福辛普利与厄贝沙坦对大鼠实验性心肌缺血再灌注损伤及心室重构的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大鼠实验性心肌缺血再灌注损伤模型,福辛普利与厄贝沙坦均可降低心肌缺血再灌注损伤后血清心肌酶的活性,改善左室功能,明显减轻心肌组织水肿以及超微结构的损伤,并抑制氧化应激及心肌细胞凋亡,证实其对心肌缺血再灌注损伤具有保护作用,二者的作用效果相当;心肌缺血再灌注损伤后心肌组织中的caspase-3 mRNA的表达增加,其可能介导了心肌细胞的凋亡;福辛普利与厄贝沙坦均可下调心肌缺血再灌注损伤后的caspase-3 mRNA的表达,可能是其对心肌缺血再灌注损伤产生保护作用的机制之一。
     在大鼠实验性心肌梗死所致心室重构模型,福辛普利与厄贝沙坦均能明显改善心室重构后的左心收缩和舒张功能,降低心室壁切应力,有效地防止心肌梗死后左心室扩张和肥厚,二者作用效果无明显差异;福辛普利及厄贝沙坦均可明显降低实验性心肌梗死所致心室重构大鼠血清LPO含量,提高血清SOD、CAT、GSH-Px活性,提示其预防心肌重构作用可能与其提高心肌的抗氧化能力有关;大鼠心肌梗死4周原癌基因c-myc、c-fos、c-jun及fac表达均不明显,福辛普利及厄贝沙坦的抑制作用也未表现出来,提示心室重构后原癌基因的表达已基本结束,在心肌梗死早期抑制原癌基因的高表达,对防治心室重构具有重要意义;大鼠心肌梗死4周后可见凋亡抑制基因Bcl-2的表达减弱,凋亡基因Fas的表达增强,表明心室重构时仍可能伴有心肌细胞凋亡的存在。福辛普利及厄贝沙坦均能促进凋亡抑制基因Bcl-2的表达,并抑制凋亡基因Fas的表达,提示其对抗心肌细胞凋亡的作用可能也是干预心室重构的重要机制之一。
Chepter 1 Effects of Fosinopril and Erbesartan on experimental myocardial ischemia-reperfusion injury in rats
     Myocardial reperfusion injury is a paradox by which reperfusion, ultimately needed for long-term tissue survival after prolonged ischemia (myocardial infarction), may potentiate injury to the heart. Characteristics of reperfusion injury after myocardial ischemia involve: myocardial stunning, (reperfusion) arrhythmias, the no-reflow phenomenon (microvascular damage), and/or accelerated cell death. of importance, reperfusion injury may account for as much as 25-60% of the total infarct volume following ischemia and reperfusion. Recently, apoptosis has been implicated in the death of myocardialcytes in animal models of myocardial ischemia and in humans with acute myocardial infarction. Caspases are a conserved family of cysteine proteases that are universal effectors of apoptosis. Although caspases have been shown to mediate cell death in a number of disease processes including ischemia brain injury, their potential role in myocardial infarction is largely unknown. Here we demonstrate that multiple caspases are activated in a rat model of myocardial ischemia and reperfusion, and studied the effect of Fosinopril and Erbesartan on Caspase-3mRNA in cardiac myocytes.
     Wistar rats were randomly divided into th four groups: (1) Sham surgical group (n=8); (2) Ischemia-Reperfusion group (n=8) the left anterior descending was occluded for 30 min followed by 24 hours reperfusion; (3) Fosinopril (20mg/kg) group (n=8); (4) Erbesartan (100mg/kg) group (n=8). Fosinopril was fed 24 hours before the coronary artery was occluded and was fed in the morning of the next day. Sham surgical group and Ischemia-Reperfusion group was fed of 0.9% Saline at the same time. Establish myocardial ischemia and reperfusion model as follows:
     After anesthetized with ether, rat were faced upward fixed on the operating table. Open the chest between the left third and fourth rib. The heart was exposed. A 0 nylon suture attached to a fine needle was placed under the left anterior descending coronary artery and ligated coronary artery immediately. Return heart into the chest, Squeeze the blood and water out and swiftly close the chest. The time opening the chest is no more than 30 seconds. Sham surgical group placed the suture only but not ligate coronary artery. After 30 min, the ischemia cardialmyocates was reperfused for 24 hours. After that , Left ventricular systolic pressure (LVSP) and peak and end–diastolic LVP and the first derivative of LVP (+dp/dt) were measured by a 2F catheter-tip manometer inserted via the right carotid artery.rats were anesthetized. Blood pressure and heart rate were recorded through femoral arterial cannulatio. Blood was collected through groin aorta. Assay serum AST, LDH, and CK-MB with 7150 automatic biochemical analyzer. The hearts were taken out and perfused with NS through aorta. Crosscut myocardium of left ventricle into four or five slices. Some slices were observed by light microscope and electron microscope. RNA was extracted from myocardial tissue. Use these RNA to RT-PCR, observed the expression of caspase-3 mRNA.
     Fosinopril and Erbesartan significant decreased serum CK-MB, LDH, AST activity. This demonstrate that the model of ischemia and reperfusion was good.; Fosinopril and Erbesartan significant improved cardiac function of rats after ischemia and reperfusion. The tissues of myocardium after HE Staining were observed. I/R group: cardiac myocyte plasm was pigmenting deeply, nucleus was concentration, but Fosinopril and Erbesartan group didn’t observed that. Myofilament and myotome of Fosinopril and Erbesartan group were normal on the whole under the electron microscope, but myofilament and myotome of Ischemia-Reperfusion group were broken, intercalated disc structure were not clear. The expression of Caspase-3mRNA of Fosinopril and Erbesartan group were less than that of Ischemia-Reperfusion group.
