白念珠菌耐药相关蛋白Rta2p的生物功能及分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于临床上唑类抗真菌药物(尤其是氟康唑)的广泛和长期使用,导致了白念珠菌耐药性产生,这是临床治疗白念珠菌感染失败的首选原因。白念珠菌耐药性的获得是多基因在多层级水平变异积累的复杂过程;目前已明确药物外转运蛋白的过度表达是白念珠菌耐药性产生的重要原因,这类蛋白包括能量依赖性ABC转运蛋白(Cdrlp和Cdr2p)和易化载体超家族蛋白(Mdrlp和Flulp)。
     本研究利用氟康唑和氟奋乃静联合长期诱导已知耐药蛋白编码基因(CDR1,CDR2,CaMDR1和FLU1)缺失的白念珠菌DSY1024,得到对唑类药物(包括氟康唑、酮康唑、伊曲康唑、益康唑和活力康唑)高度耐药的菌株DSF28;然后利用基因表达谱芯片在DSF28中筛选得到13条上调基因和22条下调基因,其中多数为未知功能基因(49%);其余基因的功能涉及RNA的转录和合成(14%)、钙调神经磷酸酶通路(9%)、氨基酸和碳水化合物代谢(9%)、小分子转运蛋白(9%)、能量生成(5%)和未分类功能基因(5%)。利用实时定量RT-PCR考察了DSF28耐药性的产生过程中,13条上调基因的动态表达水平;利用非监督聚类分析对这13条基因的动态表达样式进行聚类,发现这些基因具有3类表达样式,其中RTA2,MXR1,CPA2,ARO3和BAT22的表达样式与已知耐药基因ERG11,CDR1和CaMDR1在耐药产生过程中的表达样式类似,而且在耐药性产生过程中均保持较高的表达水平。
     本研究又利用基因敲除和异位高表达技术成功构建了RTA2基因在白念珠野生菌RM1000和已知耐药基因缺失菌DSY1024中的缺失菌和高表达菌。利用微量液基稀释法和Spot assay方法发现RTA2基因在白念珠菌RM1000和DSY1024中缺失均导致对唑类药物包括氟康唑、益康唑、伊曲康唑、酮康唑和活力康唑敏感性不同程度增加;而RTA2基因在白念珠菌RM1000和DSY1024中高表达均导致对上述唑类药物敏感性下降,证明RTA2基因参与白念珠菌对唑类药物耐药性的产生。利用实时定量RT-PCR我们发现26株临床分离的白念珠耐药菌中有18株菌中RTA2基因不同程度过度表达,但在18株临床分离的敏感菌中RTA2基因高表达水平变化很小;说明RTA2基因参与白念珠菌耐药性形成具有临床意义。
     另外,有研究报道高浓度的氯化钙能够诱导RTA2基因的表达上调,而且这种上调作用依赖于钙调神经磷酸酶(calcinetJrin,CaN)及其转录因子Crzlp;而CaN通路能够被氯化钙激活,并参与白念珠菌耐药性的形成,但其参与耐药形成的靶基因目前尚不明确。本研究通过加入CaCl_2、钙离子螯合剂EGTA以及CaN抑制剂(FK506和CsA)考察了唑类药物(氟康唑和酮康唑)对白念珠菌RM1000和RTA2基因缺失菌JXM101的抗真菌活的变化,发现CaN通路通过其靶基因RTA2调节对唑类药物的耐药性,我们进一步考察了CNA(编码CaN催化亚单位)缺失菌、CNA回复菌、CRZ1(编码CaN通路转录因子Crzlp)缺失菌和CRZ1回复菌对唑类药物(氟康唑和酮康唑)的抗真菌活性变化,得到了与RTA2基因单独缺失一致的结果。我们又利用实时定量RT-PCR在RTA2基因转录水平证明CaCl_2能够以CaN和Crzlp依赖的方式上调RTA2基因的表达。证明CaN通路调节白念珠菌对唑类药物的耐药性产生依赖于RTA基因,而RTA2基因的表达水平的上调依赖于CaN通路。利用透射电镜考察白念珠菌超微结构发现:RTA2基因缺失使得白念珠菌的细胞膜容易受到氟康唑的损伤;而氯化钙诱导的RTA2基因高表达能够减弱氟康唑对细胞膜的损伤作用。生物信息学分析发现RTA2基因编码产物是脂质转运蛋白。利用激光共聚焦技术发现RTA2基因敲除后导致细胞内鞘脂成分一长链碱二氢鞘氨醇向细胞外转运减少;利用鞘脂合成通路特异性抑制剂烟曲霉毒素B1和多球壳菌素,进一步确证RTA2基因编码蛋白参与转运细胞内外的长链碱。综上所述,RTA2基因是CaN通路调节白念珠菌对唑类药物的耐药性产生的必需基因。
Widespread and repeated use of azoles,particularly fluconazole,has led to the rapid development of azole resistance in Candida albicans.Overexpression of CDR1,CDR2, CaMDR1 and FLU1 has been reported contributing to azole resistance in C.albicans.In this study,hyper-resistant C.albicans mutant,with the above 4 genes deleted,was obtained by exposure to fluconazole and fluphenezine for 28 passages.Thirty-five differentially expressed genes were identified in the hyper-resistant mutant by microarray analysis; Among the 35 genes,most were of unknown function(49%),followed by those involved in transcription and RNA processing(14%),calcineurin stress-response pathway(9%), amino acid and carbohydrate metabolism(9%),small molecule transport(9%),energy generation(5%),and those not classified(5%).Moreover,expression pattern of RTA2 was similar to that of other known resistance-related genes(CDR1,CaMDR1,and ERG11).The deletion of RTA2 in C.albicans strains with and without deletions of CDR1,CDR2, CaMDR1 and FLU1,was found to increase their susceptibility to azoles;meanwhile,we found that ectopic overexpression of RTA2 in the rta2 mutants conferred resistance to azoles.RTA2 expression was found elevated in clinical azole-resistant isolates of C. albicans.The calcineurin pathway has also been reported to participate in azole resistance in C.albicans.In the present study,CaCl_2-induced-activation of the calcineurin pathway in wild-type C.albicans promoted resistance to azoles;it was also found that the Ca~(2+) chelator(EGTA),calcineurin inhibitors(FK506 and cyclosporin A) and the deletion of RTA2 blocked the resistance-promoting effects of CaCl_2.Furthermore,we found that the addition of CaCl_2 up-regulated RTA2 in a calcineurin-dependent manner.Ultra-structure analysis by transmission electronic microscopy showed the depletion of RTA2 make the cell membrane of C.albicans liable to be destroyed by fluconazole and Ca~(2+)-induced-upregulation of RTA2 attenuated the destroying effects.Bioinformatics assay revealed that Rta2p is a lipid transporter.Our study found that the depletion of RTA2 decreased the translocation of sphingolipid dihydrosphingosine to outside of the cell membrane in C. albicans.In conclusion,our findings suggest that RTA2 is responsible for the development of calcineurin-mediated azole resistance in C.albicans.
引文
1.Maertens,J.,M.Vrebos,and M.Boogaerts,Assessing risk factors for systemic fungal infections.European Journal of Cancer Care,2001.10(1):p.56-62.
    2.Snydman,D.R.,Shifting Patterns in the Epidemiology of Nosocomial Candida Infections~*.2003,Am Coil Chest Phys.p.500-503.
    3.吴绍熙and廖万清,中国致病真菌10年动态流行病学研究.临床皮肤科杂志,1999.28(001):p.1-5.
    4.陈端,et al.,医院真菌感染1225例分析.中华检验医学杂志,2005.28(004):p.387-388.
    5.徐晓微and林碎钗,应用两性霉素B脂质体治疗深部真菌感染的不良反应监护.中国实用护理杂志,2005.21(004):p.51-52.
    6.张越峰,et al.,两性霉素B治疗恶性血液病化疗后深部真菌感染所致持续发热疗效观察.浙江医学,2003.25(012):p.762-762.
    7.唐蕾,脂质体两性霉素B的研究及临床应用现状.国外医学:内科学分册,2000.27(003):p.123-126.
    8.李建国and崇雨田,两性霉素B和5—氟胞嘧啶联合用药对肝,肾功能的影响.中国临床药学杂志,2001.10(002):p.83-85.
    9.谢春英and李建国,两性霉素B和5—氟胞嘧啶合用对隐球菌脑膜炎患者外周血象的影响.中国临床药学杂志,2001.10(001):p.6-8.
    10.陈宏,et al.,两性霉素B和5—氟胞嘧啶的体外联合药敏试验.第二军医大学学报,2003.24(004):p.453-454.
    11.林伟,孟申,and杨玉坤,氟胞嘧啶引起急性药物性肝炎.药物不良反应杂志,2004.6(005):p.334-335.
    12.Grant,S.M.and S.P.Clissold,Fluconazole:a review of its pharmacodynamic and pharmacokinetic properties,and therapeutic potential in superficial and systemic mycoses.Drugs(Basel),1990.39(6):p.877-916.
    13.岗艳云and伍斌,人体内氟康唑的药代动力学及其生物利用度.中国临床药理学杂志,1999.15(001):p.29-32.
    14.孙忠实and朱珠,药物代谢性相互作用研究进展.药物不良反应杂志,2000.2(001):p.6-14.
    15.Rex,J.H.,M.G.Rinaldi,and M.A.Pfaller,Resistance of Candida species to fluconazole.Antimicrobial Agents and Chemotherapy,1995.39(1):p.1.
    16.Akins,R.A.,An update on antifungal targets and mechanisms of resistance in Candida albicans.Medical Mycology,2005.43(4):p.285- 318.
    17. Mukhopadhyay, K., A. Kohli, and R. Prasad, Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob Agents Chemother, 2002. 46(12): p. 3695-705.
    18. Loffler, J., et al., Phospholipid and sterol analysis of plasma membranes of azole-resistant Candida albicans strains. FEMS Microbiol. Lett, 2000. 185(1): p. 59-63.
    19. Sanglard, D. and R. Prasad, CaALK8, an alkane assimilating cytochrome P450, confers multidrug resistance when expressed in a hypersensitive strain of Candida albicans. Yeast, 2001. 18: p. 1117-1129.
    20. Karababa, M., et al., CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol, 2006. 59(5): p. 1429-51.
    21. Steinbach, W.J., et al., Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol, 2007. 5(6): p. 418-30.
    22. Cannon, R.D., et al., Candida albicans drug resistance another way to cope with stress. Microbiology, 2007. 153(10): p. 3211.
    23. Prasad, R. and K. Kapoor, Multidrug resistance in yeast Candida. Int Rev Cytol, 2005. 242: p. 215-48.
    24. Prasad, R. and K. Kapoor, Multidrug resistance in yeast Candida. Int Rev Cytol, 2004. 242: p. 215-48.
    25. Morschhauser, J., The genetic basis of fluconazole resistance development in Candida albicans. Biochim Biophys Acta, 2002. 1587(2-3): p. 240-8.
    26. Yang, Y.L. and H.J. Lo, Mechanisms of antifungal agent resistance. J Microbiol Immunol Infect, 2001. 34(2): p. 79-86.
