弥散型燃料的等效性质及棒状元件的辐照力学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弥散型燃料与传统的燃料元件相比具有高燃耗和高热导的优点,已广泛应用于研究试验堆,且在核动力舰船和核废料处理方面有着良好的应用前景。
     棒状弥散型燃料由弥散型燃料芯体和包壳构成。芯体是由核裂变颗粒弥散分布在金属基体中构成的。在核反应堆中,燃料棒处于非常苛刻的环境之中,裂变热使燃料棒内部产生较大的热应力;裂变产物又会使燃料颗粒发生辐照肿胀而加剧其与基体之间的相互作用;基体在中子的冲击下会发生硬化变脆和蠕变现象。所以如何保证燃料棒的安全可靠性是一个非常值得研究的问题。
     本文首先对弥散型燃料的等效热学性质和等效力学性质进行了研究。运用细观力学理论结合有限元法计算了弥散型燃料的等效热传导系数、等效热膨胀系数和等效弹性系数,分析了燃耗、温度、颗粒体积含量、颗粒排列方式和尺寸大小变化对等效性质的影响。研究结果表明,等效热传导系数的计算值和Maxwell模型及Brailsford模型的预测值最为接近;等效热膨胀系数和线性混合模型的预测值最为接近;而颗粒随机排列时的弹性系数的计算值和Mori-Tanaka法以及自洽法的预测值最为接近。
     其次,针对棒状弥散型燃料,在基于一定假设的基础上,建立了一个简化的模型,用有限元软件Ansys计算其内部的温度场。并计算了燃耗初期和燃耗发展时基体和包壳中的应力应变场,考察了燃耗、颗粒产热率、颗粒体积含量等因素的影响效应。
     对温度场的计算结果表明,颗粒产热率的增大或体积含量的增大会显著提高燃料棒中温度。外围流体的热交换系数不应低于0.005 W/mm2K,否则棒内温度急剧上升。颗粒的半径大小的变化对温度场影响较小。
     在燃耗初期,裂变热导致的热应力场是影响燃料棒安全性的主要因素。颗粒产热率的增大、体积含量的增多都会显著增大燃料棒中的应力水平和塑性应变。颗粒半径大小的变化则对其影响较小。
     当燃耗发展时,颗粒的辐照肿胀会导致其体积膨胀。通过虚拟温升的方法来模拟颗粒的辐照肿胀行为。此时,燃料棒中的应力水平较燃耗初期大大地升高了,塑性应变也急剧增加。当燃耗超过15%时,基体中的应力和塑性都已经非常大颗粒的增多也会使基体和包壳中的应力值和塑性应变迅速增大,当颗粒含量为30%时,10%的燃耗水平就可能使基体发生破坏。颗粒的半径不应过小,在半径值为150μm时,基体中的第一主应力要比其它半径时的值高,有可能发生拉伸破坏。
     本文可以为弥散型燃料棒的研究工作提供一个理论上的参考,减少试验的盲目性,并为其优化设计提供一个依据。
Compared with the traditional nuclear fuel rods, the metal matrix dispersion nuclear fuel rods have higher burnup and higher thermal conductivity, so they have been extensively usd in the research reactors, and they have good prospects in the nuclear waste disposal and nuclear power vessels.
     The metal matrix dispersion fuel rod consists of the metal cladding and the dispersion nuclear fuel meat. The meat is distinguished by having the nuclear fuel particles dispersed through the metal matrix. Inside the demanding environment of the nuclear reactors, the fuel particles generate heat by nuclear fissions, the fission product accumulation results in irradiation-induced swelling of particles; the metal matrix creeps with time and becomes brittle. In order to use the fuel rod safely, the integrity of the matrix and cladding must be guaranteed and the stability of the rod should be kept. Thus . the relative researches are necessary to the safety and optimal design of the fuel rod.
