肿瘤特异性标志及生物靶向纳米制剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的发生、发展、浸润和转移等生物学特性都是多基因参与、多步骤调控的过程。随着多种蛋白组学技术的发展,使得以承担生命活动的基本执行体的蛋白质水平的高通量研究成为可能,同样从蛋白质整体水平进行研究则更有可能来揭示肿瘤的本质,更有可能发现信号传导途径中的关键节点蛋白,找到具有应用价值的靶点蛋白,进而使得个体化诊断和靶向治疗得以飞速发展。
     本课题首先采用比较蛋白组学的高通量技术,筛选和验证与乳腺癌耐药和转移相关蛋白质标志物。成功建立并优化了双向凝胶电泳分离细胞总蛋白的方法,并对部分存在显著差异表达的蛋白质进行了MALDI-TOF/MS质谱鉴定,获得了差异表达蛋白的肽质量指纹图谱(PMF),通过生物信息学的方法进行检索,最终识别出11个差异表达蛋白。这些差异表达蛋白分别涉及肿瘤转移、能量代谢、细胞增殖等,另外还包括一个功能未知蛋白。针对筛选并经过验证的相关基因Annexin a2,应用RNA干扰技术降低人高转移乳腺癌MDA-MB-231细胞中Annexin a2蛋白的表达水平,获得3株Annexin a2表达水平下降80%-100%的稳定细胞株。进一步的细胞功能学实验结果发现Annexin a2表达与高转移乳腺癌细胞的增殖、迁移和侵袭等生物学特性相关,并证实了Annexin a2通过与转录因子STAT3相互作用影响增殖相关基因(c-myc和cyclinD1)和转移相关基因(MMP-2及MMP-9)的表达的作用机制。结果证明Annexin a2在肿瘤进展过程中承担着重要作用,其有可能成为抑制肿瘤增殖和转移的有效的药物靶点。
     同时在课题组前期工作基础上,我们以肿瘤细胞膜上高表达的叶酸受体作为靶点,通过将聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid),PLGA)微球制备技术同脂质体制备技术相结合,制备了具有核壳结构的纳米载体(folicacid modifed lipid-shell and polymer-core nanoparticles, FLPNPs)。该载体包括了核结构PLGA、赖氨酸壳聚糖十八烷基季铵盐(octadecyl-quaternized l ysinemodified chitosan,OQLCS)作为脂质体的壳、靶向制剂(叶酸)和胆固醇。我们的研究数据表明,包裹脂质体层后,纳米载体的突释作用得到了明显的减弱。流式细胞术和共聚焦显微镜证实,不仅在叶酸受体高表达的Hela细胞还是在叶酸受体低表达的A549细胞中,FLPNPs均显示出较强的细胞内吞能力。体内外实验证实,包载紫杉醇的FLPNPs具有较强的抗肿瘤作用,且毒副作用较小;体内药物分布实验证实,FLPNPs组肿瘤内的药物浓度高于紫杉醇注射液组。上述实验结果证明,包载紫杉醇的FLPNPs作为抗癌纳米药物制剂,具有较高的应用前景。
The de velopment and p rogression of c ancer a re c ommonly t hought t o be amultistep cell-biological process that involves multi-gene disorder and coordination ofmulti c ellular pa thways, thus, the s tudy of a s ingle gene of ten cannot reflect t heentire process of cancer pr ogression. W ith t he a dvancement of pr oteomics, hi ghthroughput techniques have been developed to make it possible to study the complexcellular activities, and to uncover the molecular mechanism of tumorigenesis and gainnew m echanistic i nsights i nto c ancer. In a ddition, i dentification of ke y proteinscontributed t o c ancer p rogression i n t he pr otein-protein i nteraction ne tworks w illprovide novel diagnostic and prognostic biomarkers and potential therapeutic targetsfor cancer, even facilitating the development of personalized, molecularly targetedtherapy.
     In the present study, we employ a2D-PAGE and MS based high throughputcomparative proteomics approach t o s creen a nd i dentify pr oteins responsible f ormetastasis and drug resistance of breast cancer. We have successfully established andoptimized two-dimensional ge l e lectrophoresis method f or t he s eparation of t otalcellular protein and identify11di fferentially expressed proteins by using MALDI-TOF/MS followed by a database search. S everal reports showed that these proteinsare involved in tumor metastasis, energy metabolism, and cell proliferation. Withinthese proteins, Anxa2was significantly up-regulated and was further confirmed usingwestern blotting assay. S mall int erference R NA-mediated gene dow n r egulationdemonstrated that Anxa2was responsible for enhanced cell proliferation, migrationand invasion of the MDA-MB-231cells. Further analysis also found that Anxa2alsoplays an important role in the regulation of the expression of proliferation associatedgenes (c-myc and cyclin D1) and metastasis associated genes (MMP-2and MMP-9)through interaction with STAT3. Take together, our results showed that Anxa2maybe a pot ential biomarker f or cancer and m ay b e de veloped i nto a n e ffective drugtargets to inhibit tumor growth and metastasis.
