杀念菌素生物合成中糖基转移酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杀念菌素是由链霉菌FR-008(Streptomyces sp. FR-008)所产生的具有广谱抗真菌活性的多烯类抗生素。该类化合物主要来自细菌的次级代谢产物,并且实验证实这类化合物是通过与真菌细胞膜内的甾醇分子相互作用形成通透性孔道来发挥抗真菌活性的。由于多烯类抗生素的广谱抗菌活性以及耐药性产生几率小使得它们在临床上的应用已经超过半个世纪,成为治疗许多危重深部真菌感染的重要药物。多烯类抗生素结构中普遍存在一个特殊的氨基海藻糖,它不仅在该类抗生素发挥抗真菌活性中起到了重要作用,同时也影响了该类化合物的水溶性等理化性质。鉴于氨基海藻糖的重要性,长期以来科学家们对负责其加载的糖基转移酶表现出了浓厚的研究兴趣,但多烯类糖基转移酶体外表达的困难使得对它的底物特异性以及影响酶催化活性的重要氨基酸残基等方面的研究难以顺利展开。本研究利用链霉菌FR-008生长周期短,遗传操作简单,产素水平高等优点,建立了一个体内研究多烯类糖基转移酶的生物化学检测方法,并利用该方法揭示了多烯类糖基转移酶的底物特异性以及影响其催化活性的重要氨基酸残基,为利用组合生物合成手段产生具有更高药理活性的多烯类衍生物提供了理论依据。
     首先,敲除杀念菌素生物合成基因簇中可能负责编码糖基转移酶的基因fscMI获得了不再携带糖基的杀念菌素糖苷配基,并且在用红霉素启动子控制下的fscMI基因进行回补实验之后恢复了产生杀念菌素的能力,证明FscMI参与催化了氨基海藻糖的加载,是一个多烯类糖基转移酶。同时,多烯类抗生素制霉菌素、两性霉素以及匹马霉素生物合成基因簇中的同源蛋白(NysDI、AmphDI、PimK)也都能够识别杀念菌素糖苷配基,并且在不同程度上恢复fscMI缺失突变株LX1中杀念菌素的产量,证明多烯类糖基转移酶对糖苷配基的底物特异性并不是非常严格。
     为了揭示糖基转移酶在糖苷配基也即聚酮骨架上的识别基团,本研究构建了DH11的点突变菌株LX8。DH11位于杀念菌素生物合成基因簇的聚酮合酶FscD上,负责杀念菌素结构中C22-C23位上双键的形成,该键处于多烯类抗生素的结构保守区并且是距离氨基海藻糖最近的一个双键。突变株LX8不再产生杀念菌素,经LC-MS、Q-TOF以及特征紫外吸收峰的检测确定该突变株产生了两个具有相同分子量([M+H]+=1,127.3)以及预测结构式的杀念菌素六烯衍生物,[M+H]+1,127.3证明C23位已经被羟基取代,并且氨基海藻糖仍然能够加载,推测这两个新的化合物是由糖基加载在原始的C21位或新形成的C23位羟基上所引起的。该结果也进一步说明多烯类糖基转移酶对糖苷配基底物具有一定的选择宽泛性。
     随后,通过对糖基转移酶FscMI的同源建模找到可能在糖基化过程中发挥重要作用的氨基酸残基,并用定点突变的方法分别将这些氨基端残基进行了突变,得到一系列糖基转移酶FscMI的突变体。体内对这些FscMI突变体识别天然底物的能力进行了定量检测,发现Ser346、Ser361、His362和Cys387显著影响FscMI催化能力。这是首例对多烯类糖基转移酶中重要氨基酸残基的研究,为今后通过定向突变的方式改变多烯类糖基转移酶的底物特异性,扩大其糖苷配基和糖基的识别范围从而得到具有更高药用价值的多烯类抗生素衍生物提供了理论依据。
     另外,本研究还对杀念菌素生物合成基因簇中存在的ABC转运蛋白编码基因fscTI和fscTII的生物学功能进行了研究。通过遗传操作手段,构建了一个用于敲除转运基因fscTI和fscTII的同源重组双交换质粒,并通过接合转移获得了转运蛋白缺失突变株LX10,对该突变株的发酵检测显示它不再产生多烯类抗生素;此外,通过将转运蛋白FscTI和FscTII在杀念菌素产生菌中进行过量表达得到了基因工程菌株LX11,LX11中杀念菌素的产量得到了提高。本研究证实了FscTI和FscTII是ABC转运蛋白,FscTI和FscTII的过量表达增加了基因工程菌株中杀念菌素的产量,为利用转运蛋白过量表达的方法提高两性霉素等其他多烯类抗生素的产量提供了例证。
Candicidin is a heptaene macrolide produced by Streptomyces sp.FR-008. This kind of compounds mainly comes from the secondarymetabolites of bacterials and exhibits antifungal activity by formingtransmembrane pores in the fungus membrane. Polyenes have been usedin human therapy for treatment of severe fungal infections for over50years due to their broad spectrum of activity and the low frequency ofappearance of resistrant fungal pathogens. Mycosamine exists in mostpolyenes, it contributes a lot to the antifungal activity and solubility ofpolyenes. Condersiding of this, scientists exhibit great research interestsin glycosyltransferases (GTs), however, the substrate specificity andactivity affecting amino acid residues have not been elucidated due to thedifficulty