     In the present work, the effective thermal properties and the effective mechanical properties of the dispersion nuclear fuel are investigated firstly. The effective thermal conductivity coefficient, the effective thermal expansion coefficient and the effective elastic coefficient are studied by the finite element method using the micromechanics. The study indicates that the numerical results of the effective thermal conductivity coefficient are in good agreement with the law of Maxwell and Brailsford; the numerical results of the effective thermal expansion coefficient are in good agreement with the law of mixtures; and the numerical results of the effective elastic coefficient are in good agreement with the law of Mori-Tanaka and self-consistent.
     A simplified model is developed to simulate the fuel rod and the temperature field is calculated by FEM. The stress field and strain field at lower burnup and higher burnup are investigated also. The effect of burnup and microstructure on the stress field and strain field are studied.
     The results of the temperature field indicate that increment of the heat generation rate or the volume fraction of the fuel particles will induce higher temperature in the rod; the convection coefficient can not be lower than 0.005 W/mm~2K; the effect of the size of the fuel particles on the temperature field is little.
     At lower burnup level, the thermal stress is the principal factor affecting the safety of the rod. The increment of the heat generation rate or the volume fraction of the fuel particles will increase the stress level and plastic level in the rod, and the effect of the size of the fuel particles on the temperature field is little.
     At higher burnup level, the irradiation-induced swelling induces the volume expansion of the fuel particles. A virtual temperature increment is applied to the particles to simulate the irradiation-induced swelling. The stress level is much higher than that at the lower burnup level and the plastic strain increase quickly. At 15% FIMA burnup level, the stress and plastic strain level in the matrix is very high. Especially, 10 FIMA burnup may induce the damage of the matrix while the volume fraction of the fuel particles is 30%. The first principal stress in the matrix will be very large if the radius of the fuel particles is 150μm, the material may be damaged by the higher tensile stress.
     This study could supply the simulation methods for the mechanical behavior analysis of the dispersion nuclear fuel rods, and it could provide numerical reference basis for the actual operation and optimization of the fuel rod.
引文
[1]李冠兴.研究试验堆燃料元件制造技术[M].北京:化学工业出版社,2007.
    [2]A. N. Holden, Dispersion Fuel Elements[M]. New York:Gordon and Breach Science Publishers, Inc.,1967.
    [3]Sean Mcdeavitt et al., Thoria-Based Cermet Nuclear Fuel:Cermet Fabrication and Behavior Estimates, Proceeding of ICONE 10, Arlington, VA:April 14-18,2002.
    [4]Lee Van Duyn, Evaluation of the mechanical behavior of a metal matrix dispersion fuel for Plutonium burning[D]. Georgia Institute of Technology:A thesis for the Degree Master of Science in Mechanical Engineering,2003.
    [5]弗罗斯特主编,周邦新等译,核材料(第Ⅰ部分),材料科学与技术丛书(第1A卷),北京:科学出版社,1999.
    [6]邢忠虎,应诗浩.高燃耗时U_3Si_2-Al弥散型燃料的辐照肿胀模型,中国核学会材料分会,1998.
    [7]Donald R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical Information Center, Office of Public Affairs, Energy Research and Development Administration,1976.
    [8]A. L. Bement, Creep of Zirconium Alloys in Nuclear Reactor. American Society for Testing and Materials,1983.
    [9]M. K. Mayer et al., Irradiation behavior of U-Nb-Zr alloy dispersion in aluminum[J]. Journal of Nuclear Material,2001,299:175-179.
    [10]M. Ugajin et al., Irradiation behavior of high uranium-density alloy in the plate fuels[J]. Journal of Nuclear Material,1998,254:78-83.
    [11]F. R. Canon et al., Deformation of UO2 at high temperatures[J]. Journal of the American Ceramic Society,1971,54:105-112.
    [12]邢忠虎,应诗浩.U_3Si_2-Al弥散型燃料的辐照肿胀研究[J].原子能科学技术,2001,35:15-19.