     Meanwhile, we also produced a nanocarrier with folic acid modifed lipid-shelland pol ymer-core na noparticles (FLPNPs) by c ombining poly(D,L-lactide-co-glycolide)(PLGA) microspheres w ith l iposome technology. T he na nocarrier w ascomposed of a P LGA core s urrounded b y a s hell m ade of PEGylated octadecyl-quaternized lysine modifed chitosan (PEG-OQLCS), and targeted to folate receptor, which was highly expressed on t he tumor cell membrane. Our data showed that thetrend of burst release was more apparent for P LGANPs than that of LPNPs andFLPNP. The lipid and FAmodfied lipid outside the PLGA NPs retarded the PTXrelease f rom t he P LGAN Ps. The i nternalization fecfiency of FLPNPs weredemonstrated i n FR-positive H ela can cer cell a nd FR-negative A549c ell b yfowcytometry and confocal microscopy. In vitro and in vivo studies demonstrated thatPTX l oaded F LPNPs not onl y e xhibits a hi gher a ntitumor a ctivity but a lsosignifcantly reduces the toxicity and improves the bioavailability as compared to thatof the commercial PTX formulation (Taxol). Our data indicate that PTX loadedFLPNPs are a promising nano-sized drug formulation for cancer therapy.
引文
[1] Alers J C, Rochat J, Krijtenburg P J, et al.,Identification of genetic markers forprostatic cancer progression, Lab Invest,2000,80(6):931-42.
    [2] Fiebiger W, Wiltschke C,[Tumor markers], Acta Med Austriaca,2001,28(2):33-7.
    [3] Wong I H, Lo Y M,New markers f or c ancer detection, C urr O ncol R ep,2002,4(6):471-7.
    [4] Spandidos D A, Liloglou T, Field J K,Prognostic significance of oncogenesand tumor suppressor genes in human malignancy, Stem Cells,1993,11(3):194-8.
    [5] Munger K,Disruption of oncogene/tumor suppressor networks during humancarcinogenesis, Cancer Invest,2002,20(1):71-81.
    [6] Sugita M, Geraci M, Gao B, et al.,Combined use of oligonucleotide and tissuemicroarrays identifies cancer/testis antigens as biomarkers in lung carcinoma,Cancer Res,2002,62(14):3971-9.
    [7] Vogelstein B, K inzler K W,The m ultistep na ture of c ancer, T rends G enet,1993,9(4):138-41.
    [8] Glaser S L, Hsu J L, Gulley M L,Epstein-Barr virus and breast cancer: state ofthe evi dence for vi ral c arcinogenesis, Cancer E pidemiol B iomarkers P rev,2004,13(5):688-97.
    [9] von M ensdorff-Pouilly S, S nijdewint F G, V erstraeten A A, e t a l.,HumanMUC1mucin: a multifaceted glycoprotein, Int J Biol Markers,2000,15(4):343-56.
    [10] Hayes D F, Sekine H, Ohno T, et al.,Use of a murine monoclonal antibody fordetection of circulating plasma DF3antigen levels in breast cancer patients, JClin Invest,1985,75(5):1671-8.
    [11] Hayes D F, Zurawski V R, Jr., Kufe D W,Comparison of circulating CA15-3and c arcinoembryonic antigen l evels i n p atients w ith breast c ancer, J ClinOncol,1986,4(10):1542-50.
    [12] Van de Vijver M J,Assessment of the need and appropriate method for testingfor t he hum an e pidermal g rowth f actor r eceptor-2(HER2), E ur J C ancer,2001,37Suppl1:11-7.
    [13] Wada N, Ishii S, Ikeda T, et al.,Serum tartrate resistant acid phosphatase as apotential m arker of bo ne m etastasis f rom br east can cer, A nticancer Res,1999,19(5C):4515-21.
    [14] Wada N, Fujisaki M, Ishii S, et al.,Evaluation of bone metabolic markers inbreast cancer with bone metastasis, Breast Cancer,2001,8(2):131-7.
    [15] Gunnarsson C, Ahnstrom M, Kirschner K, et al.,Amplification of HSD17B1and ERBB2in primary breast cancer, Oncogene,2003,22(1):34-40.
    [16] Tsutsui S, O hno S, Murakami S, e t a l.,Prognostic s ignificance of t hecoexpression of p53pr otein a nd c-erbB2i n breast c ancer, A m J S urg,2003,185(2):165-7.
    [17] Cho H S, Mason K, Ramyar K X, et al.,Structure of the extracellular region ofHER2alone and in complex with the Herceptin Fab, Nature,2003,421(6924):756-60.
    [18] Klapper L N, Glathe S, Vaisman N, et al.,The ErbB-2/HER2oncoprotein ofhuman carcinomas may function solely as a shared coreceptor for multiplestroma-derived growth factors, Proc Natl Acad Sci U S A,1999,96(9):4995-5000.
    [19] Slamon D J, Leyland-Jones B, S hak S, e t al.,Use of c hemotherapy plus amonoclonal ant ibody against H ER2for m etastatic br east can cer thatoverexpresses HER2, N Engl J Med,2001,344(11):783-92.
    [20] Fuchs I B, Landt S, Bueler H, et al.,Analysis of HER2and HER4in humanmyocardium to clarify the cardiotoxicity of trastuzumab (Herceptin), BreastCancer Res Treat,2003,82(1):23-8.
    [21] Lu C, Speers C, Zhang Y, et al.,Effect of epidermal growth factor receptorinhibitor on de velopment of estrogen receptor-negative mammary tumors, JNatl Cancer Inst,2003,95(24):1825-33.
