仲颍, 黄延林. 沉积物粒度对重金属吸附的影响. 环境工程, 1996, 14(1):47~50..
    [54] Stumn w, Huang CP, Jenkins SR, Specifical chemical interaction affecting the stability of dispersed systems.Croat Chen Acta, 1970, 42:423—425.
    [55] 杜金洲, 褚泰伟, 陶祖贻. 表面络合模型的应用方法. 离子交换与吸附. 1995, 11(6):498~502.
    [56] 李学恒. 土壤化学. 北京:高等教育出版社,2001:185—198
    [57] 陶祖贻, 杜金洲. 离子交换树脂/水界面上的表面络合模型.离子交换与吸附.1994,10(1),49~54.
    [58] 陶祖贻,杜金洲.氧化物/水界面上的表面络合模型.离子交换与吸附.1994,10(2),112~118.
    [59] Westall,J. Hohl,H.Adv. A comparison of electrostatic models for the oxide/solution interface. Advances in Colloid and Interface Science. 1980, 12 (4), 265~294.
    [60] John Westall and Herbert Hohl. Colloid and interface sci.1980, 12,265.
    [61] Sposito,C. The surface Chemistry of Soils. 1884,5.
    [62] Schindler,P.W.. Stumm,W.. Aquatic Surface Chemistry.1987,4.
    [63] Hohl,H., Stumm,W. . Interaction of Pb2+ with hydrous γ-Al2O3. Colloid Interface Sci.1976,55,281.
    [64] Huang,C.P.,Stumm,W.. Specific adsorption of cations on hydrous γ-Al2O3. Colloid and Interface Science. 1973,43,409.
    [65] Cox J. S., Smith D. S., Warren L. A., Ferris F. G. Characterizing heterogeneous bacterial surface functional groups using discrete affinity spectra for proton binding. Environ. Sci. Technol. 1999, 33:4514~4521.
    [66] PeterG., Wightman. Measurement of bacterial surface protonation constants for two species at elevated temperatures. 2001,65(21):3657~3669.
    [67] Liu H., Fang Herbert H. P., Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering.2002, 81(7):806~811.
    [68] Raul E.Martinez, F.Grant Ferris. Chemical Equilibrium Modeling Ttechniques for the Analysis,of High~Resolution Bacterial Metal Sorption Data. Journal of Colloid and Interface Science .2001,243:73~80.
    [69] Raul E., Martinez, Karsten Pedersen, et al . Cadmium complexation by bacteriogenic iron oxides from a subterranean enbironment. Journal of Colloid and Interface Science .2004, 275:82~89.
    [70] wang F,Chen J,Forsling W. Modeling sorption of trace metals on natural sediments by surface complexation model. Environ. Sci. Technol., 1997, 31, 448~453
    [71] D.M. Dong, X.Y. Hua, Y. Li et al, Cd adsorption of components in different freshwater surface coatings: the importance role of ferromanganese oxides, Environ. Sci. Technol, 2003, 37, 4106~4112.
    [72] 路永正, 董德明, 刘亮, 沈秀娥, 花修艺. 松花江沉积物, 悬浮颗粒物和生物膜中主要组分对 Pb、Cu、Zn 的富集. 第三届全国环境化学学术大会论文集. 2005, 35~36.
    [73] 奚旦立. 环境工程手册·环境监测卷. 北京 :高等教育出版社, 1998, 4002404~4122414.
    [74] 李鱼, 刘亮, 董德明, 姜百川, 刘金凤, 王丽莉,自然水体生物膜上有机质的表征,吉林大学学报(理学版) 42(2).
    [75] Yen Y. S., Park D.H., Park J. M., Biosorption of trivalent chromium on the brown seaweed biomass. Environ. Sci. Technol.2001, 35:4514~4521.
    [76] Ceraik M., Borkovec M., Westall.J.C., Affinity distribution description of compotive ion binding to heterogeneous materials. Langmuir. 1996, 12:6127~6137.
    [77] Pagnanelli F., Veglio F., Toro L., Modelling of the acid-base properties of natural and synthetic adsorbent materials used for heavy metal removal from aqueous solutions. Chemosphere . 2004, 54 : 905~915.
    [78] Wingender J., Neu TR., Flemming HC., Microbial extracellular polymeric substances: characterization, structures and unction. Heidelberg: Springer~Verlag.1999.
    [79] Rudd T, Sterrit RM, Lester JN., Complexation of heavy metals by extracellular polymers in the activated sludge process. Water Pollut Control Fed .1984, 56:1260~1268.
    [80] Campbell M. K. Biochemistry; Harcourt Brace: NewYork, 1991.
    [81] McKenzie R.M., The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust. J. Soil Res. 1980. 18: 61~73.
    [82] Gray B. R., Hill W. R., Stewart A. J. Effects of development time, biomass and ferromanganese oxides on nickel sorption by stream periphyton. Environ. Pollut. 2001. 112: 61~71.
    [83] Chao T. T., Theobald Jr., P. K., The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geol. 1976. 71: 1560~1569
    [84] Müller B., Duffek A., Similar adsorption parameters for tracemetals with different aquatic particles. Aquat. Geochem. 2001. 7: 107~126.
    [85] Nelson Y.M., Lion M.L., Shuler M.L., Ghiorse W.C. Lead binding to metal oxide and organic phases of natural aquatic biofilms. Limnology. 1999. 44 (7): 1715~1729.
    [86] Nelson Y.M., Lion L.W., Shuler M.L., Ghiorse W.C. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Environ. Sci. Technol. 2002, 36: 421~425.
    [87] Cornell, R.M., Schwertmann, U., The Iron Oxides. Structure, Properties, Reactions, Occurrence and Uses, VCH, New York, 1996.
    [88] Tessier, A., Fortin, D., Belzile, N., et al, Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements, Geochim. Cosmochim. Acta, 1996, 60(30), 387~404.
    [89] 申献辰. 天然水化学, 中国环境科学出版社, 1994.
    [90] Brassed P., Kramer J. R., Collins P. V., Binding site analysis using linear programming. Environ. Sci. Technol.1990, 24:195~201.
    [91] Martell, A. E., Smith, R. M., Critical Stability Constants, Amino Acids; Plenum: New York, 1974, 1.
    [92] Hammond, Campbell M. K., Biochemistry; Harcourt Brace: NewYork, 1991.
    [93] Smith D. S., Ferris F. G., Proton binding by hydrous ferric oxide and aluminum oxide surfaces interpreted using fully optimized continuous pKa spectra. Environ. Sci. Technol. 2001, 35:4637~4643.
    [94] Kennedy C., Scott D. Smith, Surface chemistry and relative Ni sorptive capacities of synthetic hydrous Mn oxyhydroxides under variable wetting and drying regimes Geochimica et Cosmochimica Acta, 2004, 68(3):443~454.
    [95] 董德明, 花修艺, 李鱼, 康春莉. 不同水体生物膜中各化学组分对铅的吸附作用研究高等学校化学学报. 2002, 23:294~296.
    [96] 董德明, 李鱼, 花修艺, 张菁菁.自然水体中生物膜的主要化学组分与水体中相关化学物质的关系. 高等学校化学学报. 2002, 23(8):1507~ 1509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700