    [13]C. E. Weber, H. H. Hisrsch, Dispersion type fuel elements[A]. International Conference on the Peaceful Uses of Atomic Energy, New York,1956.
    [14]C. E. Weber, Progress on Dispersion Elements, Progress in Nuclear Energy, Series 5, Metallurgy and Fuels, vol.2,1959.
    [15]D. W. White et al., Irradiation behavior of dispersion fuels, paper presented at the fuels elements conference, KAPL-P-1849:Paris, Nov.18-23,1957.
    [16]J. Rest, G. Hofman, DART model for irradiation induced swelling of uranium silicide dispersion fuel elements[J]. Nuclear Technology,1999,126:88-101.
    [17]M. Kuroda et al., Analysis of the fracture behavior of hydrided fuel cladding by fracture mechanics[J]. Nuclear Engineering and Design,2001,203:185-194.
    [18]L. O. Jerkvist, A model for prediction pellet-cladding interaction induced fuel rod failure[J]. Nuclear Engineering and Design,1995,156:393-399.
    [19]Alicia Denis, Simulation of pellet cladding thermomechanical interaction and fission gas release[J]. Nuclear Engineering and Design,2003,223:211-229.
    [20]丁淑蓉,姜馨,霍永忠.弥散型燃料元件可靠性与优化设计[J].核动力工程,2007,28(2):16-19.
    [21]丁淑蓉,霍永忠.弥散型燃料板辐照肿胀行为的有限元分析[J].核动力工程,2007,28(4):58-62.
    [22]丁淑蓉,霍永忠.弥散型燃料元件热应力的计算模拟[J].固体力学学报,2006,27:97-102.
    [23]Shurong Ding et al., Reliability analysis of dispersion fuel elements[J]. Journal of Nuclear Materials,2008,374:453-460.
    [24]Shurong Ding, Yongzhong Huo, Finite element modeling of thermal mechanical behaviors of dispersion fuel elements[J]. Nuclear Technology,2008,163:416-425
    [25]张淳源,张为民.论连续介质微观力学的经典理论[J].湘潭大学自然科学学报,2003,25:110-115.
    [26]J. C. Maxwell, A Treatise on Electricity and Magnetism[M]. Oxford:Clarendon Press,1873.
    [27]陈则韶,钱军.复合材料等效导热系数的理论推算[J].中国科学技术大学学报,1992,22:416-421.
    [28]陈则韶,倪海涛.多孔介质等效导热系数的较高精度通用计算公式[J].工程热物理学报,1991,12:305-308.
    [29]Guoqing Gu, Zengrong Liu, Effects of contact resistance on thermal conductivity of composite media with a periodic structure[J]. J. Phys. D:Appl. Phys,1992,25: 249-255.
    [30]H.S.Kou, K.T.Lu, and C.C.Yu, Effective thermal conductivity of composite material with spherical Inclusions in orthorhombic structure[J]. Computers & Structures,1994,53(3):569-577.
    [31]Zhang Yinping, Liu Xingang, Numerical analysis of effective thermal conductivity of mixed solid materials[J]. Material & Design,1995,16:91-95.
    [32]Nan Cewen et al., Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. J. Appl. Phys.,1997,81:6693-6699.
    [33]J. K. Carson et al., An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element stimulations[J]. International Journal of Refrigeration,2003,26:873-880.
    [34]I. V. Belova, G. E. Murch, Monte Carlo simulation of the effective thermal conductivity in two-phase material[J]. Journal of Materials Processing Technology, 2004,153:741-745.
    [35]J. D. Felske, Effective thermal conductivity of composite spheres in a continuous medium with contact resistance[J]. International Journal of Heat and Mass Transfer,2004,47:3453-3461.
    [36]Yungming Lee et al., A generalized self-consistent method for calculation of effective thermal conductivity of composites with interfacial contact resistance[J]. International Communications in Heat and Mass Transfer,2006,33:142-150.
    [37]H. M. Yin, Effective thermal conductivity of two phase functionally graded particulate composites[J]. Journal of Applied Physics,2005,98:063704.