    [22] Dannenberg A J, A ltorki N K, B oyle J O, e t a l.,Cyclo-oxygenase2: apharmacological target for the prevention of cancer, Lancet Oncol,2001,2(9):544-51.
    [23] Subbaramaiah K, N orton L, G erald W, e t al.,Cyclooxygenase-2i soverexpressed in HER-2/neu-positive breast cancer: evidence for involvementof AP-1and PEA3, J Biol Chem,2002,277(21):18649-57.
    [24] Subbaramaiah K, Hart J C, N orton L, et a l.,Microtubule-interfering a gentsstimulate the transcription of cyclooxygenase-2. Evidence for involvement ofERK1/2AND p38mitogen-activated protein kinase pathways, J Biol Chem,2000,275(20):14838-45.
    [25] Dolan J T, Miltenburg D M, Granchi T S, et al.,Treatment of metastatic breastcancer w ith somatostatin a nalogues--a m eta-analysis, A nn S urg O ncol,2001,8(3):227-33.
    [26] Lu Y, Zi X, Zhao Y, et al.,Insulin-like growth factor-I receptor signaling andresistance to trastuzumab (Herceptin), J Natl Cancer Inst,2001,93(24):1852-7.
    [27] Yu D, Jing T, Liu B, et al.,Overexpression of ErbB2blocks Taxol-inducedapoptosis by upregulation of p21Cip1, which inhibits p34Cdc2kinase, MolCell,1998,2(5):581-91.
    [28] Nayeem A, Scheraga H A,A statistical analysis of side-chain conformations inproteins: comparison with ECEPP predictions, J Protein Chem,1994,13(3):283-96.
    [29] Wu N Z, D a D, R udoll T L, e t a l.,Increased microvascular pe rmeabilitycontributes to preferential accumulation of Stealth liposomes in tumor tissue,Cancer Res,1993,53(16):3765-70.
    [30] Muggia F M, Hainsworth J D, Jeffers S, et al.,Phase II study of liposomaldoxorubicin i n r efractory ov arian c ancer: a ntitumor a ctivity and t oxicitymodification by liposomal encapsulation, J Clin Oncol,1997,15(3):987-93.
    [31] Perez A T, Domenech G H, Frankel C, et al.,Pegylated liposomal doxorubicin(Doxil) f or m etastatic br east can cer: t he C ancer R esearch Network, Inc.,experience, Cancer Invest,2002,20Suppl2:22-9.
    [32] Osoba D, Northfelt D W, Budd D W, et al.,Effect of treatment on health-related quality of life in acquired immunodeficiency syndrome (AIDS)-relatedKaposi's s arcoma: a r andomized trial of pe gylated-liposomal dox orubicinversus dox orubicin, bl eomycin, a nd vi ncristine, C ancer Invest,2001,19(6):573-80.
    [33] Chen S, Pan J, Liao X,[The experiment of pegylated liposomal doxorubicin totherapy tongue cancer and metastases lymph nodes], Zhonghua Kou Qiang YiXue Za Zhi,2001,36(5):338-40.
    [34]孟胜男,赵希贤,姜翠莲, et al.,大肠癌特异性卡莫氟免疫脂质体的体外抗癌活性研究,沈阳药科大学学报,2003,20(5):3.
    [35] Atobe K, Ishida T, Ishida E, et al.,In vitro efficacy of a sterically stabilizedimmunoliposomes ta rgeted to membrane t ype1matrix me talloproteinase(MT1-MMP), Biol Pharm Bull,2007,30(5):972-8.
    [36] Sudimack J J, Adams D, Rotaru J, et al.,Folate receptor-mediated liposomaldelivery of a lipophilic boron agent to tumor cells in vitro for neutron capturetherapy, Pharm Res,2002,19(10):1502-8.
    [37] Turk M J, Waters D J, Low P S,Folate-conjugated liposomes preferentiallytarget m acrophages as sociated with ovarian car cinoma, Cancer Lett,2004,213(2):165-72.
    [38] Mertz D P,[Origin and development of the terms "german" and "German" I.Historic reflection to the present], Versicherungsmedizin,2007,59(2):97-8.
    [39] Kakinuma K, Tanaka R, Takahashi H, et al.,Targeting ch emotherapy f ormalignant br ain t umor us ing t hermosensitive l iposome a nd l ocalizedhyperthermia, J Neurosurg,1996,84(2):180-4.
    [40] Oku N, Naruse R, Doi K, et al.,Potential usage of thermosensitive liposomesfor macromolecule delivery, Biochim Biophys Acta,1994,1191(2):389-91.
    [41] Bianco A, Hoebeke J, Kostarelos K, et al.,Carbon nanotubes: on t he road todeliver, Curr Drug Deliv,2005,2(3):253-9.
    [42] Pantarotto D, P artidos C D, H oebeke J, e t a l.,Immunization w ith pe ptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibodyresponses, Chem Biol,2003,10(10):961-6.
    [43] Singh R, P antarotto D, M cCarthy D, e t a l.,Binding a nd c ondensation ofplasmid DNA onto functionalized carbon nanotubes: toward the constructionof na notube-based gene de livery v ectors, J A m C hem S oc,2005,127(12):4388-96.
