俄歇电子能谱仪的研制和Ar的快电子碰撞研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文介绍了作者在攻读硕士学位期间的研究工作,主要包括:俄歇电子能谱仪的设计和研制情况;用电子能量损失谱方法对氩原子的内壳层2p激发进行研究,结合Cowan code的计算,得到了各个跃迁的能级和自然宽度。
     在第一章中,主要介绍了俄歇电子能谱仪的建立目的。首先介绍了俄歇过程的基础知识,包括俄歇效应的概念、俄歇电子能量的计算、俄歇跃迁的选择定则以及空穴的制备等,对俄歇现象和光电离、X射线发射进行了比较,介绍了共振俄歇效应。然后介绍了基于同步辐射的俄歇能谱研究。最后介绍了电子激发的俄歇能谱仪在原子与分子物理中的应用,它可以用于原子分子内壳层、内价壳层以及自电离态的研究。
     在第二章中,介绍了本文设计和研制的俄歇电子能谱仪的情况。首先介绍了本文研制的俄歇电子能谱仪的总体设计和总体构造,它包括电子枪、作用室、电子透镜、电子能量分析器、高真空系统、电源供电系统、计算机数据采集和处理系统等。然后就谱仪的各个组成部分分别作了介绍,主要包括电子枪、电子透镜和能量分析器的结构、组成、各电极的电位及其性能指标等。
     在第三章中,用电子能量损失谱方法对氩原子内壳层2p的激发态进行了研究。在入射电子能量为2.5 keV、能量分辨为55 meV、散射角分别为0°和4°条件下得到了氩原子2p电子的内壳层激发电子能量损失谱。同时用Cowan code计算了2p激发的能级位置和中间耦合系数。结合理论计算和实验观测谱,标识了实验观测谱并得到了激发态2p_(3/2)~(_1)nl和2p_(1/2)~(-1)nl(n≤5)的能级和自然宽度。
     论文的最后部分是对硕士期间从事工作的总结及对未来进一步工作的建议和展望。
The main contents of this dissertation include two parts. The first is to design and construct an Auger electron spectrometer, and the other is to study the inner-shell excitations of 2p electrons of argon with the method of the electron energy loss spectroscopy.
     In chapter 1, the purpose of establishing the Auger electron spectrometer is introduced. First, the basics of Auger effect are given. Then the studies of Auger spectroscopy based on synchrotron radiation are described briefly. Finally, the applications of Auger spectroscopy based on electron excitation in atomic and molecular physics are described in detail, and we learn that the Auger electron spectrometer can be used to study the inner shell, inner valence shell and autoionization states of atoms and molecules.
     In chapter 2, the design and construction of Auger electron spectrometer are expatiated in detail. First, the overall design and structure of the spectrometer are present. And then each component of the spectrometer, i.e., electron gun, reaction chamber, electric lens, analyzer, high vacuum system, power supply system, computer data acquisition and processing system, are described in detail.
     In chapter 3, electron energy loss spectra of inner-shell excitations of 2p electrons of argon are measured at an incident electron energy of 2500 eV and scattering angles of 0°and 4°. The dipole-allowed and dipole-forbidden transitions are observed in the measured spectra and assigned based on the calculations of the Cowan code. The positions and line widths for the excitations are determined.
     The final part is the summarizations of the dissertation and the prospects for the future works.
引文
[1] P. Auger, J. de Phys. Radium 6, 205 (1925).
    [2] J. J. Lander, Phys. Rev. 91, 1382 (1953).
    [3] L. A. Harris, J. Appl. Phys. 39, 1419 (1968).
    [4] P. W. Palmberg, G. K. Bohn and J. C. Tracy, Appl. Phys. Lett. 15, 254 (1969).