    27. Sanglard, D., et al., Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother, 1995. 39(11): p. 2378-86.
    28. Prasad, R., S.K. Murthy, and V. Gupta, Multiple drug resistance in Candida albicans. Acta Biochim Pol, 1995. 42(4): p. 497-504.
    29. Henry, K.W., et al., Antagonism of azole activity against Candida albicans following induction of multidrug resistance genes by selected antimicrobial agents. Antimicrob Agents Chemother, 1999. 43(8): p. 1968-74.
    30. Karababa, M., et al., Comparison of gene expression profiles of Candida albicans azole-resistant clinical isolates and laboratory strains exposed to drugs inducing multidrug transporters. Antimicrob Agents Chemother, 2004. 48(8): p. 3064-79.
    31. Capecchi, M.R., Altering the genome by homologous recombination. Science, 1989. 244(4910): p. 1288-1292.
    32. Sun, Y.G., et al., New ideas in the study of gene function. Sheng Li Ke Xue Jin Zhan, 2003. 34(1): p. 55-7.
    33. De Backer, M.D., M. Raponi, and G.M. Arndt, RNA-mediated gene silencing in non-pathogenic and pathogenic fungi. Curr Opin Microbiol, 2002. 5(3): p. 323-9.
    34. Dennison, P.M.J., et al., Gene disruption in Candida albicans using a synthetic, codon-optimised Cre-loxP system. Fungal Genetics and Biology, 2005. 42(9): p. 737-748.
    35. Reu, O., et al., The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene, 2004. 341: p. 119-127.
    36. Staab, J.F. and P. Sundstrom, URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends in Microbiology, 2003. 11(2): p. 69-73.
    37. Morschhauser, J., S. Michel, and P. Staib, Sequential gene disruption in Candida albicans by FLP-mediated site-specific recombination. Molecular Microbiology, 1999. 32(3): p. 547-556.
    38. Wilson, R.B., D. Davis, and A.P. Mitchell, Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology Regions. Journal of Bacteriology, 1999. 181(6): p. 1868.
    39. Gerami-Nejad, M., et al., Cassettes for the PCR-mediated construction of regulatable alleles in Candida albicans. Yeast, 2004. 21(5): p. 429-36.
    40. de Hoogt, R., et al., PCR- and ligation-mediated synthesis of split-marker cassettes with long flanking homology regions for gene disruption in Candida albicans. Biotechniques, 2000. 28(6): p. 1112-6.
    41. Noble, S.M. and A.D. Johnson, Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell, 2005. 4(2): p. 298-309.
    42. Care, R.S., et al., The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol, 1999. 34(4): p. 792-8.
    43. MacPherson, S., et al., Candida albicans Zinc Cluster Protein Upc2p Confers Resistance to Antifungal Drugs and Is an Activator of Ergosterol Biosynthetic Genes. Antimicrobial Agents and Chemotherapy, 2004. 49(5): p. 1745-1752.
    44. Hromatka, B.S., S.M. Noble, and A.D. Johnson, Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell, 2005. 16(10): p. 4814-26.
    45. Karababa, M., et al., CRZ1, a target of the calcineurin pathway in Candida albicans. Molecular Microbiology, 2006. 59(5): p. 1429-1451.
    46. Cruz, M.C., et al., Calcineurin is essential for survival during membrane stress in Candida albicans. Embo J, 2002. 21(4): p. 546-59.
    47. Blankenship, J.R., et al., Calcineurin is essential for Candida albicans survival in serum and virulence. Eukaryot Cell, 2003. 2(3): p. 422-30.
    48. Kraus, P.R. and J. Heitman, Coping with stress: calmodulin and calcineurin in model and pathogenic fungi. Biochem Biophys Res Commun, 2003. 311(4): p. 1151-7.
    49. Akins, R.A., An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol, 2005. 43(4): p. 285-318.
    50. Onyewu, C., N.A. Afshari, and J. Heitman, Calcineurin promotes infection of the cornea by Candida albicans and can be targeted to enhance fluconazole therapy. Antimicrob Agents Chemother, 2006. 50(11): p. 3963-5.
    51. Reedy, J.L., et al., Immunotherapy with tacrolimus (FK506) does not select for resistance to calcineurin inhibitors in Candida albicans isolates from liver transplant patients. Antimicrob Agents Chemother, 2006. 50(4): p. 1573-7.
    52. Dickson, R.C., Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu Rev Biochem, 1998. 67: p. 27-48.
    53. Mao, C., J.D. Saba, and L.M. Obeid, The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochem J, 1999. 342 Pt 3: p. 667-75.
    54. Dogra, S., et al., Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP binding cassette (ABC) superfamily. Yeast, 1999. 15(2): p. 111-21.
    55. Smriti, D. and R. Prasad, CDRlp, Which Confers Multidrug Resistance In Candida albicans, Is a General Phospholipid Translocase. Abstr Intersci Conf Antimicrob Agents Chemother Intersci Conf Antimicrob Agents Chemother, 1999. 39: p. 587.
    56. Smriti, et al., ABC transporters Cdr1p, Cdr2p and Cdr3p of a human pathogen Candida albicans are general Phospholipid translocators. Yeast, 2002. 19(4): p. 303-18.
    57. Kihara, A. and Y Igarashi, Identification and characterization of a Saccharomyces cerevisiae gene, RSB1, involved in sphingoid long-chain base release. J Biol Chem, 2002. 277(33): p. 30048-54.
    58. Kihara, A. and Y Igarashi, Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. Mol Biol Cell, 2004. 15(11): p. 4949-59.
    1.White TC,Holleman S,Dy F,et al.Resistance mechanisms in clinical isolates of Candida albicans[J].Antimicrob Agents Chemother,2002,46(6):1704-1713.
    2.White TC,Marr KA,Bowden RA.Clinical,cellular,and molecular factors that contribute to antifungil drug resistance[J].Clinical Microbiology Reviews,1998,11(2):382-402.
    3.Prasad R,Wergifosse PD,Goffeau A,et al.Molecular cloning and characterization of a novel gene of Candida albicans,CDR1,conferring multidrug multiple resistance to drugs and antifungals[J].Curr Genet,1995(27):320-9.
    4.Sanglard D,Ischer F,Monod M,et al.Cloning of Candida albicans genes conferring resistance to azole antifungal agents:characterization of CDR2,a new multidrug ABC transporter gene[J].Microbiol,1997,143:405-16.
    5.Puri N,Krishnamurthy S,Habib S et al.CDR1,a multidrug resistance gene from Candida albicans,contains multiple regulatory domains in its promoter and the distal AP-1element mediates its induction by miconazole[J].FEMS Microbiol Lett,1999;180(2):213-9.
    6.Micheli MM,Bille J,Schueller C et al.A common drug-responsive element mediates the upregulation of the Candida albicans ABC transporters CDR1 and CDR2,two genes involved in antifungal drug resistance[J].Mol Microbiol,2002,43(5):1197-214.
    7.Krishnamurthy S,Gupta V,Prasad R,et al.Expression of CDR1,a multidrug resistance gene of Candida albicans:transcriptional activation by heat shock,drugs and human steroid hormones[J].FEMS Microbiol Lett,1998;160(2):191-7.
    8.Henry KW,Cruz MC,Katiyar SK et al.Antagonism of azole activity against Candida albicans following induction of multidrug resistance genes by selected antimicrobial agents[J].Antimicrob Agents Chemother,1999;43(8):1968-74.
    9.Hernaez ML,Gil C,Pla J et al.Induced expression of the Candida albicans multidrug resistance gene CDR1 in response to fluconazole and other antifungals[J]. Yeast, 1998, 14:517-526.
    