of expression polyene GTs. In this study, we made use of therapid growth, simple genetic manipulation and high production of S. spFR-008and generated an in vivo biochemical detection method tocharacterize polyene GTs, illustrated that polyene GTs have loosesubstrate specificity toward aglycones and found the activity affectingamino acid residues of polyene GTs, thus providing an opportunity to generate libraries of polyene derivatives with improved pharmaceuticalactivity.
     Disruption of GT gene fscMI in the biosynthesis of candicidin led tothe accumulation of deglycosylated candicidin aglycone andcomplementation experiment confirmed FscMI is a polyene GT. Besides,expression of homologous polyene GTs (NysDI、AmphDI、PimK) infscMI mutant could all restore the production of candicidin. These resultsillustrated that polyene GTs have some tolerance toward their substrates.
     In order to identify which moiety of polyene structures is essentialfor GTs recognition, we constructed a DH11point mutation mutant LX8.DH11is located in FscD and is accredited for the formation of the doublebond between C22and C23, which lies in the conserved region ofpolyenes and adjacent to mycosamine. The fermentation culture extractsof LX8were analyzed by LC-MS、Q-TOF and characteritic UV detection,two new hexaene derivatives with the same mass of1,127.3([M+H]+)and formular appeared. The [M+H]+of1,127.3suggests that the sugarmoiety is still present in the compounds and the double bond betweenC22and C23has changed to a hydroxyl group at C23, thus the hydroxylgroups at C21and C23may provide two possible attachment site formycosamine, leading to the two new peaks in the fermentation cultureextracts of LX8. These results further confirm that polyene GTs havesome tolerance toward their substrates.
     To gain insight into the amino acid residues that contribute to theglycosylation process of FscMI, we used homology modeling and finallygot a set of site-directed mutated FscMI. Quantitative HPLC analysis ofthe site-directed mutants illustrated that Ser346, Ser361, His362andCys387contribute a lot to the catalytic activity of FscMI. This is the firsttime to report the critical amino acid residues in polyene GTs. In thefuture, we could expect to change the critical amino acid residues toappropriate ones and make use of the loose substrate specificity featuresof polyene GTs, generating novel polyene derivatives with improvedbioactivities by manipulating with an ample pool of sugar donors andacceptors with different structural originality.