    [5]陆家和,陈长彦等编著,表面分析技术,电子工业出版社,1987。
    [6] T. A.卡尔森著,王殿勋,郁向荣译,光电子和俄歇能谱学,科学出版社,1983。
    [7]徐克尊,陈向军,陈宏芳编著,近代物理学,中国科学技术大学出版社,2008。
    [8]薛增泉,吴全德编著,电子发射与电子能谱,北京大学出版社,1993。
    [9] G. B. Armen, H. Aksela, T. Aberg and S. Aksela, J. Phys. B 33, R49 (2000).
    [10] H. Aksela and S. Aksela, J. Elect. Spect. 100, 395 (1999).
    [11] M. Wolfsberg and M. L. Perlman, Phys. Rev. A 99, 1833 (1955).
    [12] F. Gel’mukhanov and H. Agren, Phys. Rep. 312, 87 (1999).
    [13] L. Ungier and T. D. Thomas, Phys. Rev. Lett. 53, 435 (1984).
    [14] L. Ungier and T. D. Thomas, J. Chem. Phys. 82, 3146 (1985).
    [15] G. S. Brown, M. H. Chen, B. Crasemann and G. E. Ice, Phys. Rev. Lett. 45, 1937 (1980).
    [16] T. A. Carlson, D. R. Mullins, C. E. Beall, B. W. Yates, J. W. Taylor, D. W. Lindle, B. P. Pullen and F. A. Grimm, Phys. Rev. Lett. 60, 1382 (1988).
    [17] T. A. Carlson, D. R. Mullins, C. E. Beall, B. W. Yates, J. W. Taylor, D. W. Lindle and F. A. Grimm, Phys. Rev. A 39, 1170 (1989).
    [18] A. Kivimaki, A. Naves de Brito, S. Aksela, H. Aksela, O. P. Sairanen, A. Ausmees, S. J. Osborne, L. B. Dantas and S. Svensson, Phys. Rev. Lett. 71, 4307 (1993).
    [19] Z. F. Liu, G. M. Bancroft, K. H. Tan and M. Schachter, Phys. Rev. A 48, R4019 (1993).
    [20] T. LeBrun, S. H. Southworth, G. B. Armen, M. A. Macdonald and Y. Azuma, Phys. Rev. A 60, 4667 (1999).
    [21] U. Hergenhahn, A. De Fanis, G. Prümper, A. K. Kazansky, N. M. Kabachnik andK. Ueda, Phys. Rev. A 73, 022709 (2006).
    [22]朱林繁编著,原子分子物理实验方法。
    [23] A. Fahlman, K. Hamrin, R. Nordberg, C. Nordling and K. Siegbahn, Phys. Lett. 20, 159 (1966).
    [24] K. Siegbahn, C. Nordling, G.. Johansson, J. Hedman, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmaik, L. O. Werme, R. Manne and Y. Baer, ESCA Applied to Free Molecules (North-Holland, Amsterdam-London, 1969).
    [25] L. F. Zhu, H. D. Cheng, X. J. Liu, P. Tian, Z. S. Yuan, W. B. Li and K. Z. Xu, Chin. Phys. Lett. 20, 1718 (2003).
    [26] U. Fano, Phys. Rev. 124, 1866 (1961).
    [27] U. Fano and J. W. Cooper, Phys. Rev. A 137, 1364 (1965).
    [1]华中一,顾昌鑫编著,电子光学,复旦大学出版社,1993。
    [2]凤任飞,博士论文,中国科学技术大学,1993。
    [3]张以忱编著,电子枪与离子束技术,冶金工业出版社,2004。
    [4]范岚岚,硕士论文,中国科学技术大学,2005。
    [5]陆家和,陈长彦等编著,表面分析技术,电子工业出版社,1987。
    [6]刘小井,博士论文,中国科学技术大学,2001。
    [7]姜维春,博士论文,中国科学技术大学,2008。
    [1] S. M. Huttula, S. Hein?sm?ki, H. Aksela, J. Tulkki, A. Kivim?ki, M. Jurvansuu and S. Aksela, Phys. Rev. A 63, 032703 (2001).
    [2] S. Fritzsche, J. Nikkinen, S. M. Huttula, H. Aksela, M. Huttula and S. Aksela, Phys. Rev. A 75, 012501 (2007).
