受荷索杆机构的运动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以索杆张力结构的施工成形、攀达穹顶的顶升施工等问题为背景,将这些体系抽象为受荷杆系或索杆机构,重点对其运动形态解析理论进行研究。主要工作包括以下四个方面内容:
     (1)提出了一种基于有限元法的杆系机构运动路径分析方法。以驱动杆长度为控制变量,建立了受荷杆系机构运动的基本方程,并引入弧长法实现运动路径的自动求解。
     (2)将运动形态的稳定判别引入到受荷杆系机构运动分析的有限元法中。通过考察系统切线刚度矩阵最小特征值的变化,来跟踪机构运动形态的稳定性。提出了精确定位运动路径上奇异点的牛顿法求解策略,并对奇异点的分岔条件进行了严谨的理论解释。通过引入由切线刚度矩阵零空间基底组成的干扰力,来实现分岔路径的跟踪。
     (3)在传统动力松弛法中引入弧长法,提出了一种改进的受荷索杆机构运动解析方法。该方法不仅保留了动力松弛法计算效率高的特点,且结合弧长法可实现索杆结构运动路径的自动跟踪。更重要的,通过在动力松弛法中引入与切向刚度矩阵零空间基底相关的初始干扰速度,也可实现受荷索杆机构运动分岔路径的跟踪。
     (4)结合实际工程,对一种新型的月牙形索桁罩棚结构施工成形过程进行了分析。针对建议的施工方案,采用本文提出的方法对体系的成形过程进行了数值模拟,并分析了体系提升过程中的形态变化特征。基于该罩棚结构的1:15模型,进一步对其施工成形过程进行了试验,验证了建议施工方法的可行性。通过测试值和理论值的比较,也验证了本文提出的运动形态分析方法的正确性。
Based on the background of the problems such as construction of cable-strut tensile structures and jacking process of Panta Dome, these systems are abstracted to be load-bearing mechanisms consisting of cables and bar elements, and the theoretical kinematic analysis of the mechanism is focused in this paper. The main work includes:
     (1) A kinematic path analysis method for the pin-bar mechanism is presented based on the finite element method. The basic kinematic equations of the load-bearing pin-bar mechanism are established and the elongations of the driving bars are taken as the control parameters. The arc-length method is employed so the kinematic path can be traced automatically.
     (2) The kinematic configuration stability criterion is introduced into the kinematic analysis of the load-bearing pin-bar mechanism. The minimal eigenvalue of the tangent stiffness matrix is employed to determinate the stability of the equilibrium configuration on the kinematic path. The method for pinpointing the singular point on the kinematic path based on the Newton method is presented. The bifurcation conditions of the singular point are explained theoretically. In order to trace the bifurcation paths, the disturbing force depend on the zero space vector of the tangent stiffness matrix is introduced.
     (3) The arc-length method is introduced into the traditional dynamic relaxation method, and a modified method for the load-bearing cable-bar mechanism kinematic analysis is presented. The high computational efficiency of the dynamic relaxation method is preserved, and the automatic path tracing can be realized combined with the arc-length method. More importantly, the bifurcation path can be traced by introducing the initial disturbing velocity depended on the zero space vector of the tangent stiffness matrix into the modified method.
     (4) The construction process of the novel crescent-shaped cable-strut tensile structure is analyzed based on a practical application. Numerical simulation of the recommended construction process is carried out by the proposed method, and the characteristics of the structure during the construction are analyzed. Based on the1:15experimental model of the tensile structure, the hoisting experiment of the construction process is conducted to verify the recommended construction scheme. The results of the experiment are compared with the numerical simulation and the proposed method is verified.
引文
[1]Escrig F. Expandable space structures[J]. International Journal of Space Structures, 1985,1(2):79-91.
    [2]Guest S D, Pellegrino S. A new concept for solid surface deployable antennas[J]. Acta Astronautica,1996,38(2):103-113.
    [3]Gantes G C. Deployable structures:analysis and design[M]. WIT Press, Southampton, 2001.
    [4]余永辉.开合屋盖结构的设计.浙江大学硕士学位论文.杭州:浙江大学.2004.
    [5]赵孟良.空间可展结构展开过程动力学理论分析、仿真及实验.浙江大学博士学位论文.杭州:浙江大学.2007.
    [6]陈务军,张淑杰.空间可展结构体系与分析导论[M].中国宇航出版社,2006.
    [7]陈务军.空间展开桁架结构设计原理与展开动力学分析理论研究[D].浙江大学博士学位论文.杭州:浙江大学,1998.