     Also, we analyzed the ABC transporter genes fscTI and fscTII thatexist in the biosynthetic gene cluster of candicidin. pJTU4137wasconstructed for disruption of fscTI and fscTII and it was transferred intoStreptomyces sp. FR-008derived strain ZYJ-6by conjugation. Theresulting mutant LX10was unable to produce polyenes. In addition, thetransporter genes were overexpressed in strain ZYJ-6and the productionof candicidin in the resultant engineered strain LX11increased to1.5-foldwith that of the control. We confirmed that FscTI and FscTII are putativeABC(ATP-binding cassette)transporters and overexpression of transportergenes increased candicidin production provides a positive example forimproving other polyene production.
引文
1. Sims CR, Ostrosky-Zeichner L&Rex JH (2005) Invasive candidiasis in immunocompromisedhospitalized patients. Arch Med Res36,660-671.
    2. Maschmeyer G, Haas A&Cornely OA (2007) Invasive aspergillosis: epidemiology, diagnosis andmanagement in immunocompromised patients. Drugs67,1567-1601.
    3. Silveira FP&Husain S (2007) Fungal infections in solid organ transplantation. Med Mycol45,305-320.
    4. Cefai D, Hadida F, Jung M, Debre P, Vernin JG&Seman M (1991) MS-8209, a newAmphotericin B derivative that inhibits HIV-1replication in vitro and restores T-cell activation via theCD3/TcR in HIV-infected CD4+cells. AIDS5,1453-1461.
    5. Mange A, Nishida N, Milhavet O, McMahon HE, Casanova D&Lehmann S (2000)Amphotericin B inhibits the generation of the scrapie isoform of the prion protein in infected cultures. JVirol74,3135-3140.
    6. Charbonneau C, Fournier I, Dufresne S, Barwicz J&Tancrede P (2001) The interactions ofamphotericin B with various sterols in relation to its possible use in anticancer therapy. Biophys Chem91,125-133.
    7. Sarthou P, Primi D&Cazenave PA (1986) B cell triggering properties of a nontoxic derivative ofamphotericin B. J Immunol137,2156-2161.
    8. Wolf JE&Massof SE (1990) In vivo activation of macrophage oxidative burst activity bycytokines and amphotericin B. Infect Immun58,1296-1300.
    9. Omura S, Tanaka H (1984) In Macrolide Antibiotics: Chemistry, Biology and Practice. AcademicPress, New York.
    10. Aparicio JF, Mendes MV, Anton N, Recio E&Martin JF (2004) Polyene macrolide antibioticbiosynthesis. Curr Med Chem11,1645-1656.
    11. Zotchev SB (2003) Polyene macrolide antibiotics and their applications in human therapy. CurrMed Chem10,211-223.
    12. Lemke A, Kiderlen AF&Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol68,151-162.
    13. Andreoli TE (1973) On the anatomy of amphotericin B-cholesterol pores in lipid bilayermembranes. Kidney Int4,337-345.
    14. De Kruijff B&Demel RA (1974) Polyene antibiotic-sterol interactions in membranes ofAcholeplasma laidlawii cells and lecithin liposomes. Biochim Biophys Acta339,57-70.
    15. Hamilton-Miller JM (1974) Fungal sterols and the mode of action of the polyene antibiotics. AdvAppl Microbiol17,109-134.
    16. Brajtburg J, Powderly WG, Kobayashi GS&Medoff G (1990) Amphotericin B: currentunderstanding of mechanisms of action. Antimicrob Agents Chemother34,183-188.
    17. Hammond SM (1977) Biological activity of polyene antibiotics. Prog Med Chem14,105-179.
    18. Te Welscher YM, van Leeuwen MR, de Kruijff B, Dijksterhuis J&Breukink E (2012) Polyeneantibiotic that inhibits membrane transport proteins. Proc Natl Acad Sci U S A109,11156-11159.
    19. Sawaya BP, Briggs JP&Schnermann J (1995) Amphotericin B nephrotoxicity: the adverseconsequences of altered membrane properties. J Am Soc Nephrol6,154-164.
