RTA2基因降低白念珠菌对氟康唑敏感性的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在白念珠菌(Candida albicans)中,由于越来越多的菌株对药物产生了耐药性,导致临床上用于治疗念珠菌感染的一线药物氟康唑(Fluconazloe,FLC)的治疗产生失败。我们实验室前期的研究发现:在体外,RTA2基因编码的蛋白参与了由白念珠菌钙调神经磷酸酶(calcineurin,CaN)信号通路介导的对氟康唑的耐药。在本研究中,通过药物敏感性实验考察不同基因背景的RTA2基因相关菌株对氟康唑的敏感性差异,发现:在野生型菌株(cnaΔ/Δ::CNA,crz1Δ/Δ::CRZ1,rta2Δ/Δ::RTA2)中加入1mM CaCl2可以激活CaN信号通路,使菌株对唑类药物氟康唑的敏感性显著降低(最低抑菌浓度由0.5μg/ml升高为16μg/ml和64μg/ml);加入1mM CaCl2激活CaN信号通路,RTA2基因缺失菌(rta2Δ/Δ,cnaΔ/Δ::CNA;rta2Δ/Δ, crz1Δ/Δ::CRZ1)和钙调神经磷酸酶CNA基因缺失菌(cnaΔ/Δ,rta2Δ/Δ::RTA2)以及CaN信号通路转录因子CRZ1基因缺失菌(crz1Δ/Δ, rta2Δ/Δ::RTA2)一样,对氟康唑的敏感性无显著变化。说明在体外钙离子激活的CaN信号通路通过RTA2p降低白念珠菌对氟康唑的敏感性。通过透射电镜实验考察不同浓度的氟康唑对不同基因背景的RTA2基因相关菌株细胞膜超微结构的影响,我们发现:在体外,钙离子激活钙调神经磷酸酶通路后,可以通过Rta2p来减弱氟康唑对细胞膜的损伤,从而显著的降低了白念珠菌对氟康唑的敏感性。此外,我们构建了小鼠深部真菌感染模型,考察基因RTA2对模型动物生存时间及肾脏荷菌量的影响,发现:RTA2基因本身并不能影响白念珠菌的毒力;但RTA2基因缺失后,感染小鼠接受氟康唑治疗后,生存率显著提高;相反,异位表达RTA2基因显著的降低了氟康唑在宿主中对白念珠菌的疗效。综上所述,我们认为在体内体外钙离子激活的钙调神经磷酸酶通路,通过Rta2p来降低白念珠菌对氟康唑的敏感性。
     在白念珠菌中,基因RTA2是钙调神经磷酸酶通路调控的一个下游基因,但是其调控机制并不明确。本课题采用海肾荧光素酶报告基因(Renilla Luciferase,RLUC)系统进行研究:将不同长度的RTA2基因启动子片段连接到报告基因载体中,再将构建好的载体分别转入菌株DJY201(Δ/Δcna,Δ/Δrta2)、MJY201(Δ/Δcrz1,Δ/Δrta2)、JXM101(Δ/Δrta2)中,考察加入钙离子前后荧光活性的变化倍数。进一步证明RTA2基因是CaN信号通路的靶基因,其表达水平受到转录因子Crzlp的调控;发现Crzlp的DNA结合序列—钙调神经磷酸酶依赖性应答元件(calcineruin-dependent responseelement,CDRE),可能位于RTA2基因启动子上游-973bp~-920bp的区间内,通过生物信息学分析推测其序列可能为GATGT。
     我们实验室前期研究发现:在临床白念珠菌中,外源性加入1mMCaCl2激活CaN信号通路,可以不同程度的上调RTA2基因的表达水平。通过小鼠深部真菌感染模型发现,钙离子诱导的RTA2基因高表达的菌株感染的小鼠接受氟康唑治疗后,生存率显著低于钙离子诱导的RTA2基因非高表达的菌株感染的小鼠。本研究通过体外药物敏感性实验和实时定量(Real-Time) PCR实验发现:钙离子诱导的菌株对氟康唑敏感性降低和RTA2基因的表达水平密切相关。在钙离子诱导的RTA2基因高表达的临床菌株0511522中,敲除了RTA2基因。通过体外药物敏感性实验发现, RTA2基因缺失菌RTA2N4(△/△rta2)无法产生钙离子介导的对氟康唑的敏感性降低;通过小鼠深部真菌感染模型发现,敲除RTA2基因并不影响菌株的毒力;但是RTA2基因缺失后,感染动物接受氟康唑治疗以后,生存率显著升高。综上所述,在体内体外钙离子通过激活钙调磷酸酶通路诱导RTA2基因高表达从而降低临床菌株对氟康唑的敏感性。
Due to the emergence of drug-resistance, first-line therapy with fluconazole (FLC)increasingly resulted in clinical failure for the treatment of candidemia. Our previousstudies found that in vitro RTA2was involved in the calcineurin-mediated resistance toFLC in C. albicans. In this study, we found that calcium-activated-calcineurin significantlyreduced the in vitro sensitivity of C. albicans to FLC by blocking the impairment of FLCto the plasma membrane via Rta2p. Furthermore, we found that RTA2itself was notinvolved in C. albicans virulence, but the disruption of RTA2dramatically increased thetherapeutic efficacy of FLC in a murine model of systemic candidiasis. Conversely, ectopicexpression of RTA2significantly reduced FLC efficacy in a mammalian host. Finally, wefound that calcium-activated-calcineurin, through its target Rta2p, dramatically reduced theefficacy of FLC against candidemia. Given the critical roles of Rta2p in controlling theefficacy of FLC, Rta2p can be a potential drug target for antifungal therapies.