    [44] Bianco A, Hoebeke J, Godefroy S, et al.,Cationic carbon nanotubes bind toCpG oligodeoxynucleotides and enhance their immunostimulatory properties,J Am Chem Soc,2005,127(1):58-9.
    [45] Ajima K, Yudasaka M, Murakami T, et al.,Carbon nanohorns as anticancerdrug carriers, Mol Pharm,2005,2(6):475-80.
    [46] Murakami T, Ajima K, M iyawaki J, et a l.,Drug-loaded carbon na nohorns:adsorption and release of dexamethasone in vitro, Mol Pharm,2004,1(6):399-405.
    [47] Shiba K, Yudasaka M, Iijima S,[Carbon nanohorns as a novel drug carrier],Nihon Rinsho,2006,64(2):239-46.
    [48] Pastorin G, Wu W, Wieckowski S, et al.,Double functionalization of carbonnanotubes for multimodal drug delivery, Chem Commun (Camb),2006,(11):1182-4.
    [49] McDevitt M R, Chattopadhyay D, Kappel B J, et al.,Tumor targeting withantibody-functionalized, r adiolabeled c arbon na notubes, J N ucl M ed,2007,48(7):1180-9.
    [50] Liu Z, Cai W, He L, et al.,In vivo biodistribution and highly efficient tumourtargeting of carbon nanotubes in mice, Nat Nanotechnol,2007,2(1):47-52.
    [51] Bottini M, Bruckner S, Nika K, et al.,Multi-walled carbon nanotubes induce Tlymphocyte apoptosis, Toxicol Lett,2006,160(2):121-6.
    [52] Lin C, F ugetsu B, S u Y, e t a l.,Studies on to xicity o f mul ti-walled carbonnanotubes on Arabidopsis T87suspension cells, J Hazard Mater,2009,170(2-3):578-83.
    [53] Soto K, Garza K M, Murr L E,Cytotoxic effects of aggregated nanomaterials,Acta Biomater,2007,3(3):351-8.
    [54] Lam C W, James J T, McCluskey R, et al.,Pulmonary toxicity of single-wallcarbon nanotubes in mice7and90days after intratracheal instillation, ToxicolSci,2004,77(1):126-34.
    [55] Kobayashi N, Naya M, Mizuno K, et al.,Pulmonary and systemic responses ofhighly pur e and w ell-dispersed s ingle-wall c arbon na notubes afterintratracheal instillation in rats, Inhal Toxicol,2011,23(13):814-28.
    [56] Muller J, Huaux F, Moreau N, et al.,Respiratory toxicity of multi-wall carbonnanotubes, Toxicol Appl Pharmacol,2005,207(3):221-31.
    [57] Lam C W, J ames J T, McCluskey R, e t a l.,A review of c arbon na notubetoxicity and assessment of pot ential occupational and environmental healthrisks, Crit Rev Toxicol,2006,36(3):189-217.
    [58] Manna S K, Sarkar S, Barr J, et al.,Single-walled carbon nanotube inducesoxidative stress and activates nuclear transcription factor-kappaB in humankeratinocytes, Nano Lett,2005,5(9):1676-84.
    [59] Li Z, H ulderman T, S almen R, e t a l.,Cardiovascular e ffects of pul monaryexposure t o s ingle-wall c arbon nanotubes, E nviron H ealth P erspect,2007,115(3):377-82.
    [60] Wang H, Wang J, Deng X, et al.,Biodistribution of carbon single-wall carbonnanotubes in mice, J Nanosci Nanotechnol,2004,4(8):1019-24.
    [61] Parkin D M, Bray F, Ferlay J, et al.,Global cancer statistics,2002, CA CancerJ Clin,2005,55(2):74-108.
    [62] Alvarez E, E lliott B E, H oughton A N, e t a l.,Heritable hi gh frequencymodulation of a ntigen expression i n ne oplastic c ells e xposed t o5-aza-2'-deoxycytidine or h ydroxyurea: analysis a nd i mplications, C ancer R es,1988,48(9):2440-5.
    [63] Li J, X u L Z, H e K L, e t a l.,Reversal e ffects of nom egestrol a cetate onmultidrug r esistance in adriamycin-resistant M CF7breast c ancer cel l l ine,Breast Cancer Res,2001,3(4):253-63.
    [64] Bredel M, Slavc I, Birner P, et al.,DNA topoisomerase IIalpha expression inoptic pathway gliomas of childhood, Eur J Cancer,2002,38(3):393-400.
    [65] Depeille P, Cuq P, Mary S, et al.,Glutathione S-transferase M1and multidrugresistance protein1act in synergy to protect melanoma cells from vincristineeffects, Mol Pharmacol,2004,65(4):897-905.
    [66] Hanauske A R, Sundell K, Lahn M,The role of protein kinase C-alpha (PKC-alpha) in cancer and its modulation by the novel PKC-alpha-specific inhibitoraprinocarsen, Curr Pharm Des,2004,10(16):1923-36.
    [67] Pallis M, T urzanski J, Higashi Y, e t a l.,P-glycoprotein i n a cute m yeloidleukaemia: therapeutic implications of its association with both a multidrug-resistant and an apoptosis-resistant phenotype, Leuk Lymphoma,2002,43(6):1221-8.