    20. Ostrosky-Zeichner L, Marr KA, Rex JH&Cohen SH (2003) Amphotericin B: time for a new"gold standard". Clin Infect Dis37,415-425.
    21. Milhaud J, Ponsinet V, Takashi M&Michels B (2002) Interactions of the drug amphotericin Bwith phospholipid membranes containing or not ergosterol: new insight into the role of ergosterol.Biochim Biophys Acta1558,95-108.
    22. Baginski M, Czub J&Sternal K (2006) Interaction of amphotericin B and its selected derivativeswith membranes: molecular modeling studies. Chem Rec6,320-332.
    23. Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, StrLm AR, Valla S&Zotchev SB (2000)Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC11455:analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol7,395-403.
    24. Caffrey P, Lynch S, Flood E, Finnan S&Oliynyk M (2001) Amphotericin biosynthesis inStreptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem Biol8,713-723.
    25. Chen S, Huang X, Zhou X, Bai L, He J, Jeong KJ, Lee SY&Deng Z (2003) Organizational andmutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally relatedpolyene complex. Chem Biol10,1065-1076.
    26. Aparicio JF, Colina AJ, Ceballos E&Martin JF (1999) The biosynthetic gene cluster for the26-membered ring polyene macrolide pimaricin. A new polyketide synthase organization encoded bytwo subclusters separated by functionalization genes. J Biol Chem274,10133-10139.
    27. Donadio S, Staver MJ, McAlpine JB, Swanson SJ&Katz L (1991) Modular organization of genesrequired for complex polyketide biosynthesis. Science252,675-679.
    28. Katz L (1997) Manipulation of Modular Polyketide Synthases. Chem Rev97,2557-2576.
    29.陈实(2004)多烯类抗生素杀念菌素的生物合成机理与途径工程.上海交通大学博士学位论文.
    30. Byrne B, Carmody M, Gibson E, Rawlings B&Caffrey P (2003) Biosynthesis ofdeoxyamphotericins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus. ChemBiol10,1215-1224.
    31. Carmody M, Murphy B, Byrne B, Power P, Rai D, Rawlings B&Caffrey P (2005) Biosynthesisof amphotericin derivatives lacking exocyclic carboxyl groups. J Biol Chem280,34420-34426.
    32. Bruheim P, Borgos SE, Tsan P, Sletta H, Ellingsen TE, Lancelin JM&Zotchev SB (2004)Chemical diversity of polyene macrolides produced by Streptomyces noursei ATCC11455andrecombinant strain ERD44with genetically altered polyketide synthase NysC. Antimicrob AgentsChemother48,4120-4129.
    33. Treshchalin ID, Sletta H, Borgos SE, Pereverzeva EP, Voeikova TA, Ellingsen TE&Zotchev SB(2005) Comparative analysis of in vitro antifungal activity and in vivo acute toxicity of the nystatinanalogue S44HP produced via genetic engineering. Antibiot Khimioter50,18-22.
    34. Brautaset T, Sletta H, Nedal A, Borgos SE, Degnes KF, Bakke I, Volokhan O, Sekurova ON,Treshalin ID, Mirchink EP, et al.(2008) Improved antifungal polyene macrolides via engineering of thenystatin biosynthetic genes in Streptomyces noursei. Chem Biol15,1198-1206.
    35. Gantt RW, Peltier-Pain P&Thorson JS (2011) Enzymatic methods forglyco(diversification/randomization) of drugs and small molecules. Nat Prod Rep28,1811-1853.
    36. Campbell JA, Davies GJ, Bulone V&Henrissat B (1997) A classification ofnucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J326,929-939.
    37. Lairson LL, Henrissat B, Davies GJ&Withers SG (2008) Glycosyltransferases: structures,functions, and mechanisms. Annu Rev Biochem77,521-555.
    38. Thibodeaux CJ, Melancon CE&Liu HW (2007) Unusual sugar biosynthesis and natural productglycodiversification. Nature446,1008-1016.