    10.Albertson GD,Nhmi M,Cannon RD.Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance[J]. Antimicrob Agents Chemother,1996,40(12):2835-2841.
    
    11. Sanglard D, Ischer F, Monod M et al. Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors[J]. Antimicrobial Agents and Chemotherapy, 1996,40(10) 2300-2305.
    12. Smriti,Krishnamurthy S,Prasad R.Membrane fluidity affects functions of Cdr1p, a multidrug ABC Transporter of Candida albicans[J].FEMS Microbiology Letters, 1999,173:475-481.
    13. Dogra S, Krishnamurthy S, Gupta V et al. Asymmetric distribution of phosphatidylethanolamine in C. albicans: possible mediation by CDR1, a multidrug transporter belonging to ATP[J]. Yeast, 1999,15(2): 111 -21.
    14. Smriti, Krishnamurthy S, Dixit BL et al. ABC transporters Cdrlp, Cdr2p and Cdr3p of a human pathogen Candida albicans are general Phospholipid translocators[J]. Yeast,2002,19(4):303-18.
    15. Maesaki S, Marichal P, Hossain MA et al. Synergic effects of tactolimus and azole antifungal agents against azole-resistant Candida albican strains[J]. J Antimicrob Chemother, 1998,42(6): 747-53.
    Akins,R.A.(2005).An update on antifungal targets and mechanisms of resistance in Candida albicans.Med Mycol 43,285-318.
    Alarco,A.M.& Raymond,M.(1999).The bZip transcription factor Caplp is involved in multidrug resistance and oxidative stress response in Candida albicans.J Bacteriol 181,700-708.
    Albertson,G.D.,Niimi,M.,Cannon,R.D.& Jenkinson,H.F.(1996)Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance.Antimicrob Agents Chemother 40,2835-2841.
    Anderson,J.B.(2005).Evolution of antifungal-drug resistance:mechanisms and pathogen fitness.Nat Rev Microbiol 3,547-556.
    Bader,T.,Schroppel,K.,Bentink,S.,Agabian,N.,Kohler,G.& Morschhauser,J.(2006).Role of calcineurin in stress resistance, morphogenesis, and virulence of a Candida albicans wild-type strain. Infect Immun 74, 4366-4369.
    