     RTA2was a target of the calcineurin signaling pathway, but its regulatory mechanismwas not clear. We used the Renilla Luciferase reporter system to study this subject:We gotfurther evidence of RTA2was a target gene of CaN signaling pathway and whoseexpression levels was regulated by the transcription factor Crzlp;the CDRE(calcineruin-dependent response element)components of RTA2mainly located in-973bp~-920bp upstream of the promoter of RTA2gene,the sequences might be GATGT.
     The previous study found that1mMCaCl2can activate CaN signaling pathway andincreased the expression level of RTA2to different degrees in clinical Candida albicans.Ca2+-induced-upregulation of RTA2dramatically decreased the therapeutic efficacy ofFLC in a murine model of systemic candidiasis compared with Ca2+-induced-nonupregulation of RTA2. In this study, through the in vitro susceptibility testing andReal-Time PCR experiments: we demonstrate that Ca2+-induced-upregulation of RTA2wascorrelated with the in vitro Ca2+-reduced-sensitivity to fluconazole. The expression level ofRTA2was increased by Ca2+in clinical isolate of0511522.The disruption of RTA2in thisisolate block the in vitro Ca2+-reduced-sensitivity to fluconazole; The relationship betweenCa2+-induced-upregulation of RTA2and in vitro Ca2+-reduced-sensitivity to fluconazolewas also verified in vivo. The disruption of RTA2in0511522can significantly increasedthe therapeutic efficacy of FLC in a murine model of systemic candidiasis. To conclude, invitro and in vivo calcium induced the up-regulation of RTA2gene to makes the clinical isolates reduce its sensitivity to fluconazole.
引文
[1] Schelenz S, Abdallah S, Gray G, Stubbings H, Gow I, Baker P, Hunter PR. Epidemiology of oralyeast colonization and infection in patients with hematological malignancies, head neck andsolid tumors.J Oral Pathol Med.2011,40(1):83-89
    [2] Pagano L, Caira M, Valentini CG, Posteraro B, Fianchi L.Current therapeutic approaches to fungalinfections in immunocompromised hematological patients.Blood Rev.2010,24(2):51-61.
    [3] Zaoutis T.Candidemia in children.Curr Med Res Opin.2010,26(7):1761-1768.
    [4] Ortega M, Marco F, Soriano A, Almela M, Martínez JA, López J, Pitart C, Mensa J.Candida speciesbloodstream infection: epidemiology and outcome in a single institution from1991to2008.J HospInfect.2011,77(2):157-161.