    39. Hansen SF, Bettler E, Rinnan A, Engelsen SB&Breton C (2010) Exploring genomes forglycosyltransferases. Mol Biosyst6,1773-1781.
    40. Breton C&Imberty A (1999) Structure/function studies of glycosyltransferases. Curr Opin StructBiol9,563-571.
    41. Roychoudhury R&Pohl NL (2010) New structures, chemical functions, and inhibitors forglycosyltransferases. Curr Opin Chem Biol14,168-173.
    42. Weymouth-Wilson AC (1997) The role of carbohydrates in biologically active natural products.Nat Prod Rep14,99-110.
    43. Luzhetskyy A, Mendez C, Salas JA&Bechthold A (2008) Glycosyltransferases, important toolsfor drug design. Curr Top Med Chem8,680-709.
    44. Zhang C, Griffith BR, Fu Q, Albermann C, Fu X, Lee IK, Li L&Thorson JS (2006) Exploitingthe reversibility of natural product glycosyltransferase-catalyzed reactions. Science313,1291-1294.
    45. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V&Henrissat B (2009) TheCarbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic AcidsRes37, D233-238.
    46. Sinnott ML (1990) Catalytic mechanism of enzyme glycosyl transfer. Chem Rev90,1171-1202.
    47. Charnock SJ&Davies GJ (1999) Structure of the nucleotide-diphospho-sugar transferase, SpsAfrom Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry-Us38,6380-6385.
    48. Vrielink A, Ruger W, Driessen HP&Freemont PS (1994) Crystal structure of the DNA modifyingenzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose.EMBO J13,3413-3422.
    49. Luzhetskyy A, Vente A&Bechthold A (2005) Glycosyltransferases involved in the biosynthesisof biologically active natural products that contain oligosaccharides. Mol Biosyst1,117-126.
    50. Breton C, Snajdrova L, Jeanneau C, Koca J&Imberty A (2006) Structures and mechanisms ofglycosyltransferases. Glycobiology16,29R-37R.
    51. Luzhetskyy A, Weiss H, Charge A, Welle E, Linnenbrink A, Vente A&Bechthold A (2007) Astrategy for cloning glycosyltransferase genes involved in natural product biosynthesis. Appl MicrobiolBiotechnol75,1367-1375.
    52. Chiu CP, Watts AG, Lairson LL, Gilbert M, Lim D, Wakarchuk WW, Withers SG&Strynadka NC(2004) Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with asubstrate analog. Nat Struct Mol Biol11,163-170.
    53. Blanco G, Patallo EP, Brana AF, Trefzer A, Bechthold A, Rohr J, Mendez C&Salas JA (2001)Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of theantitumor polyketide elloramycin. Chem Biol8,253-263.
    54. Bechthold A, Hoffmeister D&Ichinose K (2001) Two sequence elements of glycosyltransferasesinvolved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity.Chem Biol8,557-567.
    55. Bechthold A, Hoffmeister D, Wilkinson B, Foster G, Sidebottom PJ&Ichinose K (2002)Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. ChemBiol9,287-295.
    56. Krauth C, Fedoryshyn M, Schleberger C, Luzhetskyy A&Bechthold A (2009) Engineering afunction into a glycosyltransferase. Chem Biol16,28-35.
    57. Erb A, Krauth C, Luzhetskyy A&Bechthold A (2009) Differences in the substrate specificity ofglycosyltransferases involved in landomycins A and E biosynthesis. Appl Microbiol Biotechnol83,1067-1076.
    58. Williams GJ, Zhang C&Thorson JS (2007) Expanding the promiscuity of a natural-productglycosyltransferase by directed evolution. Nat Chem Biol3,657-662.
    59. Thorson JS, Gantt RW, Goff RD&Williams GJ (2008) Probing the Aglycon Promiscuity of anEngineered Glycosyltransferase. Angew Chem Int Edit47,8889-8892.