    Baixench, M. T., Aoun, N., Desnos-Ollivier, M., Garcia-Hermoso, D., Bretagne, S., Ramires, S., Piketty, C. & Dannaoui, E. (2007). Acquired resistance to echinocandins in Candida albicans: case report and review. J Antimicrob Chemother 59, 1076-1083.
    
    Blankenship, J. R. & Heitman, J. (2005). Calcineurin is required for Candida albicans to survive calcium stress in serum. Infect Immun 73, 5767-5774.
    
    Bruno, V. M. & Mitchell, A. P. (2005). Regulation of azole drug susceptibility by Candida albicans protein kinase CK2. Mol Microbiol 56, 559-573.
    
    Cannon, R. D. & Chaffin, W. L (1999). Oral colonization by Candida albicans. Crit Rev Oral Biol Med 10, 359-383. Chait, R., Craney, A. & Kishony, R. (2007). Antibiotic interactions that select against resistance. Nature 446,668-671.
    
    Coste, A., Turner, V., Ischer, F., Morschhauser, J., Forche, A., Selmecki, A., Berman, J., Bille, J. & Sanglard, D. (2006). A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172, 2139-2156.
    
    Cowen, L. E. & Lindquist, S. (2005). Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185-2189.
    
    Cowen, L. E., Sanglard, D., Calabrese, D., Sirjusingh, C., Anderson, J. B. & Kohn, L. M. (2000). Evolution of drug resistance inexperimental populations of Candida albicans. J Bacteriol 182, 1515-1522.
    
    Cowen, L. E., Carpenter, A. E., Matangkasombut, O., Fink, G. R. & Lindquist, S. (2006). Genetic architecture of Hsp90-dependent drug resistance. Eukaryot Cell 5,2184-2188.
    
    Cruz,M. C., Goldstein, A. L, Blankenship, J. R., Del Poeta,M., Davis, D., Cardenas, M. E., Perfect, J. R., McCusker, J. H. & Heitman, J. (2002). Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 21, 546-559.
    
    Enjalbert, B., Smith, D. A., Cornell, M. J., Alam, I., Nicholls, S., Brown, A. J. & Quinn, J. (2006). Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell 17, 1018-1032.
    
    Fox, D. S. & Heitman, J. (2002). Good fungi gone bad: the corruption of calcineurin. Bioessays 24, 894-903.
    
    Gregori, C., Schuller, C., Roetzer, A., Schwarzmuller, T., Ammerer, G. & Kuchler, K. (2007). The high osmolarity glycerol (HOG) response pathway in the human fungal pathogen Candida glabrata strain ATCC2001 lacks a signaling branch operating in baker's yeast. Eukaryot Cell (in press).
    
    Holmes, A. R., Tsao, S., Ong, S. W., Lamping, E., Niimi, K., Monk, B. C., Niimi, M., Kaneko, A.,Holland, B. R. & other authors (2006). Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 62, 170-186.
    
    Jain, P., Akula, I. & Edlind, T. (2003). Cyclic AMP signaling pathway modulates susceptibility of Candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 47, 3195-3201.
    
    Karababa, M., Valentino, E., Pardini, G., Coste, A. T., Bille, J. & Sanglard, D. (2006). CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59, 1429-1451.
    
    Lamping, E., Monk, B. C., Niimi, K., Holmes, A. R., Tsao, S., Tanabe, K., Niimi, M., Uehara, Y. & Cannon, R. D. (2007). Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyper-expression in Saccharomyces cerevisiae. Eukaryot Cell 6, 1150-1165.
    
    Liu, T. T., Lee, R. E., Barker, K. S., Lee, R. E., Wei, L., Homayouni, R. & Rogers, P. D. (2005). Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans. Antimicrob Agents Chemother 49, 2226-2236.
    
    Monge, R. A., Roman, E., Nombela, C. & Pla, J. (2006). The MAP kinase signal transduction network in Candida albicans. Microbiology 152, 905-912.
    
    Monk, B. C., Cannon, R. D., Nakamura, K., Niimi, M., Niimi, K., Harding, D. R. K., Holmes, A. R., Lamping, E., Goffeau, A. &
    
    Decottignies, A. (2002). Membrane protein expression system and its application. International Patent PCT/NZ02/00163.
    