    [68] Ralhan R, Swain R K, Agarwal S, et al.,P-glycoprotein is positively correlatedwith p53in human oral pre-malignant and malignant lesions and is associatedwith poor prognosis, Int J Cancer,1999,84(1):80-5.
    [69] Juliano R L, Ling V,A surface glycoprotein modulating drug permeability inChinese ha mster ova ry cell m utants, B iochim B iophys A cta,1976,455(1):152-62.
    [70] Mechetner E, Kyshtoobayeva A, Zonis S, et al.,Levels of multidrug resistance(MDR1) P-glycoprotein expression by human breast cancer correlate with invitro resistance to taxol and doxorubicin, Clin Cancer Res,1998,4(2):389-98.
    [71] Chung H C, Rha S Y, Kim J H, et al.,P-glycoprotein: the intermediate endpoint of drug response to induction chemotherapy in locally advanced breastcancer, Breast Cancer Res Treat,1997,42(1):65-72.
    [72] Cole S P, Bhardwaj G, Gerlach J H, et al.,Overexpression of a transporter genein a multidrug-resistant human lung cancer cell line, Science,1992,258(5088):1650-4.
    [73] Nooter K, de la Riviere G B, Klijn J, et al.,Multidrug resistance protein inrecurrent breast cancer, Lancet,1997,349(9069):1885-6.
    [74] Scheper R J, Broxterman H J, Scheffer G L, et al.,Overexpression of a M(r)110,000ve sicular pr otein i n non-P-glycoprotein-mediated mul tidrugresistance, Cancer Res,1993,53(7):1475-9.
    [75] Meschini S, Marra M, Calcabrini A, et al.,Role of the lung resistance-relatedprotein (LRP) in the drug sensitivity of cultured tumor cells, Toxicol In Vitro,2002,16(4):389-98.
    [76] Goto S, Y oshida K, Morikawa T, et a l.,Augmentation of t ransport f orcisplatin-glutathione a dduct in cisplatin-resistant canc er cel ls, Cancer Res,1995,55(19):4297-301.
    [77] Daniel V,Glutathione S-transferases: ge ne s tructure a nd r egulation ofexpression, Crit Rev Biochem Mol Biol,1993,28(3):173-207.
    [78] Fidler I J,The pathogenesis of cancer metastasis: the 'seed and soil' hypothesisrevisited, Nat Rev Cancer,2003,3(6):453-8.
    [79] Talvensaari-Mattila A, Paakko P, Hoyhtya M, et al.,Matrix metalloproteinase-2immunoreactive protein: a m arker of aggressiveness in breast carcinoma,Cancer,1998,83(6):1153-62.
    [80] Freije J M, Diez-Itza I, Balbin M, et al.,Molecular cloning and expression ofcollagenase-3, a nove l hum an m atrix m etalloproteinase pr oduced b y br eastcarcinomas, J Biol Chem,1994,269(24):16766-73.
    [81] Maestro R, Dei Tos A P, Hamamori Y, et al.,Twist is a potential oncogene thatinhibits apoptosis, Genes Dev,1999,13(17):2207-17.
    [82] Olson E N, Klein W H,bHLH factors in muscle development: dead lines andcommitments, what to leave in and what to leave out, Genes Dev,1994,8(1):1-8.
    [83] Yang J, M ani S A, Donaher J L, et a l.,Twist, a m aster r egulator ofmorphogenesis, plays an essential role in tumor metastasis, Cell,2004,117(7):927-39.
    [84] Hoek K, Rimm D L, Williams K R, et al.,Expression profiling reveals novelpathways in the transformation of melanocytes to melanomas, Cancer R es,2004,64(15):5270-82.
    [85] Wang X, Ling M T, Guan X Y, et al.,Identification of a novel function ofTWIST, a bHLH protein, in the development of acquired taxol resistance inhuman cancer cells, Oncogene,2004,23(2):474-82.
    [86] Das S, S hetty P, V alapala M, et a l.,Signal t ransducer a nd a ctivator oftranscription6(STAT6) is a novel interactor of annexin A2in prostate cancercells, Biochemistry,2010,49(10):2216-26.
    [87] Mickleburgh I, Burtle B, Hollas H, et al.,Annexin A2binds to the localizationsignal in the3' untranslated region of c-myc mRNA, FEBS J,2005,272(2):413-21.
    [88] Motokura T, A rnold A,PRAD1/cyclin D1pr oto-oncogene: g enomicorganization,5' DNA s equence, a nd s equence o f a t umor-specificrearrangement breakpoint, Genes Chromosomes Cancer,1993,7(2):89-95.
    [89] Quelle D E, Ashmun R A, Shurtleff S A, et al.,Overexpression of mouse D-type cyclins accelerates G1phase in rodent fibroblasts, Genes Dev,1993,7(8):1559-71.
    [90] Butt A, Davison M D, Smith G J, et al.,Chromatographic separations as aprelude to two-dimensional electrophoresis in proteomics analysis, Proteomics,2001,1(1):42-53.
    [91] Wasinger V C, Cordwell S J, C erpa-Poljak A, e t a l.,Progress w ith g ene-product mapping of the Mollicutes: Mycoplasma genitalium, Electrophoresis,1995,16(7):1090-4.