    [8]Luo Y, Yu Y, Liu J. A Retractable structure based on Bricard linkages and rotating rings of tetrahedral. International Journal of Solids and Structures,2008,45:620-630.
    [9]Geiger D H, Stenfaniuk A, Chen D. The design and construction of two cable domes for the Korean Olympics[A]. In:Proceedings of the International Association of Space Structures-American Society of Civil Engineering. Int. Symp. Osaka:1986,2:265-272.
    [10]Levy M P. The Georgia Dome and beyond achieving lightweight-long span structures[A]. Proceedings of IASS-ASCE International Symposium, Atlanta,1994:560-562.
    [11]钱若军,杨莲萍.张力结构的分析、设计、施工[M].东南大学出版社,2003.
    [12]朱昊梁,孙文波,耿艳丽等.深圳宝安体育场屋盖索膜结构设计[J].钢结构,2009,24(10):1~50.
    [13]Maxwell J C. On the calculation of the equilibrium and stiffness of frames. Scientific Papers of J.C.Maxwell. Cambridge, U.K.:Cambridge University Press,1890.
    [14]邓华,姜群峰.环形张力索桁罩棚结构施工过程的形态分析[J].土木工程学报,2005,38(6): 1-7.
    [15]姜群峰.松弛索杆体系的形态分析和索杆张力机构的施工成形研究[D].浙江大学硕 士论文.杭州:浙江大学.2004.
    [16]赵宝军.索穹顶结构多种预应力张拉施工方法的全过程分析[D].浙江大学硕士学位论文,杭州:浙江大学,2007.
    [17]Kawaguchi M. Engineering aspects of space frames[A]. Current and Emerging Technologies of Shell and Spatial Structures[C], In:Proceedings of the International Association of Space Structures Colloquium. Madrid,1997:51-62
    [18]川口卫,陈志华译.奈良大会堂与攀达穹顶体系[J],空间结构,1998,4(4):55-60.
    [19]王小盾.攀达穹顶结构体系的理论分析与工程实践研究[D].天津大学博士学位论文.天津:天津大学,2003.
    [20]Chen Y. Design of structural mechanisms[D]. Ph.D dissertation, Department of Engineering Science, University of Oxford,2003.
    [21]罗尧治,胡宁,董石麟,肖炽等.108mx90m柱面网壳结构整体提升施工方法[J].科技通报,2003,19(4):324-329.
    [22]Tarnai T. Simultaneous static and kinematic indeterminacy of space trusses with cyclic symmetry [J].1980. International Journal of Solids and Structures,1980,16:347-359.
    [23]Calladine C R. Buckminster Fuller's'Tensegrity'Structures and Clerk Maxwell's Rulers for the Construction of Stiff Frames[J]. International Journal of Solids and Structures, 1978,14(2):161-172.
    [24]Tanaka H, Hangai Y. Rigid body displacement and stabilization conditions of unstable truss structures[C]. Shells, Membrane and Space Frames, Proc of IASS Symposium. Osaka:IASS,1986,2:55-62.
    [25]Pellegrino S, Calladine C R. Matrix Analysis of Statically and Kinematically Indeterminate Frameworks[J]. International Journal of Solid and Structures, 1986,22(4):409-428.
    [26]Pellegrino S. Analysis of Prestressed Mechanisms[J]. International Journal of Solids and Structures,1990,26(12):1329-1350.
    [27]Calladine C R, Pellegrino S. First-order Infinitesimal Mechanisms[J]. International Journal of Solids and Structures,1991,27(4):505-515.
    [28]Kuznetsov E N. On immobile kinematic chains and a fallacious matrix analysis[J]. Journal of Applied Mechanics.1989,56(1):222-224
    [29]Kuznetsov E N. Underconstrained structural systems[J]. International Journal of Solids and Structures,1988,24(2):153-163.
    [30]Kuznetsov E N. System with infinitesimal mobility [J]. Journal of Applied Mechanics.1991,58(2):513-526
    [31]Kunznetsov E N. Compound infinitesimal mechanisms [J]. Journal of Applied Mechanics, 1993,60(1):244-266.
    [32]Tarnai T, Szabo J. On the exact equation of inextensional, kinematically indeterminate assemblies[J]. Computers and Structures,2000,75:145-155.
    [33]Tarnai T. Higher order infinitesimal mechanisms Acta Tech. Acad. Sci. Hung,102 (1989), pp.363-378.