    Nakamura, K., Niimi, M., Niimi, K., Holmes, A. R., Yates, J. E., Decottignies, A., Monk, B. C., Goffeau, A. & Cannon, R. D. (2001). Functional expression of Candida albicans drug efflux pump Cdr1p in a Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob Agents Chemother 45, 3366-3374.
    Navarro-Garcia, F., Alonso-Monge, R., Rico, H., Pla, J., Sentandreu, R. & Nombela, C. (1998). A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbiology 144,411-424.
    Niimi, K.,Harding,D. R., Parshot, R., King, A., Lun,D. J., Decottignies, A., Niimi, M., Lin, S., Cannon, R. D. & other authors (2004). Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a D-octapeptide derivative. Antimicrob Agents Chemother 48, 1256-1271.
    Niimi, M., Wada, S., Tanabe, K., Kaneko, A., Takano, Y., Umeyama, T., Hanaoka, N., Uehara, Y., Lamping, E. & other authors (2005). Functional analysis of fungal drug efflux transporters by heterologous expression in Saccharomyces cerevisiae. Jpn J Infect Dis 58, 1-7.
    Niimi, K., Maki, K., Ikeda, F., Holmes, A. R., Lamping, E., Niimi, M., Monk, B. C. & Cannon, R. D. (2006).Overexpression of Candida albicans CDR1, CDR2, orMDRl does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother 50, 1148-1155.
    Onyewu, C., Wormley, F. L., Jr, Perfect, J. R. & Heitman, J. (2004). The calcineurin target, Crzl, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 72, 7330-7333.
    Perea, S., Lopez-Ribot, J. L., Kirkpatrick, W. R., McAtee, R. K., Santillan, R. A., Martinez, M., Calabrese, D., Sanglard, D. & Patterson, T. F. (2001). Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45, 2676-2684.
    Perepnikhatka, V., Fischer, F. J., Niimi, M., Baker, R. A., Cannon, R. D., Wang, Y. K., Sherman, F. & Rustchenko, E. (1999). Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J Bacteriol 181, 4041-4049.
    Quinn, J. & Brown, A. J. P. (2007). Stress responses in Candida albicans. In Candida: Comparative and Functional Genomics, pp. 217-261. Edited by C. d'Enfert & B. Hube. Norwich, UK: Caister Adademic Press.
    Riggle, P. J. & Kumamoto, C. A. (2006). Transcriptional regulation of MDR1, encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site. Eukaryot Cell 5, 1957-1968.
    Roman, E., Arana, D. M., Nombela, C., Alonso-Monge, R. & Pla, J. (2007). MAP kinase pathways as regulators of fungal virulence. Trends Microbiol 15, 181-190.
    Sanglard, D. & Bille, J. (2002). Current understanding of the modes of action of and resistance mechanisms to conventional and emerging antifungal agents for treatment of Candida infections. In Candida and Candidiasis, pp. 349-383. Edited by R. A. Calderone. Washington, DC: American Society for Microbiology.
    Sanglard, D., Ischer, F., Marchetti, O., Entenza, J. & Bille, J. (2003). Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48, 959-976.
    Schuetzer-Muehlbauer, M., Willinger, B., Egner, R., Ecker, G. & Kuchler, K. (2003). Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 22, 291-300.
    Selmecki, A., Forche, A. & Berman, J. (2006). Aneuploidy and isochromosome formation in drugresistant Candida albicans. Science 313, 367-370.
    Silver, P. M., Oliver, B. G. & White, T. C. (2004). Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3, 1391-1397.
    Steinbach, W. J., Reedy, J. L., Cramer, R. A., Jr, Perfect, J. R. & Heitman, J. (2007). Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Microbiol 5, 418-430.
    White, T. C. (1997). Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 41, 1482-1487.
    White, T. C., Marr, K. A. & Bowden, R. A. (1998). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11, 382-402.
    Wright, G. D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5,175-186.
    1.Kidd,S.E.et al.A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia,Canada).Proc.Natl Acad Sci.USA 101,17258-17263(2004).
    2.Groll,A.H.et al.Trends in postmortem epidemiology of invasive fungal infections at a university hospital.J.Infect.33,23-32(1996).
    3.Edmond,M.B.et al.Nosocomial bloodstream infections in United States hospitals:a three-year analysis.Clin.Infect.Dis.29,239-244(1999).
    4.Marr,K.A.,Caner,R.A.,Crippa,F.,Wald,A.& Corey,L.Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients.Clin.Infect.Dis.34,909-917(2002).
    5.Chayakulkeeree,M.& Perfect,J.R.Cryptococcosis.Infect.Dis.Clin.North Am.20,507-544(2006).6.Wilson.L.S.et al.The direct cost and incidence of systemic fungal infections.Value Heath 5,26-34(2002).
    7.Cutler,J.E.,Deepe,G.S.Jr & Klein,B.S.Advances in combating fungal diseases:vaccines on the threshold.Nature Rev.Microbiol.5.13-28(2007).
    8.Klee,C,B..Crouch,T.H.& Krinks,M.H.Calcineurin:a calcium-and calmodulin-binding protein of the nervous system.Proc.Natl Acad.Sci.USA 76,6270-6273(1979).
    9.Fox,D.S.& Heitman,J.Good fungi gone bad:the corruption of calcineurin.Bioessays 24,894-903(2002).
    10.Desdouits,F.,Siciliano,J.C.,Greengard,P.& Girault,J.A.Dopamine-and cAMP-regulated phosphoprotein DARPP-32:phosphorylation of Ser-137 by casein kinase I inhibits dephosphorylation of Thr-34 by calcineurin.Proc.Natl Acad.Sci.USA 92,2682-2685(1995).
    11.Dawson.T.M.et al.Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity.Proc.Natl Acad.Sci.USA 90,9808-9812(1993).
    12.Fraser,E.D.& Walsh,M.P.Dephosphorylation of calponin by type 2B protein phosphatase.Biochemistry 34,5561-5568(1995).
    13.Conboy.I.M..Manoli,D..Mhaiskar,V.& Jones.P.P.Calcineurin and vacuolar-type H+-ATPase modulate macropbage effector functions.Proc.Natl Acad.Sci.USA 96,6324-6329(1999).
    14.Satonaka.H.et al.Calcineurin promotes the expression of monocyte chemoattractant protein-1 in vascular myocytes and mediates vascular inflammation.Circulation Res.94,693-700(2004).
    15.Aperia.A.,Ibarra,F..Svensson,L.B.,Klee,C.& Greengard.P.Calcineurin mediates alpha-adrenergic stimulation of Na+,K+-ATPase activity in renal tubule cells.Proc.Natl Acad.Sci.USA 89,7394-7397(1992).
    16.Clipstone,N.A.& Crabtree,G.R.Identification of calcineurin as a key signaling enzyme in T-lymphocyte activation.Nature 357.695-597(1992).
    17.Hemenway,C.S.& Heitman,J.Calcineurin.Structure,function,and inhibition.Cell Biochem.Biophys.30.115-151(1999).
    18.Liu,J,et al,Calcineurin is a common target ofcyclophilin-cyclosporin A and FKBP-FK506 complexes.Cell 66,807-815(1991).
    19.Friedman,J.& Weissman,I.Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin:one in the presence and one in the absence of CsA.Cell 66,799-806(1991).
    20.Heir,J.J.et al.Calcineurin/NFAT signalling regulates pancreatic β-cell growth and function,Nature 443,345-349(2006).
    21.Graef,I.A..Chen,F.,Chen,L.,Kuo,A.& Crabtree,G.R.Signals transduced by Ca2+/calcineurin and NFATc3/c4pattern the developing vasculature.Cell 105,863-875(2001).
    22.Malleret,G.et al.Inducible and reversible enhancement of learning,memory,and long-term potentiation by genetic inhibition of calcineurin.Cell 104,675-686(2001).
    23.Yang,Y.et al.Reversible blockade of experiencedependent plasticity by calcineurin in mouse visual cortex.Nature Neurosci.8,791-796(2005).
    24.Flavell,S.W.et al.Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synpase number.Science 311,962-963(2006).
    25.Graef,I.A.et al.Neuroptrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons.Cell 113,657-670(2003).
    26.Chang,C.-P.et al.A field of myocardial-endocardial NFAT signaling underlies heart valve morphogenesis.Cell 118,649-663(2004).
    27.Liu.F.et al.Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain.J.Biol.Chem.280,37755-37762(2005).
    28.Sussman,M.A.et al.Prevention of cardiac hypertrophy in mice by calcineurin inhibition.Science 281,1690-1693(1998).
    29.Shirane,M.& Nakayama,K.I.Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis.Nature Cell Biol.5,28-37(2003).