    [92] Wilkins M R, Pasquali C, Appel R D, et al.,From proteins to proteomes: largescale protein identification by two-dimensional electrophoresis and amino acidanalysis, Biotechnology (N Y),1996,14(1):61-5.
    [93] Klose J, von Wallenberg-Pachaly H,Changes of soluble protein populationsduring organogenesis of mouse embryos as revealed by protein mapping, DevBiol,1976,51(2):324-31.
    [94] Cordwell S J, Wasinger V C, Cerpa-Poljak A, et al.,Conserved motifs as thebasis for recognition of homologous proteins across species boundaries usingpeptide-mass fingerprinting, J Mass Spectrom,1997,32(4):370-8.
    [95] Castoro J A, W ilkins C L,Ultrahigh r esolution m atrix-assisted laserdesorption/ionization o f s mall pr oteins b y F ourier t ransform massspectrometry, Anal Chem,1993,65(19):2621-7.
    [96] Wright G L, J r.,High r esolution t wo-dimensional pol yacrylamideelectrophoresis of human serum proteins, Am J Clin Pathol,1972,57(2):173-85.
    [97] Elrick M M, Walgren J L, Mitchell M D, et al.,Proteomics: recent applicationsand new technologies, Basic Clin Pharmacol Toxicol,2006,98(5):432-41.
    [98] Wulfkuhle J D, M cLean K C, P aweletz C P, et al.,New appr oaches t oproteomic analysis of breast cancer, Proteomics,2001,1(10):1205-15.
    [99] Li J, Zhang Z, Rosenzweig J, et al.,Proteomics and bioinformatics approachesfor i dentification of s erum bi omarkers t o de tect br east c ancer, C lin C hem,2002,48(8):1296-304.
    [100] Weiss W, Gorg A,High-resolution two-dimensional electrophoresis, MethodsMol Biol,2009,564:13-32.
    [101] Kaufmann R,Matrix-assisted l aser de sorption ionization (MALDI) m assspectrometry: a novel analytical tool in molecular biology and biotechnology,J Biotechnol,1995,41(2-3):155-75.
    [102] Beavis R C, Chait B T,Rapid, sensitive analysis of protein mixtures by massspectrometry, Proc Natl Acad Sci U S A,1990,87(17):6873-7.
    [103] Chen R, Yalcin T, Wallace W E, et al.,Laser de sorption i onization andMALDI time-of-flight ma ss s pectrometry for low mol ecular masspolyethylene analysis, J Am Soc Mass Spectrom,2001,12(11):1186-92.
    [104] Zaluzec E J, Gage D A, Watson J T,Matrix-assisted laser desorption ionizationmass spe ctrometry: a pplications in peptide and protein characterization,Protein Expr Purif,1995,6(2):109-23.
    [105] Mazurek S, Z werschke W, Jansen-Durr P, e t a l.,Metabolic c ooperationbetween different oncogenes during cell transformation: interaction betweenactivated ras and HPV-16E7, Oncogene,2001,20(47):6891-8.
    [106] Herzog B, Waltner-Law M, Scott D K, et al.,Characterization of the humanliver fructose-1,6-bisphosphatase gene promoter, Biochem J,2000,351Pt2:385-92.
    [107] Mazurek S, G rimm H, B oschek C B, et al.,Pyruvate ki nase t ype M2: acrossroad in the tumor metabolome, Br J Nutr,2002,87Suppl1: S23-9.
    [108] Koss K, Harrison R F, Gregory J, et al.,The metabolic marker tumour pyruvatekinase t ype M2(tumour M2-PK) s hows i ncreased e xpression a long t hemetaplasia-dysplasia-adenocarcinoma sequence in Barrett's oesophagus, J ClinPathol,2004,57(11):1156-9.
    [109] Fella K, G luckmann M, H ellmann J, e t a l.,Use of t wo-dimensional g elelectrophoresis i n pr edictive t oxicology: i dentification of pot ential earlyprotein biomarkers in chemically induced hepatocarcinogenesis, Proteomics,2005,5(7):1914-27.
    [110] Muindi J R, Peng Y, Wilson J W, et al.,Monocyte fructose1,6-bisphosphataseand cytidine de aminase e nzyme a ctivities: potential pha rmacodynamicmeasures of calcitriol effects in cancer patients, Cancer Chemother Pharmacol,2007,59(1):97-104.
    [111] Gerke V, M oss S E,Annexins a nd m embrane d ynamics, B iochim BiophysActa,1997,1357(2):129-54.
    [112] Erikson E, E rikson R L,Identification o f a c ellular p rotein s ubstratephosphorylated by the avian sarcoma virus-transforming gene product, Cell,1980,21(3):829-36.
    [113] Radke K, Martin G S,Transformation by Rous sarcoma virus: effects of srcgene expression on the synthesis and phosphorylation of cellular polypeptides,Proc Natl Acad Sci U S A,1979,76(10):5212-6.
    [114] Eberhard D A, Karns L R, VandenBerg S R, et al.,Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11binding, J Cell Sci,2001,114(Pt17):3155-66.
    [115] Glenney J R, Jr., Tack B F,Amino-terminal sequence of p36and associatedp10: identification of the site of tyrosine phosphorylation and homology withS-100, Proc Natl Acad Sci U S A,1985,82(23):7884-8.