    [38]M. Kohout et al., Effective thermal conductivity of wet particle assemblies[J]. International Journal of Heat and Mass Transfer,2004,47:5565-5574.
    [39]Yong Seok Song, Jae Ryoun Youn, Evaluation of effective thermal conductivity for carbon nanotube/polymer composite using control volume finite element method[J]. Carbon,2006,44:710-717.
    [40]Boudenne A. et al., Electrical and thermal behavior of polypropylene filled with copper particles[J]. Composites Part A,2005,36:1545-1554.
    [41]吴人洁.金属基复合材料的发展现状和应用前景[J].航空制造技术,2003,3:2022.
    [42]Shanyi Du, Research and development of advanced composite materials for aerospace industry in China[C].13th International Conference on Composite Materials. Beijing,2001, Scientific and Technical Documents Publishing House: 1-4.
    [43]S. Elomari et al., Thermal expansion behaviors of particulate metal-matrix composite[J]. Com. Sci. and Tech.1998,58:369-376.
    [44]胡明.金属基复合材料的热膨胀[J].佳木斯大学学报,2004,22:94-100.
    [45]D.F. Adams, D.A. Crane, Combined loading micromechanical analysis of a unidirectional composite. Composites,1984,15(3):181-192.
    [46]S. Lemieux, S. Elomari, Thermal expansion of isotropic Duralcan metal matrix composites[J]. Journal of materials science,1998,33:4381-4387.
    [47]Takei T. et al., Thermal-expansion behavior of particulate-filled composites: single reinforcing phase[J]. Materials Science and Engineering A,1991,131: 133-143.
    [48]Takei T. et al., Thermal-expansion behavior of particulate-filled composites: multi-reinforcing phase[J]. Materials Science and Engineering A,1991,131: 145-152.
    [49]D.F. Adams, D.A. Crane, Combined loading micromechanical analysis of a unidirectional composite[J]. Composites,1984,15(3):181-192.
    [50]Mohajerjasbi S., Helicopters D., Prediction for coefficients of thermal expansion of 3 dimensional braided composites[J]. AIAA Journal,1997,35:141-144.
    [51]张子明,张研,宋智通.基于细观力学方法的混凝土热膨胀系数预测[J].计算力学学报,2007,24:806-810.
    [52]D.E. Bowels, S.S. Tompkins, Prediction of coefficients of thermal expansion for unidirectional composites[J]. Journal of Composite Materials,1989,23:370-388.
    [53]Y. L. Shen, coefficients of thermal-expansion of metal-matrix composites for electronic packaging[J]. Metallurgical and materials transactions a-physical metallurgy and materials science,1994,25:839-850.
    [54]Y.L. Shen, Thermal expansion of metal-ceramic composites:a three dimensional analysis[J]. Materials Science and Engineering A,1998,252:269-275.
    [55]Y.L. Shen, Combined effects of microvoids and phase contiguity on the thermal expansion of metal ceramic composites[J]. Materials Science and Engineering A, 1997,237:102-108.
    [56]T.H. Nam, et al, Thermal expansion behavior of aluminum matrix composites with densely packed SiC particles[J]. Composites A,2008,39:856-865.
    [57]Z.H. Karadeniz, et al, A numerical study on the coefficients of thermal expansion of fiber reinforced composites materials[J]. Composite Structures,2007,78:1-10.
    [58]Aboudi J., Mechanics of composite materials[M]. Elsevier, Amsterdam,1991.
    [59]Zihui Xia, Yunfa Zhang, A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures,2003,40:1907-1921.
    [60]Zihui Xia, Chuwei Zhou, On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures,2006,43: 266-278.
    [61]Needleman A., Tvergaard V., Comparison of crystal plasticity and isotropic hardening predictions for metal matrix composites[J]. ASME Journal of Applied Mechanics,1993,60:70-76.