    30.Koga,T.et al.NFAT and osterix cooperatively regulate bone formation.Nature Med.11,880-885(2005).
    31.Semsarian,C.et al.Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway.Nature 400,576-581(1999).
    32.Storb,R.et al.Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia.N.Engl.J.Med.314,729-735(1986).
    33.Remitz,A.et al.Long-term safety and efficacy of tacrolimus ointment for the treatment of atopic dermatitis in children.Acta Derm.Venereol.87.51-61(2007).
    34.Alexander,A.G.,Barnes,N.C.& Kay,A.B.Trial of cyclosporin in corticosteroid-dependent chronic severe asthma.Lancet 339.324-328(1992).
    35.Ponticelli,C.& Passerini,P.Alternative treatments for focal and segmental glomerulosclerosis.Clin.Nephrol.55,345-348(2001).
    36.Temekonidis,T.I.et al.Infliximab treatment in combination with cyclosporin A in patients with severe refractory rheumatoid arthritis.Ann.Rheum.Dis.61.822-825(2002).
    37.Jin,L.& Harrison,S.C.Crystal structure of human calcineurin complexed with cyclosporin A and human cyclophilin.Proc.Natl Acad.Sci.USA 99.13522-13526(2002).
    38.Huai,Q.et al.Crystal structure of calcineurincyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes.Proc.Natl Acad.Sci.USA 99,12037-12042(2002).
    39.Kissinger,C.R.et al.Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex.Nature 378,641-644(1995).
    40.Griffith,J.P.et al.X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506complex.Cell 82,507-522(1995).
    41.Perfect,J.R.& Durack.D.T.Effects ofcyclosporine in experimental cryptococcal meningitis.Infect.Immun.50.22-26(1985).
    42.Mody,C.H.,Toews,G.B.& Lipscomb,M.F.Cyclosporin A inhibits the growth of Cryptococcus neoformans in a murine model.Infect.Immum.56.7-12(1988).
    43.Mody,C.H.,Toews,G.B.& Lipscomb,M.F.Treatment of murine cryptococcosis with cyclosporin-A in normal and athymic mice.Am.Rev.Resp.Dis.139.8-13(1989).
    44.Odom,A..Del Poeta,M.,Perfect.J.& Heitman,J.The immunosuppressant FK506 and its nonimmunosuppressive analog L-685.818 are toxic to Cryptococcus neoformans by inhibition of a common target protein.Antimicrob.Agents Chemother.41.156-161(1997).
    45.Odom,A.et al.Calcineurin is required for virulence of Cryptococcus neoformans.EMBO J.16,2576-2589(1997).
    46.Kojima,K,Bahn.Y.S.& Heitman,J.Calcineurin.MpK1 and Hog1 MAPK pathways independently control fludioxonil antifungal sensitivity in Cryptococcus neoformans.Microbiology 152,591-604(2006).
    47.Cruz.M.C.,Fox,D.S.& Heitman,J.Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans.EMBO J.20.1020-1032(2001).
    48.Wang,P.,Cardenas,M.E.,Cox,G.M.,Perfect,J.R.& Heitman,J.Two cyclophilin A homologs with shared and distinct functions for growth and virulence,EMBO Rep.2,511-518(2001).
    49.Kraus,P.R.,Nichols,C.B.& Heitman,J.Calcium and calcineurin-independent roles for calmodulin in Cryptococcus neoformans morphogenesis and hightemperature growth.Eukaryot.Cell 4,1079-1087(2005).
    50.Gorlach,J.et al.Identification and characterization of a highly conserved calcineurin binding protein,CBP1/Calcipressin,in Cryptococcus neoformans.EMBO J.19,3618-3629(2000).
    51.Fox,D.S.& Heitman.J.Calcineurin-binding protein Cbp1 directs the specificity of calcineurin-dependent hyphal elongation during mating in Cryptococcus neoformans.Eukaryot.Cell 4,1526-1538(2005).
    52.Fox,D.S.,Cox.G.M.& Heitman,J.Phospholipidbinding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoforrnans.Eukaryot.Cell 2,1025-1035(2003).
    53.Kraus,P.R.,Fox,D.S.,Cox,G.M.& Heitman,J.The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss ofcalcineurin function.Mol.Microbiol.48,1377-1387(2003).Begins to characterize the link between the cell integrity pathway and the caleineurin pathway.
    54.Cruz,M.C.et al.Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition ofcalcineurin.Antimicrob.Agents Chemother.44,143-149(2000).
    55.Del Poeta,M.,Cruz,M.C.,Cardenas,M.E.,Perfect,J.R.& Heitman,J.Synergistic antifungal activities of bafilomycin Al,fluconazole,and the pneumocandin MK-0991/caspofungin acetate(L-743-873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans.Antimicrob.Agents Chemother.44,739-746(2000).
    56.Fox.D.S.et al.Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506in Cryptococcus neoformans.Mol.Microbiol.39,835-849(2001).
    57.Singh,N.et al.Cryptococcus neoformans in organ transplant recipients:impact ofcalcineurin-inhibitor agents on mortality.J.Infect.Dis.195,756-764(2007).
    58.Singh,N.& Heitman,J.Antifungal attributes of immunosuppressive agents:new paradigms in management and elucidating the pathophysiologic basis of opportunistic mycoses in organ transplant recipients.Transplantation 77.795-800(2004).
    59.Blankenship,J.R.,Singh,N.,Alexander,B.D.& Heitman,J.Cryptococcus neoformans isolates from transplant recipients are not selected for resistance to calcineurin inhibitors by current immunosuppressive regimens.J.Clin.Microbiol.43,464-467(2005).
    60.Martin,G.S.,Mannino,D.M.,Eaton.S.& Moss.M.The epidemiology of sepsis in the United States from 1979through 2000.N.Engl.J.Med.348,1546-1554(2003).
    61.Husain,S.et al.Changes in the spectrum and risk factors for invasive candidiasis in liver transplant recipients:prospective,multicenter,case-controlled study.Transplantation 75,2023-2029(2003).
    62.Cruz.M.C.et al.Calcineurin is essential for survival during membrane stress in Candida albicans.EMBO J.21.546-559(2002).
    63.Bader,T.,Bodendorfer,B.,Schroppel,K.& Morschhauser,J.Calcineurin is essential for virulence in Candida albicans.Infect,Immun.71,5344-5354(2003).
    64.Blankenship,J.R.et al.Calcineurin is essential for Candida albicans survival in serum and virulence.Eukaryot.Cell 2,422-430(2003).
    65.Sanglard,D.,Ischer,F.,Marchetti,O.,Entenza,J.& Bille.J.Calcineurin A of Candida albicans:involvement in antifungal tolerance,cell morphogenesis and virulence.Mol.Microbiol.48,959-976(2003).
    66.Bader,T.et al.Role ofcalcineurin in stress resistance,morphogenesis,and virulence of a Candida albicans wild-type strain.Infect.Immun.74,4366-4369(2006).
    67.Berman,J.& Sudbery,P.E.Candida albicans:a molecular revolution built on lessons from budding yeast.Nature Rev.Genet.3,918-930(2002).
    68.Calderone,R.A.& Fonzi,W.A.Virulence factors of Candida albicans.Trends Microbiol.9.327-335(2001).
    69.Cutler,J.E.Putative virulence factors of Candida albicans.Annu.Rev.Microbiol.45.187-218(1991).
    70.Felk.A.et al.Candida albicans hyphal formation and the expression of the Efgl-regulated proteinases Sap4 to Sap6are required for the invasion of parenchymal organs.Infect.Immun.70,3689-3700(2002).
    71.Filler,S.G.,Swerdloff.J.N.,Hobbs.C.& Luckett.P.M.Penetration and damage of endothelial cells by Candida albicans.Infect.Immun.63,976-983(1995).
    72.Lo.H.J.et al.Nonfilamentous C.albicans mutants are avirulent.Cell 90,939-949(1997).
    73.Mitchell.A.P.Dimorphism and virulence in Candida albicans.Curr.Opin.Microbiol.1.687-692(1998).
    74.Naglik,J..Albrecht,A.,Bader.O.& Hube,B.Candida albicans proteinases and host/pathogen interactions.Cell.Microbiol.6.915-926(2004).
    75.Sundstrom,P.Adhesins in Candida albicans.Curt.Opin.Microbiol.2,353-357(1999).
    76.Sundstrom,P..Balish,E.& Allen,C.M.Essential role of the Candida albicans transglutaminase substrate,hyphal wall protein 1,in lethal oroesophageal candidiasis in immunodeficient mice.J.Infect.Dis.185.521-530(2002).
    77.Karababa,M.etal.CRZ1,a target of the calcineurin pathway in Candida albicans.Mol.Microbiol.59.1429-1451(2006).
    78. Onyewu, C., Wormley. F. L. Jr, Perfect. J. R. & Heitman, J. The calcineurin target, Crzl, functions in azole tolerance but is not required for virulence of Candida albicans. Infect. Immun. 72, 7330-7333 (2004). The calcineurin downstream effector Crzl is related to azole tolerance but is not essential for the virulence of C. albicans.
    