    [116] Regnouf F, Sagot I, Delouche B, et al.,"In vitro" phosphorylation of annexin2heterotetramer b y p rotein ki nase C. C omparative pr operties of t heunphosphorylated and phosphorylated annexin2on the aggregation and fusionof chromaffin granule membranes, J Biol Chem,1995,270(45):27143-50.
    [117] Filipenko N R, MacLeod T J, Yoon C S, et al.,Annexin A2is a novel RNA-binding protein, J Biol Chem,2004,279(10):8723-31.
    [118] Tatenhorst L, Rescher U, Gerke V, et al.,Knockdown of annexin2decreasesmigration of hum an glioma c ells i n vi tro, N europathol A ppl N eurobiol,2006,32(3):271-7.
    [119] Kern W F, Spier C M, Miller T P, et al.,NCAM (CD56)-positive malignantlymphoma, Leuk Lymphoma,1993,12(1-2):1-10.
    [120] Harvey B E, Thomas P,Inhibition of CMP-sialic acid transport in human liverand colorectal cancer cell lines by a sialic acid nucleoside conjugate (KI-8110),Biochem Biophys Res Commun,1993,190(2):571-5.
    [121] Takano R, Muchmore E, Dennis J W,Sialylation and malignant potential intumour cell glycosylation mutants, Glycobiology,1994,4(5):665-74.
    [122] Das C, Hoang Q Q, Kreinbring C A, et al.,Structural basis for conformationalplasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1,Proc Natl Acad Sci U S A,2006,103(12):4675-80.
    [123] Maki A, Mohammad R M, Smith M, et al.,Role of ubiquitin carboxyl terminalhydrolase in the differentiation of human acute lymphoblastic leukemia cellline, Reh, Differentiation,1996,60(1):59-66.
    [124] Seliger B, F edorushchenko A, Brenner W, et al.,Ubiquitin C OOH-terminalhydrolase1: a bi omarker of renal cell carcinoma associated with enhancedtumor cell proliferation and migration, Clin Cancer Res,2007,13(1):27-37.
    [125] Miyoshi Y, N akayama S, T orikoshi Y, e t a l.,High e xpression of ubi quitincarboxy-terminal h ydrolase-L1and-L3mRNA predicts early recurrence inpatients with invasive breast cancer, Cancer Sci,2006,97(6):523-9.
    [126] Coletta R D, Almeida O P, V argas P A,Cytokeratins1,7a nd14immunoexpression a re he lpful i n t he di agnosis of ba saloid s quamouscarcinoma, Histopathology,2006,48(6):773-4.
    [127] Sezer O, N iemoller K, Jakob C, e t a l.,Relationship be tween bone m arrowangiogenesis and plasma cell infiltration and serum beta2-microglobulin levelsin patients with multiple myeloma, Ann Hematol,2001,80(10):598-601.
    [128] Levin I, K uperman O, G oldstein J, e t a l.,Cellular B-2microglobulinexpression as a pr ognostic i ndicator i n renal cel l car cinoma, Acta O ncol,1991,30(8):941-5.
    [129] Miller D S, Blessing J A, Bodurka D C, et a l.,Evaluation of pe metrexed(Alimta, LY231514) as second line chemotherapy in persistent or recurrentcarcinoma of the cervix: a phase II study of the Gynecologic Oncology Group,Gynecol Oncol,2008,110(1):65-70.
    [130] Ajani J A, Ilson D H, Kelsen D P,Paclitaxel in the treatment of patients withupper gastrointestinal carcinomas, Semin Oncol,1996,23(5Suppl12):55-8.
    [131] Ajani J A, Ilson D H, Da ugherty K, et a l.,Paclitaxel in the tr eatment ofcarcinoma of the esophagus, Semin Oncol,1995,22(3Suppl6):35-40.
    [132] Rose P G, B lessing J A, B uller R E, et a l.,Prolonged or al e toposide i nrecurrent or adva nced non-squamous cel l carcinoma o f t he c ervix: aGynecologic Oncology Group study, Gynecol Oncol,2003,89(2):267-70.
    [133] Horwitz S B,Taxol (paclitaxel): m echanisms of action, Ann Oncol,1994,5Suppl6: S3-6.
    [134] McCarthy J S, Tannock I F, Degendorfer P, et al.,A Phase II trial of docetaxeland c isplatin i n pa tients w ith recurrent or m etastatic na sopharyngealcarcinoma, Oral Oncol,2002,38(7):686-90.
    [135] Chua D T, Sham J S, Au G K,A phase II study of docetaxel and cisplatin asfirst-line chemotherapy in patients with metastatic nasopharyngeal carcinoma,Oral Oncol,2005,41(6):589-95.
    [136] Arbuck S G,Taxol (paclitaxel): future directions, Ann Oncol,1994,5Suppl6:S59-62.
    [137] Liebmann J, Cook J A, Mitchell J B,Cremophor EL, solvent for paclitaxel, andtoxicity, Lancet,1993,342(8884):1428.
    [138] Bangham A D, Standish M M, Watkins J C,Diffusion of univalent ions acrossthe lamellae of swollen phospholipids, J Mol Biol,1965,13(1):238-52.
    [139] Bangham A D,Membrane models with phospholipids, Prog Biophys Mol Biol,1968,18:29-95.