    [5] Bassetti M, Taramasso L, Nicco E, Molinari MP, Mussap M, Viscoli C.Epidemiology, speciesdistribution, antifungal susceptibility and outcome of nosocomial candidemia in a tertiary care hospitalin Italy.PLoS One.2011,6(9):e24198.
    [6] Jutiamornlerd N, Chusri S, Siripaitoon P.Epidemiology of candidemia in Songklanagarind Hospital.JMed Assoc Thai.2011,94(8):927-932.
    [7] Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J.The direct cost and incidence ofsystemic fungal infections.Value Health.2002,5(1):26-34.
    [8] Hassan I, Powell G, Sidhu M, Hart WM, Denning DW.Excess mortality, length of stay and costattributable to candidaemia.J Infect.2009,59(5):360-365.
    [9] Horn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, Marr KA, Pfaller MA,Chang CH, Webster KM.Epidemiology and outcomes of candidemia in2019patients: data from theprospective antifungal therapy alliance registry.Clin Infect Dis.2009,48(12):1695-1703.
    [10] Cortés JA, Reyes P, Gómez C, Buitrago G, Leal AL; GREBO Group.Fungal bloodstream infectionsin tertiary care hospitals in Colombia.Rev Iberoam Micol.2011,28(2):74-78.
    [11] Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE.Hsp90governs echinocandinresistance in the pathogenic yeast Candida albicans via calcineurin.PLoS Pathog.2009,5(7):e1000532.
    [12] Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J.Calcineurin A of Candida albicans:involvement in antifungal tolerance, cell morphogenesis and virulence.Mol Microbiol.2003,48(4):959-976.
    [13] Cowen LE, Lindquist S.Hsp90potentiates the rapid evolution of new traits: drug resistance indiverse fungi.Science.2005,309(5744):2185-2189.
    [14] Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR,McCusker JH, Heitman J.Calcineurin is essential for survival during membrane stress in Candidaalbicans.EMBO J.2002,21(4):546-559.
    [15] Steinbach WJ, Reedy JL, Cramer RA, Jr, Perfect JR, Heitman J. Harnessing calcineurin as a novelanti-infective agent against invasive fungal infections. Nature reviews.2007,5(6):418-430.
    [16] Calvet HM, Yeaman MR, Filler SG. Reversible fluconazole resistance in Candida albicans: apotential in vitro model. Antimicrob Agents Chemother.1997,41(3):535-539.
    [17] Jia XM, Wang Y, Jia Y, Gao PH, Xu YG, et al. RTA2is involved in calcineurin-mediated azoleresistance and sphingoid long-chain base release in Candida albicans. Cell Mol Life Sci.2009.66(1):122-134.
    [18] Edlind T, Smith L, Henry K, Katiyar S, Nickels J.Antifungal activity in Saccharomyces cerevisiaeis modulated by calcium signalling. Mol Microbiol.2002,46(1):257-268.
    [19] Withee JL, Mulholland J, Jeng R, Cyert MS.An essential role of the yeast pheromone-inducedCa2+signal is to activate calcineurin.Mol Biol Cell.1997,8(2):263-277.
    [20] Gaigg B, Toulmay A, Schneiter R.Very long-chain fatty acid-containing lipids rather thansphingolipids per se are required for raft association and stable surface transport of newly synthesizedplasma membrane ATPase in yeast.J Biol Chem.2006,281(45):34135-34145.
    [21] Karababa M, Valentino E, Pardini G, Coste AT, Bille J, Sanglard D.CRZ1, a target of thecalcineurin pathway in Candida albicans.Mol Microbiol.2006,59(5):1429-1451.
    [22] Jia Y, Tang RJ, Wang L, Zhang X, Wang Y, Jia XM, Jiang YY.Calcium-activated-calcineurinreduces the In vitro and In vivo sensitivity of fluconazole to Candida albicans via Rta2p.PLoS One.2012,7(10):e48369.
    [23] Negredo A, Monteoliva L, Gil C, Pla J, Nombela C.Cloning, analysis and one-step disruption of theARG5,6gene of Candida albicans.Microbiology.1997,143(Pt2):297-302.