    60. Aparicio JF, Caffrey P, Gil JA&Zotchev SB (2003) Polyene antibiotic biosynthesis gene clusters.Appl Microbiol Biotechnol61,179-188.
    61. Thibodeaux CJ, Melancon CE&Liu HW (2008) Natural-product sugar biosynthesis andenzymatic glycodiversification. Angew Chem Int Ed Engl47,9814-9859.
    62. Zhang C, Moretti R, Jiang J&Thorson JS (2008) The in vitro characterization of polyeneglycosyltransferases AmphDI and NysDI. Chembiochem9,2506-2514.
    63. Liang D&Qiao J (2007) Phylogenetic analysis of antibiotic glycosyltransferases. J Mol Evol64,342-353.
    64. Hutchinson E, Murphy B, Dunne T, Breen C, Rawlings B&Caffrey P (2010) Redesign ofPolyene Macrolide Glycosylation: Engineered Biosynthesis of19-(O)-Perosaminyl-AmphoteronolideB. Chem Biol17,174-182.
    65. Dean M (2005) The genetics of ATP-binding cassette transporters. Methods Enzymol400,409-429.
    66. Gottesman MM&Ambudkar SV (2001) Overview: ABC transporters and human disease. JBioenerg Biomembr33,453-458.
    67. Higgins CF (2001) ABC transporters: physiology, structure and mechanism--an overview. ResMicrobiol152,205-210.
    68. Dassa E, Hofnung M, Paulsen IT&Saier MH, Jr.(1999) The Escherichia coli ABC transporters:an update. Mol Microbiol32,887-889.
    69.王彦,刁亚英,姜远英(2003) ABC转运蛋白与肿瘤多药耐药.药学实践杂志21卷1期,28-31.
    70. Martin JF, Casqueiro J&Liras P (2005) Secretion systems for secondary metabolites: howproducer cells send out messages of intercellular communication. Curr Opin Microbiol8,282-293.
    71. Dawson RJ&Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature443,180-185.
    72. Dawson RJ&Locher KP (2007) Structure of the multidrug ABC transporter Sav1866fromStaphylococcus aureus in complex with AMP-PNP. FEBS Lett581,935-938.
    73. Hollenstein K, Frei DC&Locher KP (2007) Structure of an ABC transporter in complex with itsbinding protein. Nature446,213-216.
    74. Locher KP, Lee AT&Rees DC (2002) The E. coli BtuCD structure: a framework for ABCtransporter architecture and mechanism. Science296,1091-1098.
    75. Pinkett HW, Lee AT, Lum P, Locher KP&Rees DC (2007) An inward-facing conformation of aputative metal-chelate-type ABC transporter. Science315,373-377.
    76. Hollenstein K, Dawson RJ&Locher KP (2007) Structure and mechanism of ABC transporterproteins. Curr Opin Struct Biol17,412-418.
    77. Schneider E&Hunke S (1998) ATP-binding-cassette (ABC) transport systems: functional andstructural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev22,1-20.
    78. Oldham ML, Khare D, Quiocho FA, Davidson AL&Chen J (2007) Crystal structure of a catalyticintermediate of the maltose transporter. Nature450,515-521.
    79. Schmees G, Stein A, Hunke S, Landmesser H&Schneider E (1999) Functional consequences ofmutations in the conserved 'signature sequence' of the ATP-binding-cassette protein MalK. Eur JBiochem266,420-430.
    80. Walker JE, Saraste M, Runswick MJ&Gay NJ (1982) Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a commonnucleotide binding fold. EMBO J1,945-951.
    81. Locher KP (2004) Structure and mechanism of ABC transporters. Curr Opin Struct Biol14,426-431.
    82. Datsenko KA&Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichiacoli K-12using PCR products. Proc Natl Acad Sci U S A97,6640-6645.
    83. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH&MacNeil T (1992) Analysis ofStreptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector.Gene111,61-68.