    [140] Tyrrell D A, Heath T D, C olley C M, e t a l.,New a spects of l iposomes,Biochim Biophys Acta,1976,457(3-4):259-302.
    [141] Gregoriadis G,Liposomes in the therapy of lysosomal storage diseases, Nature,1978,275(5682):695-6.
    [142] Liu Y, Li K, Pan J, et al.,Folic acid conjugated nanoparticles of mixed lipidmonolayer s hell a nd bi odegradable pol ymer core f or t argeted de livery ofDocetaxel, Biomaterials,2010,31(2):330-8.
    [143] Latagliata R, Breccia M, Fazi P, et al.,Liposomal daunorubicin versus standarddaunorubicin: l ong t erm f ollow-up of t he GIMEMA G SI103A MLErandomized t rial i n pa tients ol der t han60years w ith a cute m yelogenousleukaemia, Br J Haematol,2008,143(5):681-9.
    [144] Mitchell P L, Marlton P, Grigg A, et a l.,A phase I I s tudy of liposomaldaunorubicin, i n c ombination w ith c yclophosphamide, vi ncristine andprednisolone, i n e lderly pa tients w ith pr eviously untreated a ggressive non-Hodgkin lymphoma, Leuk Lymphoma,2008,49(5):924-31.
    [145] Di Legge A, Trivellizzi I N, Moruzzi M C, et al.,Phase2trial of nonpegylateddoxorubicin (Myocet) a s s econd-line t reatment i n advanced or r ecurrentendometrial cancer, Int J Gynecol Cancer,2011,21(8):1446-51.
    [146] Slingerland M, Guchelaar H J, Gelderblom H,Liposomal drug formulations incancer therapy:15years along the road, Drug Discov Today,2012,17(3-4):160-6.
    [147] Kim D H, Martin D C,Sustained release of dexamethasone from hydrophilicmatrices us ing P LGA na noparticles f or ne ural dr ug de livery, Biomaterials,2006,27(15):3031-7.
    [148] Astete C E, S abliov C M,Synthesis a nd c haracterization of PLGAnanoparticles, J Biomater Sci Polym Ed,2006,17(3):247-89.
    [149] Jain R A,The manufacturing techniques of various drug loaded biodegradablepoly(lactide-co-glycolide)(PLGA) devices, Biomaterials,2000,21(23):2475-90.
    [150] Weitman S D, Weinberg A G, Coney L R, et al.,Cellular localization of thefolate receptor: potential role in drug toxicity and folate homeostasis, CancerRes,1992,52(23):6708-11.
    [151] Jin C, Bai L, Wu H, et al.,Cytotoxicity of paclitaxel incorporated in PLGAnanoparticles on hypoxic human tumor cells, Pharm Res,2009,26(7):1776-84.
    [152] Changsan N, Chan H K, Separovic F, et al.,Physicochemical characterizationand stability of rifampicin liposome dry powder formulations for inhalation, JPharm Sci,2009,98(2):628-39.
    [153] Liang X F, Wang H J, Luo H, et al.,Characterization of novel multifunctionalcationic pol ymeric l iposomes f ormed f rom oc tadecyl qua ternizedcarboxymethyl c hitosan/cholesterol a nd dr ug e ncapsulation, Langmuir,2008,24(14):7147-53.
    [154] Wang H, Zhao P, Su W, et al.,PLGA/polymeric liposome for targeted drugand gene co-delivery, Biomaterials,2010,31(33):8741-8.
    [155] Liu J, Stace-Naughton A, Jiang X, et al.,Porous nanoparticle supported lipidbilayers (protocells) as delivery vehicles, J Am Chem Soc,2009,131(4):1354-5.
    [156] Wang H, Z hao P, L iang X, et a l.,Folate-PEG coa ted cationic m odifiedchitosan--cholesterol liposomes for tumor-targeted drug delivery, Biomaterials,2010,31(14):4129-38.
    [157] Litzinger D C, Huang L,Amphipathic poly(ethylene glycol)5000-stabilizeddioleoylphosphatidylethanolamine liposomes accumulate in spleen, BiochimBiophys Acta,1992,1127(3):249-54.
    [158] Xu Z, G u W, H uang J, e t a l.,In vi tro a nd i n vivo e valuation of a ctivelytargetable nanoparticles for paclitaxel delivery, Int J Pharm,2005,288(2):361-8.
    [159] Paleos C M, T siourvas D, S ideratou Z,Molecular e ngineering of de ndriticpolymers and their application as drug and gene delivery systems, Mol Pharm,2007,4(2):169-88.
    [160] Mu L, Feng S S,Fabrication, characterization and in vitro release of paclitaxel(Taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spraydrying t echnique with lipid/cholesterol e mulsifiers, J C ontrol R elease,2001,76(3):239-54.
    [161] Danhier F, Lecouturier N, Vroman B, et al.,Paclitaxel-loaded PEGylatedPLGA-based nanoparticles: in vitro and in vivo evaluation, J Control Release,2009,133(1):11-7.
    [162] Liu J, Jiang X, Ashley C, et al.,Electrostatically mediated liposome fusion andlipid exchange with a n anoparticle-supported bi layer for control of s urfacecharge, drug containment, and delivery, J Am Chem Soc,2009,131(22):7567-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700