    79. Santos. M. & de Larrinoa, I. F. Functional characterization of the Candida albicans CRH gene encoding a calcineurin-regulated transcription factor. Curr. Genet. 48, 88-100 (2005).
    
    80. Boustany, L. M. & Cyert, M. S. Calcineurindependent regulation of Crzlp nuclear export requires Msn5p and a conserved calcineurin docking site. Genes Dev. 16, 608-619 (2002).
    
    81. Cyert, M. S. Calcineurin signaling in Saccharomyces cerevisiae: how yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 311, 1143-1150 (2003).
    
    82. Matheos, D. P., Kingsbury, T. J.. Ahsan, U. S. & Cunningham, K. W. Tcnlp/Crzlp, a calcineurindependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 11, 3445-3458 (1997).
    
    83. Mendizabal, I., Pascual-Ahuir, A., Serrano, R. & de Larrinoa, I. F. Promoter sequences regulated by the calcineurin- activated transcription factor Crzl in the yeast ENA1 gene. Mol. Genet. Genom. 265, 801-811 (2001).
    
    84. Polizotto, R. S. & Cyert, M. S. Calcineurindependent nuclear import of the transcription factor Crzlp requires Nmd5p. J. Cell Biol. 154, 951-960 (2001).
    
    85. Stathopoulos, A. M. & Cyert, M. S. Calcineurin acts through the CRZ1/TCN 1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11, 3432-3444 (1997).
    
    86. Stathopoulos-Gerontides, A., Guo, J. J. & Cyert, M. S. Yeast calcineurin regulates nuclear localization of the Crzlp transcription factor through dephosphorylation. Genes Dev. 13, 798-803 (1999).
    
    87. Yoshimoto, H. et al. Genome-wide analysis of gene expression regulated by the calcineurin/Crzlp signaling pathway in Saccharomyces cerevisiae. J. Biol. Chem. 277. 31079-31088 (2002).
    
    88. Pardini, G. et al. The CRH family coding for cell wall glycosylphosphatidylinositol proteins with a predicted transglycosidase domain affects cell wall organization and virulence of Candida albicans. J. Biol. Chem. 281, 40399- 40411(2006).
    
    89. Cowen, L. E.. Carpenter, A. E.. Matangkasombut. O., Fink, G. R. & Lindquist, S. Genetic architecture of Hsp90-dependent drug resistance. Eukaryot. Cell 5.2184-2188 (2006).
    
    90. Heath, V. L., Shaw. S. L, Roy, S. & Cyert, M. S. Hphlp and Hph2p, novel components of calcineurin-mediated stress responses in Saccharomyces cerevisiae. Eukaryot. Cell 3, 695-704 (2004).
    
    91. Marchetti, O., Moreillon, P.. Glauser, M. P., Bille. J. & Sanglard. D. Potent synergism of the combination of fluconazole and cyclosporine in Candida albicans. Antimicrob. Agents Chemother. 44, 2373-2381 (2000).
    
    92. Marchetti, O. et al. Fluconazole plus cyclosporine: a fungicidal combination effective against experimental endocarditis due to Candida albicans. Antimicrob. Agents Chemother. 44, 2932-2938 (2000). An animal model demonstration of the synergy between fluconazole and a calcineurin inhibitor.
    
    93. Onyewu. C., Blankenship, J. R., Del Poeta. M. & Heitman. J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 47. 956-964 (2003).
    
    94. Vanden Bosche, H., Willemsens, G. & Marichal. P. Anti-Candida drugs - the biochemical basis for their activity. Crit. Rev. Microbiol. 15, 57-72 (1987).
    
    95. Pfaller, M. A. et al. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and antifungal susceptibilities of isolates collected in 1997 in the United States, Canada, and South America for the SENTRY Program. The SENTRY Participant Group. J. Clin. Microbiol. 36, 1886-1889 (1998).
    