    84. Zhou Y, Li J, Zhu J, Chen S, Bai L, Zhou X, Wu H&Deng Z (2008) Incomplete beta-ketoneprocessing as a mechanism for polyene structural variation in the FR-008/candicidin complex. ChemBiol15,629-638.
    85. kieser T, Bibb MJ, Buttner MJ, Chater KF&Hopwood DA (2000) Practical StreptomycesGenetics. John Inners Center, Norwich, United Kingdom.
    86. Alting-Mees MA&Short JM (1989) pBluescript II: gene mapping vectors. Nucleic Acids Res17,
    9494.
    87. Gust B, Challis GL, Fowler K, Kieser T&Chater KF (2003) PCR-targeting system inStreptomyces Coelicolor. John Inners Center, Norwich, United Kingdom.
    88. He Y, Wang Z, Bai L, Liang J, Zhou X&Deng Z (2010) Two pHZ1358-derivative vectors forefficient gene knockout in streptomyces. J Microbiol Biotechnol20,678-682.
    89. Wu Y, Kang Q, Shen Y, Su W&Bai L (2011) Cloning and functional analysis of thenaphthomycin biosynthetic gene cluster in Streptomyces sp. CS. Mol Biosyst7,2459-2469.
    90. Xu H, Zhang Y, Yang J, Mahmud T, Bai L&Deng Z (2009) Alternative epimerization inC(7)N-aminocyclitol biosynthesis is catalyzed by ValD, a large protein of the vicinal oxygen chelatesuperfamily. Chem Biol16,567-576.
    91. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, SecondEdition. Cold Spring Harbor Laboratory Press, New York.
    92. Nedal A, Sletta H, Brautaset T, Borgos SE, Sekurova ON, Ellingsen TE&Zotchev SB (2007)Analysis of the mycosamine biosynthesis and attachment genes in the nystatin biosynthetic gene clusterof Streptomyces noursei ATCC11455. Appl Environ Microbiol73,7400-7407.
    93. Caffrey P, Byrne B, Carmody M, Gibson E&Rawlings B (2003) Biosynthesis ofdeoxyamphotericins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus. ChemBiol10,1215-1224.
    94. Bevitt DJ, Cortes J, Haydock SF&Leadlay PF (1992)6-Deoxyerythronolide-B synthase2fromSaccharopolyspora erythraea. Cloning of the structural gene, sequence analysis and inferred domainstructure of the multifunctional enzyme. Eur J Biochem204,39-49.
    95. Donadio S&Katz L (1992) Organization of the enzymatic domains in the multifunctionalpolyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. Gene111,51-60.
    96. Aparicio JF, Molnar I, Schwecke T, Konig A, Haydock SF, Khaw LE, Staunton J&Leadlay PF(1996) Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus:analysis of the enzymatic domains in the modular polyketide synthase. Gene169,9-16.
    97. Ikeda H, Nonomiya T, Usami M, Ohta T&Omura S (1999) Organization of the biosynthetic genecluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc NatlAcad Sci U S A96,9509-9514.
    98. Sun Y, Zhou X, Dong H, Tu G, Wang M, Wang B&Deng Z (2003) A complete gene cluster fromStreptomyces nanchangensis NS3226encoding biosynthesis of the polyether ionophorenanchangmycin. Chem Biol10,431-441.
    99.杨亮,毛相朝,周文瑜,陈实,沈亚领,邓子新&魏东芝(2008)基因工程FR-008/杀念菌素脱羧衍生物CS103发酵过程优化.中国抗生素杂志33卷6期,333-337.
    100.毛相朝,杨亮,陈实,沈亚领,魏东芝&邓子新(2009)葡萄糖流加策略对基因工程FR-008/杀念菌素衍生物CS103补料分批发酵过程的影响.工业微生物39卷2期,1-6.