    [62]Sun C. T., Vaidya R. S., Prediction of composite properties from a representative volume element[J]. Composite Science and Technology,1996,56:171-179.
    [63]Adams D.F., Crane D. A., Finite element micromechanical analysis of a unidirectional composite including longitudinal shear loading[J]. Computer and Structures,1984,18:1163-1165.
    [64]Allen D. H. Boyd J. G. Convergence rates for computational predictions of stiffness loss in metal matrix composites[J]. ASME AEROSP DIV PUBL AD, ASME, NEW YORK, NY, (USA),1993,3:31-45.
    [65]Bonora N. et al., Microdamage effects on the overall response of long-fiber metal-matrix composites[J]. Composites,1994,25:575-582.
    [66]Pindera M. J., Aboudi J., Micromechanical analysis of yielding of metal matrix composites[J]. International Journal of Plasticity,1998,4:195-214.
    [67]Bigelow C.A., Thermal residual-stresses in a silicon-carbide titanium [0/90] laminate[J]. Journal of Composites Technology & Research,1993,15:304-310.
    [68]Chen Y. et al., Evolution of residual stresses induced during curing processing using a viscoelastic micromechanical model[J]. Journal of Composite Materials, 2001,35:522-542.
    [69]Ellyin F. et al., Viscoelastic micromechanical modeling of free edge and time effects in glass fiber/epoxy cross-ply laminates[J]. Composites Part A:Applied Science and Manufacturing,2002,33:399-409.
    [70]Xia Z. et al., A meso/micro-mechanical model for damage progression in glass-fiber/epoxy cross-ply laminates by finite-element analysis[J]. Composite Science and Technology,2000,60:1171-1179.
    [71]董纪伟,孙良新,洪平.基于均匀化方法的三维编织复合材料等效弹性性能预测[J].宇航学报,2005,26:482-486.
    [72]Sreedhar Kari, Micromechanical modeling and numerical homogenization of fire and particle reinforced composites[D]. Otto-von-Guericke University Magdeburg, 2006.
    [73]Benssousan A. et al., Asymptotic analysis for periodic structure[M]. Amsterdam: 1978.
    [74]Suquet P., Elements of homogenization theory for inelastic solid mechanics[C]. In:Sanchez-Palencia E, Zaoui A, Eds. Homogenization Techniques for Composites Media. Lecture notes in Physics 272. Berlin:Springer-Verlag,1987: 193-278.
    [75]Bakhvalov N. S., G. P. Panasenko, Homogenization in Periodic Media. Mathematical Problems of the Mechanics of Composite Material[M]. Moscow, Nauka,1984.
    [76]张研,张子明.材料细观力学[M].北京:科学出版社,2008.
    [77]Q. S. Zheng, Mechanics of inhomogeneous materials[R]. Lecture Notes. Department of Engineering Mechanics, Tsinghua University,2000.
    [78]胡更开,郑泉水,黄筑平.复合材料有效弹性性质分析方法[J].力学进展,2001,31:361-390.
    [79]张为民,张淳源,张平.微观力学中的平均场理论[J].湘潭大学自然科学学报,2003,25:64-69.
    [80]Mori T., Tanaka K., Average stress in matrix and average elastic energy of materials with misfitting inclusions[J]. Acta Matall,1973,21:571-574.
    [81]Hill R., Theory of mechanical properties of fibre-strengthened materials Ⅲ Self-consistent model[J]. J Mech Phys Solids,1965,13:189-198.
    [82]Hill R., A Self-consistent mechanics of composite materials[J]. J Mech Phys Solids,1965,13:213-222.
    [83]黄克智,黄永刚.固体本构关系[M].北京:清华大学出版社,1999.
    [84]Voigt W., Uber die Beziehung zwischen den beiden Elastizitatakonstanten isotroper Korper[J]. Wied Ann,1889,38:573-587.
    [85]Reuss A., Berechnung der Fliebgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle[J]. Z Angew Math Mech,1929,9:49-58.