    [3] R. Sankari, A. Kivim?ki, M. Huttula, T. Matila, H. Aksela, S. Aksela, M. Coreno, G. Turri, R. Camilloni, M. de Simone and K. C. Prince, Phys. Rev. A 65, 042702 (2002).
    [4] S. Ricz, A. Kover, M. Jurvansuu, D. Varga, J. Molnar and S. Aksela, Phys. Rev. A 65, 042707 (2002).
    [5] B. Paripas, G. Vitez, G. V?kor, K. Tokesi, A. Calo, R. Sankari, M. Huttula, S. Aksela and H. Aksela, J. Phys. B 37, 4507 (2004).
    [6] G. C. King, M. Tronc, F. H. Read and R. C. Bradford, J. Phys. B 10, 2479 (1977).
    [7] D. A. Shaw, G. C. King, F. H. Read and D. Cvejanovic, J. Phys. B 15, 1785 (1982).
    [8] M. Domke, T. Mandel, A. Puschmann, C. Xue, D. A. Shirley, G. Kaindl, H. Petersen and P. Kuske, Rev. Sci. Instrum. 63, 80 (1992).
    [9] O. P. Sairanen, A. Kivim?ki, E. Nommiste, H. Aksela and S. Aksela, Phys. Rev. A 54, 2834 (1996).
    [10] X. W. Fan and K. T. Leung, Phys. Rev. A 62, 062703 (2000).
    [11] R. F. Feng, S. L. Wu, Y. H. Liu, Q. Ji and K. Z. Xu, Acta Phys. Sin. 46, 1901 (1997).
    [12] S. L. Wu, Z. P. Zhong, R. F. Feng, S. L. Xing, B. X. Yang and K. Z. Xu, Phys. Rev. A 51, 4494 (1995).
    [13] X. J. Liu, L. F. Zhu, X. M. Jiang, Z. S. Yuan, B. Cai, X. J. Chen and K. Z. Xu, Rev. Sci. Instrum. 72, 3357 (2001).
    [14] R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981).
    [15] R. E. H. Clark, J. Abdallah, G. Csanak and S. P. Kramer, Phys. Rev. A 40, 2935(1989).
    [16] R. E. H. Clark, G. Csanak and J. Abdallah, Phys. Rev. A 44, 2874 (1991).
    [17] H. D. Cheng, L. F. Zhu, Z. S. Yuan, X. J. Liu, J. M. Sun, W. C. Jiang and K. Z. Xu, Phys. Rev. A 72, 012715 (2005).
    [18]成华东,博士论文,中国科学技术大学,2005。
    [19]徐克尊著,高等原子分子物理学,科学出版社,2006。
    [20] M. Jurvansuu, A. Kivim?ki and S. Aksela, Phys. Rev. A 64, 012502 (2001).
    [21] M. Nakamura, M. Sasanuma, S. Sato, M. Watanabe, H. Yamashita, Y. Iguchi, A. Ejiri, S. Nakai, S. Yamaguchi, T. Sagawa, Y. Nakai and T. Oshio, Phys. Rev. Lett. 21, 1303 (1968).
    [22] H. Aksela, S. Aksela, H. Pulkkinen, G. M. Bancroft and K. H. Tan, Phys. Rev. A 37, 1798 (1988).
    [23] J. Mursu, H. Aksela, O. P. Sairanen, A. Kivim?ki, E. Nommiste, A. Ausmees, S. Svensson and S. Aksela, J. Phys. B 29, 4387 (1996).
    [24] A. Hiltunen, T. Kylli, J. Mursu, O. P. Sairanen, H. Aksela and S. Aksela, J. Electron Spectrosc. Relat. Phenom. 87, 203 (1998).
    [25] Z. S. Yuan, L. F. Zhu, X. J. Liu, W. B. Li, H. D. Cheng, J. M. Sun and K. Z. Xu, Phys. Rev. A 71, 064701 (2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700