    96. Marchetti, O. et al. Fungicidal synergism of fluconazole and cyclsoporine in Candida albicans is not dependent on multidrug efflux transporters encoded by the CDR1. CDR2. CaMDR1. and FLU1 genes. Antimicrob. Agents Chemother. 47,1565-1570(2003).
    
    97. Reedy, J. L. et al. Immunotherapy with tacrolimus (FK506) does not select for resistance to calcineurin inhibitors in Candida albicans isolates from liver transplant patients. Antimicrob. Agents Chemother. 50, 1573-1577 (2006).
    
    98. Becker, J. W. et al. FK-506-binding protein: three dimensional structure of the complex with the antagonist L-685, 818. J. Biol. Chem. 25. 11335-11339 (1993).
    
    99. Rotonda, J. et al. Improved calcineurin inhibition by yeast FKBP12-drug complexes. Crystallographic and functional analysis. J. Biol. Chem. 268. 7607-7609 (1993).
    
    100. Onyewu. C. Afshari, N. A. & Heitman. J. Calcineurin promotes infection of the cornea by Candida albicans and can be targeted to enhance fluconazole therapy. Antimicrob. Agents Chemother. 50. 3963-3965 (2006).
    
    101. Cowen. L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185-2189 (2005). Shows that heat shock protein 90 and calcineurin appear to be linked for optimizing antifungal activity.
    
    102. Roe, S. M. et al. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42. 260-266 (1999).
    
    103. Heitman. J. Cell biology. A fungal Achilles' heel. Science 309. 2175-2176 (2005).
    
    104. McNeil, M. M. et al. Trends in mortality due to invasive mycotic diseases in the United States. 1980-1997. Clin. Infect. Dis. 33. 641-647 (2001).
    
    105. Talbot, G. H. et al. Bad bugs need drugs: An update on the development pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America.Clin.Infect.Dis.42,657-668(2006).
    106.Rasmussen,C.et al.The calmodulin-dependent protein phosphatase catalytic subunit(calcineurin A) is an essential gene in Aspergillus nidulans.EMBO J.13,2545-2552(1994).
    107.Rasmussen,C.,Means,R.L.,Lu,K.P.,May,G.S.& Means,A.R.Characterization and expression of the unique calmodulin gene of Aspergillus nidulans.J.Biol.Chem,265,13767-13775(1990).
    108.Lu,K.P.,Rasmussen.C.D.,May,G.S.& Means,A.R.Cooperative regulation of cell proliferation by calcium and calmodulin in Aspergillus nidulans.Mol.Endocrinol.6,365-374(1992).
    109.Juvvadi,P.R.,Arioka,M.,Nakajima.H.& Kitamoto,K.Cloning and sequencing analysis ofcnaA gene encoding the catalytic subunit of calcineurin from Aspergillus oryzae.FEMS Mierobiol.Lett.204,169-174(2001).
    110.Juvvadi,P.R.,Kuroki,Y.,Arioka,M.,Nakajima,H.& Kitamoto,K.Functional analysis of the calcineurinencoding gene cnaA from Aspergillus oryzae:evidence for its putative role in stress adaptation.Arch.Microbiol.179,416-422(2003).
    111.Derkx,P.M.F.& Madrid,S.M.The Aspergillus niger cypA gene encodes a cyclophilin that mediates sensitivity to the immunosuppressant cyclosporin A.Mol.Genet.Genom.266,527-536(2001).
    112.Jayashree,T.,Rap,J.P.& Subramanyam,C.Regulation of aflatoxin production by Ca2+/calmodulin-dependent protein phosphorylation and dephosphorylation.FEMS Mierobiol.Lett.183,215-219(2000).
    113.Steinbach,W.J.et al.Calcineurin controls growth,morphology,and pathogenicity in Aspergillus fumigatus.Eukaryot.Cell 5.1091-1103(2006).
    114.Ferreira,M.E.et al.Functional characterization of the Aspergillusfumigatus calcineurin.Fungal Genet.Biol.44,219-230(2007).
    115.da Silva Ferreira,M.E.et al.The akuBKU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus.Eukaryot.Cell 5,207-211(2005).
    116.High,K.P.The antimicrobial activities of cyclosporine,FK506,and rapamycin.Transplantation 57,1689-1700(1994).
    117.Bell.N.P..Karp,C.L.,Alfonso.E.C.,Schiffman,J.& Miller,D.Effects of methylprednisolone and cyclosporine A on fungal growth in vitro.Cornea 18.306-313(1999).
    118.Lugardon.K.et al.Structural and biological characterization of chromofungin,the antifungal chromogranin A-(47-66)-derived peptide.J.Biol.Chem.276,35875-35882(2001).
    119.Kontoyiannis,D,P..Lewis,R.E.,Osherov,N.,Albert.N.D.& May,G.S.Combination of caspofungin with inhibitors of the calciuneurin pathway attenuates growth in vitro in Aspergillus species.J.Antimicrob.Chemother.51,313-316(2003).
    120.Steinbach,W.J.et al.In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus.Antimicrob.Agents Chemother.48,1664-1669(2004).
    121.Steinbach,W.J.et al.In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus isolates from transplant and nontransplant patients.Antimicrob.Agents Chemother.48,4922-4925(2004).
    122.Singh,N.et al.Trends in risk profiles for and mortality associated with invasive aspergillosis among liver transplant recipients.Clin.Infect.Dis.36,46-52(2003).
    123.Berenguer.J.et al.Pathogenesis of pulmonary aspergillosis.Granulocytopenia versus cyclosporine and methylprednisolone-induced immunosuppression.Am.J.Resp.Crit.Care Med.152,1079-1086(1995).
    124.High,K.P.& Washburn,R.G.lnvasive aspergillosis in mice immunosuppressed with cyclosporin A,tacrolimus (FK506),or sirolimus(rapamycin).J.Infect.Dis.175,222-225(1997).
    125.Drew.R.H.et al.Comparative safety of amphotericin B lipid complex and amphotericin B deoxycholate as aerosolized antifungal prophylaxis in lungtransplant recipients.Transplantation 77,232-237(2004).
    126.Iacono,A.T.et al.A randomized trial of inhaled cyclosporine in lung-transplant recipients.N.Engl.J.Med.354,141-150(2006).
    127.Iacono,A.T.et al.Aerosol cyclosporin therapy in lung transplant recipients with bronchiolitis obliterans.Eur.Respir.J.23,384-390(2004).
    128.Blankenship,J.R.& Heitman,J.Calcineurin is required for Candida albicans to survive calcium stress in serum.Infect.Immun.73.5767-5774(2005).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700