    [86]Hashin Z., Shrikman S., On some variational principles in anistropic and nonhomogeneous elasticity [J]. J Mech Phys Solid,1962,10:335-342.
    [87]Hashin Z., Shrikman S., A variational approach to the theory of the elastic behavior of multiphase materials[J]. J Mech Phys Solid,1963,11:127.
    [88]Milton G. W., Bounds on the electro-magnetic, elastic and other properties of two component composites[J]. Phys Rev Lett,1981,46:542.
    [89]Aboudi J., Micromechanical analysis of composites by the method of cells[J]. Appl. Mech. Rev.,1989,42:193-221.
    [90]Aboudi J., Mechanics of composite materials[M]. Elsevier, Amsterdam,1991.
    [91]Aboudi J., Micromechanical analysis of composites by the method of cells-update[J]. Appl. Mech. Rev.,1996,49:S83-S91.
    [92]Aboudi J. et al., High order theory for periodic multiphase materials with inelastic phases[J]. Int. J. Plast.,2003,19:805-847.
    [93]P. Suquet, Continuum Micromechanics[M]. Springer Verlag,1997.
    [94]雷友锋,魏德明,高德平.细观力学有限元法预测复合材料宏观有效弹性模量[J].燃气涡轮试验与研究,2003,16:11-15.
    [95]J.Segurado, J. Llorca, A numerical approximation to the elastic properties of Sphere-reinforced composites[J]. Journal of the Mechanics and Physics of solids, 2002,50:2107-2112.
    [96]M.D.Rintoul, S.Torquato, Reconstruction of the structure of dispersions[J]. Journal of Colloid and Interface Science,1997,186:467-476.
    [97]Bohm, H.J., Han, W., Comparisons between three dimensional and two dimensional multi-particle unit cell models for particle reinforced MMCs, Model. Simul. Mater. Sci. Eng.2001,9:47-65.
    [98]Gusev, A.A., Representative volume element size for elastic composites:a numerical study[J]. J. Mech. Phys. Solids,1997,45:1449-1459.
    [99]Gusev, A.A., Fiber packing and elastic properties of transversely random unidirectional glass/epoxy composite[J]. Comp. Sci. Technol.,2000,60:535-541.
    [100]邢忠虎,应诗浩.界面反应引起弥散型燃料的芯体结构演化[J].核动力工程,2000,21(3):285-288.
    [101]邢忠虎,应诗浩.弥散型燃料芯体结构的蒙特卡罗模拟[J].中国核科技报告,2003
    [102]P.GLucuta, H.S.Matzke, and I.J.Hastings. A Pragmatic Approach to Modeling Thermal Conductivity of Irradiated UO2 Fuel:Review and Recommendations [J]. J. of Nucl. Mater.,1996,232:166-180.
    [103]MATPRO-09, A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, USNRC TREE NUREG-1005,1976.
    [104]E.F. Fisher, C.J. Renken, Single-crystal elastic module and the hcp-bcc transformation in Ti, Zr and Hf[J]. Physical Review,1954:A482-494.
    [105]D.L. Hagrman, G.A. Reyman, A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, NUREG/CR-0497, TREE-1280, Rev.3,1979.
    [106]谷超豪,李大潜.数学物理方程[M].北京:高等教育出版社,2002.
    [107]王建平,王兰.各向异性材料导热系数在非主方向上的转换[J].武汉工业大学学报,1997,19(1):109-111.
    [108]Moran Wang et al., Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E,2007,75: 036702.
    [109]L. S. Verma et al., Thermal conduction in two phase materials with spherical and nonspherical inclusions[J]. J. Phys. D:Appl. Phys.1991,24:1729-1737.
    [110]A. A. Babanov, Method of calculation of thermal conduction coefficient of capillary porous material[J]. Sov. Phys. Technol. Phys,1957,2:476-484.
    [111]A. D. Brailsford, The thermal conductivity of aggregates of several phase, including porous materials[J]. Br. J. Appl. Phys,1964,15:313-319.