    [24] Wang L, Jia Y, Tang RJ, Xu Z, Cao YB, Jia XM, Jiang YY.Proteomic analysis of Rta2p-dependentraft-association of detergent-resistant membranes in Candida albicans.PLoS One.2012,7(5):e37768.
    [25] Fonzi WA, Irwin MY.Isogenic strain construction and gene mapping in Candida albicans.Genetics.1993,134(3):717-728.
    [26] Jia XM, Ma ZP, Jia Y, Gao PH, Zhang JD, Wang Y, Xu YG, Wang L, Cao YY, Cao YB, Zhang LX,Jiang YY.RTA2, a novel gene involved in azole resistance in Candida albicans.Biochem Biophys ResCommun.2008,373(4):631-636.
    [27] Pfaller MA, Barry AL. Evaluation of a novel colorimetric broth microdilution method forantifungal susceptibility testing of yeast isolates. J Clin Microbiol.1994,32(8):1992-1996
    [28] Pfaller MA, Diekema DJ, Rinaldi MG, Barnes R, Hu B, Veselov AV, Tiraboschi N, Nagy E, GibbsDL.Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a6.5-year analysis ofsusceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized diskdiffusion testing.J Clin Microbiol.2005,43(12):5848-5859.
    [29] Blankenship JR, Wormley FL, Boyce MK, Schell WA, Filler SG, Perfect JR, Heitman J.Calcineurinis essential for Candida albicans survival in serum and virulence.Eukaryot Cell.2003,2(3):422-430.
    [30] Bader T, Bodendorfer B, Schr ppel K, Morschh user J.Calcineurin is essential for virulence inCandida albicans.Infect Immun.2003,71(9):5344-5354.
    [31] Sun S, Li Y, Guo Q, Shi C, Yu J, Ma L.In vitro interactions between tacrolimus and azoles againstCandida albicans determined by different methods.Antimicrob Agents Chemother.2008,52(2):409-417.
    [32] Gamarra S, Rocha EM, Zhang YQ, Park S, Rao R, Perlin DS.Mechanism of the synergistic effectof amiodarone and fluconazole in Candida albicans.Antimicrob Agents Chemother.2010,54(5):1753-1761.
    [33] Zhang YQ, Gamarra S, Garcia-Effron G, Park S, Perlin DS, Rao R.Requirement for ergosterol inV-ATPase function underlies antifungal activity of azole drugs.PLoS Pathog.2010,3;6(6):e1000939.
    [34] Epp E, Vanier G, Harcus D, Lee AY, Jansen G, Hallett M, Sheppard DC, Thomas DY, Munro CA,Mullick A, Whiteway M.Reverse genetics in Candida albicans predicts ARF cycling is essential for drugresistance and virulence.PLoS Pathog.2010,5;6(2):e1000753.
    [35] Cowen LE.Hsp90orchestrates stress response signaling governing fungal drug resistance.PLoSPathog.2009,5(8):e1000471.
    [36] Hameed S, Dhamgaye S, Singh A, Goswami SK, Prasad R.Calcineurin signaling and membranelipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.PLoSOne.2011,6(4):e18684.
    [37] Marchetti O, Entenza JM, Sanglard D, Bille J, Glauser MP, Moreillon P.Fluconazole pluscyclosporine: a fungicidal combination effective against experimental endocarditis due to Candidaalbicans.Antimicrob Agents Chemother.2000,44(11):2932-2938.
    [38] Onyewu C, Afshari NA, Heitman J.Calcineurin promotes infection of the cornea by Candidaalbicans and can be targeted to enhance fluconazole therapy.Antimicrob Agents Chemother.2006,50(11):3963-3965.
    [39] Lee MC, Hamamoto S, Schekman R.Ceramide biosynthesis is required for the formation of theoligomeric H+-ATPase Pma1p in the yeast endoplasmic reticulum.J Biol Chem.2002,277(25):22395-22401.
    [40]Gaigg B, Timischl B, Corbino L, Schneiter R.Synthesis of sphingolipids with very long chain fattyacids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to thecell surface of yeast.J Biol Chem.2005,280(23):22515-22522.