    101. Mulichak AM, Losey HC, Lu W, Wawrzak Z, Walsh CT&Garavito RM (2003) Structure of theTDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc NatlAcad Sci U S A100,9238-9243.
    102. Mulichak AM, Losey HC, Walsh CT&Garavito RM (2001) Structure of theUDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis ofvancomycin group antibiotics. Structure9,547-557.
    103. Mulichak AM, Lu W, Losey HC, Walsh CT&Garavito RM (2004) Crystal structure ofvancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptorand nucleotide ligands. Biochemistry-Us43,5170-5180.
    104. Mittler M, Bechthold A&Schulz GE (2007) Structure and action of the C-C bond-formingglycosyltransferase UrdGT2involved in the biosynthesis of the antibiotic urdamycin. J Mol Biol372,67-76.
    105. Chang A, Singh S, Helmich KE, Goff RD, Bingman CA, Thorson JS&Phillips GN, Jr.(2011)Complete set of glycosyltransferase structures in the calicheamicin biosynthetic pathway reveals theorigin of regiospecificity. Proc Natl Acad Sci U S A108,17649-17654.
    106. Miley MJ, Zielinska AK, Keenan JE, Bratton SM, Radominska-Pandya A&Redinbo MR (2007)Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzymeUDP-glucuronosyltransferase2B7. J Mol Biol369,498-511.
    107.Radominska-Pandya A, Little JM&Czernik PJ (2001) Human UDP-glucuronosyltransferase2B7.Curr Drug Metab2,283-298.
    108. Innocenti F, Iyer L, Ramirez J, Green MD&Ratain MJ (2001) Epirubicin glucuronidation iscatalyzed by human UDP-glucuronosyltransferase2B7. Drug Metab Dispos29,686-692.
    109. Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis BG, Tarling CA, Ford CM, Bowles DJ&Davies GJ (2006) Structure of a flavonoid glucosyltransferase reveals the basis for plant naturalproduct modification. EMBO J25,1396-1405.
    110. Tusnady GE&Simon I (2001) The HMMTOP transmembrane topology prediction server.Bioinformatics17,849-850.
    111.雷璇,孔令新,张晨,由德林,邓子新(2012)杀念菌素/FR-008生物合成途径中转运基因fscTI与fscTII的功能.微生物学报52卷12期,1458-1466.
    112. Davies JE&Benveniste RE (1974) Enzymes that inactivate antibiotics in transit to their targets.Ann N Y Acad Sci235,130-136.
    113. Mendez C&Salas JA (2001) The role of ABC transporters in antibiotic-producing organisms:drug secretion and resistance mechanisms. Res Microbiol152,341-350.
    114. Guilfoile PG&Hutchinson CR (1991) A bacterial analog of the mdr gene of mammalian tumorcells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc NatlAcad Sci U S A88,8553-8557.
    115. Fernandez E, Lombo F, Mendez C&Salas JA (1996) An ABC transporter is essential forresistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus. Mol GenGenet251,692-698.
    116. Olano C, Rodriguez AM, Mendez C&Salas JA (1995) A second ABC transporter is involved inoleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol16,333-343.
    117. Sletta H, Borgos SE, Bruheim P, Sekurova ON, Grasdalen H, Aune R, Ellingsen TE&ZotchevSB (2005) Nystatin biosynthesis and transport: nysH and nysG genes encoding a putative ABCtransporter system in Streptomyces noursei ATCC11455are required for efficient conversion of10-deoxynystatin to nystatin. Antimicrob Agents Chemother49,4576-4583.
    118. Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L, Bai L&Deng Z (2011) Overexpression of the ABCtransporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl MicrobiolBiotechnol92,337-345.
    119. Ullan RV, Liu G, Casqueiro J, Gutierrez S, Banuelos O&Martin JF (2002) The cefT gene ofAcremonium chrysogenum C10encodes a putative multidrug efflux pump protein that significantlyincreases cephalosporin C production. Mol Genet Genomics267,673-683.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700