    [112]K. J. Singh, R. Singh, Heat conduction and a porosity correction term for spherical and cubic particles in a simple cubic packing[J]. J. Phys. D:Appl. Phys, 1998,31:1681-1687.
    [113]K, Wakashima et al., Thermal expansion of heterogeneous solids containing aligned ellipsoidal inclusions[J]. Journal of Composite Materials,1974,8: 391-404.
    [114]L. Geiger, M. Jackson, Low-expansion MMCs boost avionics[J]. Advanced Materials Process,1989,136:23-28.
    [115]P. S. Turner, Thermal expansion stress in reinforced plastics[J]. J Res Natl Bureau Standards,1946,37:239-250.
    [116]E. H. Kerner, The elastic and thermo-elastic properties of composite media[J]. Proceedings of the Physical Society,1956,69:808-813.
    [117]R. A. Schapery, Thermal expansion coefficients of composite materials based on energy principles[J]. Journal of Composite Materials,1968,2:380-404.
    [118]Z. Hashin, S. Shtrikman, A variational approach to the elastic behavior of multiphase materials[J]. Journal of the Mechanics and Physics of Solids,1963,11: 127-140.
    [119]刘波,雷友锋,宋迎东.纤维增强复合材料宏观与细观统一的细观力学模型[J].航空发动机,2007,33:45-49.
    [120]Q. S. Yang, W. Becker, Numerical investigation for stress, strain and energy homogenization of orthotropic composite with periodic microstructure and non-symmetric inclusions[J]. Computational Materials Science,2004:31: 169-180.
    [121] Zihui Xia, Chuwei Zhou, On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006,43: 266-278.
    [122] Eshelby J. D., The determination of the elastic field of an ellipsoidal inclusion and related problems[J]. Proceedings of Royal Society of London, 1957, A241: 376-396.
    [123] Eshelby J. D., The elastic field outside an ellipsoidal inclusion[J]. Proceedings of Royal Society of London, 1959, A252: 561-569.
    [124] T. W. Clyne, P. J. Withers, An introduction to metal matrix composites[M]. New York: Cambridge University, 1993.
    [125] S. N. Nasser, M. Hori, Micromechanics: overall properties of heterogeneous materials[M]. Amsterdam; New York: Elsevier, 1999.
    [126] Mura Toshio, Micromechanics of defects in solids[M]. Netherlands, Dordrecht: Kluwer Academic Publishers, 1987.
    [127] Benseniste Y, A new approach to the application of Mori-Tanaka's theory in composite materials[J]. Mech Materials, 1987, 6: 147-157.
    [128] Weng G. J., Some elastic properties of reinforced solids with special reference to isotropic ones containing spherical inclusions[J]. Int J Eng Sci, 1984, 22: 845-846.
    [129] E. Weissenbek et al., Micromechanical investigations of arrangement effects in particle reinforced metal matrix composites[J]. Computational Materials Science, 1994:263-278.
    [130] Antonio Cazzani, Marco Rovati, Extrema of Young's modulus for cubic transversely isotropic solids[J]. Solids and Structures, 2003,40:1713-1744.
    [131] Drugan W. J., Will J. R., A micromechanics based nonlocal constitutive equation and estimates of the representative volume element size for elastic composites[J]. J. Mech. Phys. Solids, 1996,45: 1449-1459.
    [132] W. Chubb et al., Factors affecting the swelling of nuclear fuel at high temperature[J]. Nuclear Technology, 1973, 18:231-255.
    [133] T. Nakajima et al., FEMAXI-III: A computer code for the analysis of thermal and mechanical behavior of fuel rods, AERI-1298, 1985.
    [134] W. Weisenack et al., Assessment of UO_2 conductivity degradation based on in pile temperature data, HWR-469, 1996.
    [135] 严小青.弥散型核燃料板辐照力学行为的数值模拟[D].上海:复旦大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700