    [41] Gaigg B, Toulmay A, Schneiter R.Very long-chain fatty acid-containing lipids rather thansphingolipids per se are required for raft association and stable surface transport of newly synthesizedplasma membrane ATPase in yeast.J Biol Chem.2006,281(45):34135-34145.
    [42] Mulet JM, Martin DE, Loewith R, Hall MN.Mutual antagonism of target of rapamycin andcalcineurin signaling.J Biol Chem.2006,281(44):33000-33007.
    [43] Aronova S, Wedaman K, Aronov PA, Fontes K, Ramos K, Hammock BD, Powers T.Regulation ofceramide biosynthesis by TOR complex2.Cell Metab.2008,7(2):148-158.
    [44] Ohama T, Suzuki T, Mori M, Osawa S, Ueda T, Watanabe K, Nakase T.Non-universal decoding ofthe leucine codon CUG in several Candida species.Nucleic Acids Res.1993,21(17):4039-4045.
    [45] Santos M, Colthurst DR, Wills N, McLaughlin CS, Tuite MF.Efficient translation of the UAGtermination codon in Candida species.Curr Genet.1990,17(6):487-491.
    [46] Santos MA, Keith G, Tuite MF.Non-standard translational events in Candida albicans mediated byan unusual seryl-tRNA with a5'-CAG-3'(leucine) anticodon.EMBO J.1993,12(2):607-616.
    [47] Leuker CE, Ernst JF.Toxicity of a heterologous leucyl-tRNA (anticodon CAG) in the pathogenCandida albicans: in vivo evidence for non-standard decoding of CUG codons.Mol Gen Genet.1994,245(2):212-217.
    [48] Fonzi WA, Irwin MY.Isogenic strain construction and gene mapping in Candida albicans.Genetics.1993,134(3):717-728.
    [49] Staab JF, Sundstrom P.URA3as a selectable marker for disruption and virulence assessment ofCandida albicans genes.Trends Microbiol.2003,11(2):69-73.
    [50] Bain JM, Stubberfield C, Gow NA.Ura-status-dependent adhesion of Candida albicansmutants.FEMS Microbiol Lett.2001,204(2):323-328.
    [51] Cheng S, Nguyen MH, Zhang Z, Jia H, Handfield M, Clancy CJ.Evaluation of the roles of fourCandida albicans genes in virulence by using gene disruption strains that express URA3from the nativelocus.Infect Immun.2003,71(10):6101-6103.
    [52] Odabasi Z, Paetznick V, Rex JH, Ostrosky-Zeichner L. Effects of serum on in vitro susceptibilitytesting of echinocandins. Antimicrob Agents Chemother.2007.51(11):4214-4216.
    [53] Yang YL, Lin YH, Tsao MY, Chen CG, Shih HI, Fan JC, Wang JS, Lo HJ.Serum repressing effluxpump CDR1in Candida albicans.BMC Mol Biol.2006,7:22.
    [54] Nakayama H, Tanabe K, Bard M, Hodgson W, Wu S, Takemori D, Aoyama T, Kumaraswami NS,Metzler L, Takano Y, Chibana H, Niimi M.The Candida glabrata putative sterol transporter geneCgAUS1protects cells against azoles in the presence of serum.J Antimicrob Chemother.2007,60(6):1264-1272.
    [55] Paderu P, Garcia-Effron G, Balashov S, Delmas G, Park S, Perlin DS.Serum differentially alters theantifungal properties of echinocandin drugs.Antimicrob Agents Chemother.2007,51(6):2253-2256.
    [56] Moore EW.Ionized calcium in normal serum, ultrafiltrates, and whole blood determined byion-exchange electrodes.J Clin Invest.1970,49(2):318-334.
    [57] Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A, Ghannoum MA, Lancaster M,Odds FC, Rinaldi MG, Walsh TJ, Barry AL.Development of interpretive breakpoints for antifungalsusceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data forfluconazole, itraconazole, and candida infections. Subcommittee on Antifungal Susceptibility Testing ofthe National Committee for Clinical Laboratory Standards.Clin Infect Dis.1997,24(2):235-247.