    [34]Vassart N, Laporte R. Determination of mechanisms's order for kinamatically and statically indetermined systems[J]. International of Journal of Solids and Structures, 2000,37(28):3807-3839.
    [35]沈金,楼俊晖,邓华.杆系机构的可动性和运动分岔分析[J].浙江大学学报(工学版),2009,43(6):1083-1089.
    [36]Deng H, Kwan ASK. Unified classification of stability of pin-jiointed bar assemblies[J]. International Journal of Solids and Structures,2005,42(15):4393-4413.
    [37]Hoberman C. Radial expansion retraction truss structures. US patent,5024031.1991.
    [38]Takayuki K, Kakuma Okazaki, et al. Development of a "Hingeless Mast" and its application[J]. Acta Astronautica,1998,17(3):341-346.
    [39]Pellegrino S. Deployable Structures[M]. Springer, New York,2001.
    [40]Pellegrino S. Large retractable appendages in spacecraft[J]. Journal of Spacecraft and Rockets,1995,32(6):1006-1014.
    [41]You Z, Pellegrino S. Foldable bar structures[J]. International Journal of Solids and Structures,1997,34(15):1825-1847.
    [42]Pellegrino S, Guest S D. Solid mechanics and its applications[C].IUTAM-IASS symposium on deployable structures:theory and applications, Kluwer academic publishers, 1998.
    [43]Gantes C J, Konitopoulou E. Geometric design of arbitrarily curved bi-stable deployable arches with discrete ioint size. International Journal of Solids and Structures, 2004,41 (4):5517-5540.
    [44]Kumar P, Pellegrino S. Computation of kinematic paths and bifurcation points[J]. International Journal of Solids and Structures,2000,37(46):7003-7027.
    [45]陈务军,关富玲,董石麟.空间展开折叠桁架结构动力学分析研究[J].计算力学学报,2000,17(4):410-416.
    [46]赵孟良,吴开成,关富玲.空间可展桁架结构动力学分析[J].浙江大学学报(工学版),2005,39(11):1669-1674.
    [47]Tarnai T. Rigidity and kinematic bifurcation of structures [A].40th Anniversary Congress of the International Association for Shell and Spatial Structures,1999.
    [48]Lengyel A, You Z. Bifurcations of SDOF mechanisms using catastrophe theory [J]. International Journal of Solids and Structures.2004,41:559-568.
    [49]张其林,罗晓群,杨晖柱.索杆体系的机构运动及其与弹性变形的混合问题[J].计算力学学报,2004,21(4):470-474.
    [50]唐建民.索穹顶体系的结构理论研究[D].同济大学博士论文,上海:同济大学,1996.
    [51]袁行飞,董石麟.索穹顶体系施工控制反分析[J].建筑结构学报,2001,22(2):75-79.
    [52]沈祖炎,张立新.基于非线性有限元的索穹顶施工模拟[J].计算力学学报,2002,19(4):466-471.
    [53]杨晖柱.索杆钢结构的成形分析与仿真研究[D].同济大学博士学位论文,上海:同济大学,2003.
    [54]伍晓顺,邓华.基于动力松弛法的松弛索杆体系找形分析[J].计箅力学学报,2008,25(2):229-236.
    [55]包红泽,邓华.铰接杆系机构稳定性条件的认识[J].浙江大学学报(工学版),2006,40(1):78~84.
    [56]蒋本卫,邓华,伍晓顺.平面连杆机构的提升形态及稳定性分析[J].土木工程学报,2010,43(1):13-21.
    [57]蒋振兴,施国梁编著.矩阵理论及其应用[M].北京:北京航空学院出版社,1988.
    [58]罗尧治,董石麟.含可动机构的杆系结构非线性力法分析.固体力学学报, 2002,23(3):288-294.
    [59]Ricks E. An incremental approach to the solution of snapping and buckling problems[J]. International Journal of Solids and Structures,1979,15:524-551.
    [60]Crisfield M A. Nonlinear finite element analysis of solids and structures. Volume 1: Essentials[M]. John Wiley & Sons, Chichester,1991.
    [61]Crisfield M A. Non-linear Finite Element Analysis of Solids and Structures, Volume 2: Advanced Topics[M]. John Wiley & Sons, Chichester,1991.
    [62]Crisfiled M A. A fast incremental/iterative solution producre that handlers snap-through[J]. Computers and Structures,1981,3:55-62.
    [63]凌道盛,徐兴.非线性有限元及程序[M].浙江大学出版社,2004.