    [58] White TC, Marr KA, Bowden RA.Clinical, cellular, and molecular factors that contribute toantifungal drug resistance.Clin Microbiol Rev.1998,11(2):382-402.
    [1]. Lai CC, Tan CK, Huang YT, Shao PL, Hsueh PR. Current challenges in the management ofinvasive fungal infections. J Infect Chemother,2008,14:77–85.
    [2]. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, et al. Estimation of the currentglobal burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS,2009,23:525–530.
    [3]. Brown GD, Dennings DW, Levitz SM.Tackling human fungal infections. Science,2012,336:647.
    [4]. Blankenship JR, Steinbach WJ, Perfect JR, Heitman J. Teaching old drugs new tricks: reincarnatingimmunosuppressants as antifungal drugs. Curr Opin Investig Drugs,2003,4:192–199.
    [5]. Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, et al. Harnessing Hsp90function as apowerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci U SA,2009,106:2818–2823.
    [6]. Zhai B, Wu C, Wang L, Sachs MS, Lin X. The antidepressant sertraline provides a promisingtherapeutic option for neurotropic cryptococcal infections.Antimicrob Agents Chemother,2012,56:3758–3766.
    [7]. Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, et al. Antifungal chemical compoundsidentified using a C. elegans pathogenicity assay. PLoS Pathog,2007,3: e18.doi:10.1371/journal.ppat.0030018
    [8]. Spitzer M, Griffiths E, Blakely KM, Wildenhain J, Ejim L, et al. Crossspecies discovery ofsyncretic drug combinations that potentiate the antifungal fluconazole. Mol Syst Biol,2011,7:499.
    [9]. Roemer T, Xu D, Singh SB, Parish CA, Harris G, et al. Confronting the challenges of naturalproduct-based antifungal discovery. Chem Biol,2011,18:148–164.
    [10]. Tebbets B, Stewart D, Lawry S, Nett J, Nantel A, et al. Identification and characterization ofantifungal compounds using a saccharomyces cerevisiae reporter bioassay. PLoS ONE,2012,7: e36021.doi:10.1371/journal.pone.0036021
    [11]. Krysan DJ, Didone L. A high-throughput screening assay for small molecules that disrupt yeastcell integrity. J Biomol Screen,2008,13:657–664.
    [12]. Wiseman H, Cannon M, Arnstein HR.Observation and significance of growth inhibition ofSaccharomyces cerevisiae (A224A) by the anti-oestrogen drug tamoxifen. Biochem Soc Trans,1989,17:1038–1039.
    [13]. Dolan K, Montgomery S, Buchheit B, Didone L, Wellington M, et al. Antifungal activity oftamoxifen: in vitro and in vivo activities and mechanistic characterization. Antimicrob AgentsChemother,2009,53:3337–3346.
    [14]. Walker SS, Xu Y, Triantafyllou I, Waldman MF, Mendrick C, et al. Discovery of a novel class oforally active antifungal beta-1,3-D-glucan synthase inhibitors. Antimicrob Agents Chemother,2011,55:5099–5106.
    [15]. Kitamura A, Someya K, Hata M, Nakajima R, Takemura M.Discovery of a small-moleculeinhibitor of {beta}-1,6-glucan synthesis. Antimicrob Agents Chemother,2009,53:670–677.
    [16]. Miyazaki M, Horii T, Hata K, Watanabe NA, Nakamoto K, et al. In vitro activity of E1210, anovel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother,2011,55:4652–4658.
    [17]. Hata K, Horii T, Miyazaki M, Watanabe NA, Okubo M, et al. Efficacy of oral E1210, a newbroad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis,aspergillosis, and fusariosis. Antimicrob Agents Chemother,2011,55:4543–4551.
    [18]. McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, et al. Inhibiting GPI anchorbiosynthesis in fungi stress the endoplasmic reticulum and enhances immunogencity. ACS ChemBiol,2012, E-pub ahead of print. doi.org/10.1021/cb300235m
    [19]. Baxter BK, DiDone L, Ogu D, Schor S, Krysan DJ.Identification, in vitro activity and mode ofaction of phosphoinositide-dependent-1kinase inhibitors as antifungal molecules. ACS Chem Biol,2011,6:502–510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700