    [64]Bergan P G, Horrigmoe G, Krakeland B, Soreide T H. Solution techniques for nonlinear finite element problems[J]. International Journal of Numerical Methods in Engineering,1978,12:1677-1696.
    [65]Bellini P X, Chulya A. An improved automatic incremental algorithm for efficient solution of nonlinear finite element equation[J]. Computers and Structures,1987,26:99-100.
    [66]王勖成,邵敏.有限单元法基本原理与数值计算方法(第二版)[M].清华大学出版社,1997.
    [67]Thompson J M T, Hunt G W. A general theory elastic stability[M]. London:Wiley,1973.
    [68]李元齐,沈祖炎.稳定分析中极值点失稳与分歧点失稳的跟踪策略及程序实现[J].土木工程学报,1998,31(3):65-7
    [69]Bazant Z P, Cedolin L. Stability of structures elastic, inelastic, frature and damage theories[M]. New York:Oxford University Press,1991.
    [70]苏育才,姜翠波,张跃辉.矩阵理论[M].科学出版社,2006.
    [71]Fujii F, Choong K K. Branch-Switching in bifurcation of structures[J]. Journal of Engineering Mechanics.1992,118(8):1578-1592
    [72]Fujii F, Ramm E. Computational bifurcation theory:path-tracing, pinpointing and path-swithcing[J]. Engineering Structures,1997,19(5):385-392.
    [73]Razaiee-Pajand M, Vejdani-Noghreiyan H R. Computation of multiple bifurcation point[J].Enginerring Computations:International Journal for Computer-Aided Engineering and Softwar.2006,23(5):552-565.
    [74]S.L.Kyoung, E.H.Sang, P.A.Taehyo. A simple explicit arc-length method using the dynamic relaxation method with kinetic damping[J]. Computer and Structures 2011;89:216-333.
    [75]沈世钊,徐崇宝,赵臣.悬索结构设计[M].北京:中国建筑工业出版社,1997.
    [76]H.B.Jayaraman. A curved element for the analysis of cable structures[J]. Computers and Structures,1981,14(3-4):325-333.
    [77]W.T.O'Brien, A.J.Francis. Cable movements under two dimensional loads [J]. J.Struct.Div. ASCE,1964,90 ST3.89-123.
    [78]A.H.Peyrot, A.M.Coulois. Analysis of flexible transmission lines[J]. J.Struct.Div. ASCE, 1978,104:763-779.
    [79]AS. Day An introduction to dynamic relaxation[J]. London:The Engineer; 1960.219.
    [80]M.R.Barnes. Form Finding and Analysis of Tension Structures by Dynamic Relaxation[J]. International Journal of Space Structures,1999,14(2):89-104.
    [81]Lewis W J, Jones M S. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs [J]. Computer and Structures 1984;18(6):989-997.
    [82]Douthe C, Baverel O. Design of nexorades or reciprocal frame systems with the dynamic relaxation method[J]. Computer and Structures 2009;87(21-22):1296-1307.
    [83]Zhang L, Maurin B, Motro R. Form-finding of nonregular tensegrity systems[J]. Journarl of Structrual Engineering,2006,132(9):1435-1440.
    [84]徐士良编著.数值方法与计算机实现[M].北京:清华大学出版社,2006.
    [85]G.Ramesh, C.S.Krishnamoorthy. Post-buckling analysis of structures by dynamic relaxation [J]. International Journal of Numerical Meth Engineering.1993,36(8):1339-88.
    [86]R.D.Wood. A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes [J]. Computer and Structures 2002;80:2115-20.
    [87]S.E.Han, K.S.Lee. A study of the stabilizing process of unstable structures by dynamic relaxation method[J]. Computer and Structures 2003;81:1677-88.
    [88]Geoppert Knut, Stein Michael. International stadium projects:each unique and easy to recognize[C]. Proceedings of the 2009 Structures Congress Austin, USA:ASCE, 2009:2428-2438
    [89]郭彦林,田广宇,王昆,等.宝安体育场车辐式屋盖结构整体模型施工张拉试验[J].建筑结构学报,2011,32(3):1-10.
    [90]孙文波.佛山体育中心新体育场屋盖索膜结构的整体张拉施工全过程模拟[J].空间结构,2005,11(2):50-53.
    [91]乐清市体育中心“一场两馆”工程模型试验研究报告,2011,杭州.
    [92]邓华,张民锐.月牙形索桁罩棚结构的静力性能模型试验.浙江大学学报(工学版),(已录用).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700