     Fosinopril and Erbesartan may significant decreased serum CK-MB, LDH, AST activity. This illustrate that death of cardiac myocytes is less than I/R group. Fosinopril and Erbesartan can protect cardiac myocytes after ischemia and reperfusion; Fosinopril and Erbesartan may decrease the expression Caspase-3 mRNA. activating Caspase-3 may be the mechanisms of apoptosis.
     As above, Fosinopril and Erbesartan can decrease cardiac myocytes of rat in ischemia and reperfusion injury.
     Chepter 2 Effects of Fosinopril and Erbesartan on experimental ventricular remodeling in rats
     Ventricular remodeling affected badly left ventricular function and prognosis is running through the whole developing process of the patients from acute myocardial infarction, hypertension and congestive heart failure. It is an independent danger fator for the incidence and death rate in cardiovascular diseases.
     Acute myocardial infarct model was established as follows:
     After anesthetised with ether, rats were face upward fixed on the operating table and the chest was opened between the left third and fourth rib. The heart was exposed. A 0 nylonsuture attached to a fine needle was placed under the left anterior descending coronary artery and ligated coronary artery immediatly. After heart was returned into the chest, blood and water were squeezed out and swiftly close the chest, the time opening the chest is no more than 30 seconds. The suture was placed only to coronary artery but not ligated in rats of sham surgical group. The electrocardiogram was measured so as to corrobrate myocardial infarction after 24 hours of ligating. The rats were randomizied to four groups: group of sham operation (ig normal saline for 4 weeks after sham ligation), AMI group (ig normal saline for 4 weeks after ligation), Fosinopril group (ig Fosinopril 20mg/kg for 4 weeks after ligation) and Erbesartan group (ig Erbesartan 100mg/kg for 4 weeks after ligation). After anaesthesia, ten rats of every group were catheterized for measuring the hemodynamic parameters including HR, SBP, DSP, LVSP, LVEDP and±dp/dtmax. Afterwards, hearts were excised and weighed LVAW and RVAW and measurated LVRW, RVRW, LVV, LVLA and LVSA. The blood samples were from abdomen atery in another ten rats of every group for measuring LPO and NO contents and SOD, CAT, GSH-Px and ACE activities of serum, AngⅡ, NE, E and NO contents and ACE activity of myocardium. In addition, at 4 weeks after ligation, the myocardium of three rats in every group was taken for measuring the expression of proto-oncogene c-fos, c-myc, c-jun, Fac and apoptosis-gene Bcl-2, Bax, p53 and Fas.
     At 4 weeks After ligating, the SBP, DBP, MAP, LVSP,±dp/dtmax and±dp/dtmax/LVSP of model group rats were reduced and LVEDP, LVV, LVLA, LVSA, LVAW, LVRW, RVAW and RVRW increased significantly, which indicated that systolic and diastolic function of left ventricle were damaged markedly in rats with ventricular remodeling induced by acute myocardial infarction. At the same time, LPO contents of serum, AngⅡ, E contents and ACE activity of myocardium were increased and NO content and SOD, CAT, GSH-Px activities of serum and NO content of myocardium were decreased markedly, which indicated that RAS of myocardial tissues was concerned with the formation of ventricular remodeling.
     The expression of proto-oncogene c-fos, c-myc, c-jun and apoptosis-gene Bax, p53 and Fas of myocardium were increased and the expression of apoptosis-gene Bcl-2 decreasd at 24 hours after ligation, and the expression of apoptosis-gene Bcl-2 was decreasd, Fas increased at 4 weeks after ligation, which indicated that the abnormal expression of proto-oncogene and apoptosis-gene of myocardium were appeard in rats with acute myocardial infarction. The above-mentioned pathological changes can be improved markedly by Fosinopril and Erbesartan.
     In conclusion, Fosinopril and Erbesartan can improve systolic and diastolic function of left ventricle, inhibit ventricular dilatation and hypertrophy markedly in rats with ventricular remodeling induced by acute myocardial infarction. The mechanism of Fosinopril and Erbesartan on ventricular remodeling may be involved in the inhibiting the activation of RAS, interdicting promoting growth action of AngⅡand CA, swelling antigrowth action of NO and PGI2, and inhibiting the expression of proto-oncogene c-fos, c-myc, c-jun and apoptosis- gene Bax, p53 and Fas of myocardium and increasing the expression of apoptosis-gene Bcl-2. In addition, the effects of eliminating the free radicals and inhibiting the cell apoptosis in rats with ventricular remodeling induced by acute myocardial infarction were also important.
引文
1. Dzau VJ, Pratt RE. Renin-Angiotensin System. In: Fozzard HA et al. The Heart and Cardiovascular System. New York: Raven Press, 1992:1817.
    2. Johnston CI. Tissue angiotensin converting enzyme in cardiac and vascular hypertrophy, repair, and remodeling. Hypertension, 1994;23:258.
    3. Corvol P, et al. Recent advancs in konwledge of the structure and function of the angiotensin I converting enzyme Hypertension, 1995;13(Suppl 3):S3.
    4. Mattu RK, et al. A DNA variant at the angiotensin-converting enzyme gene locus associates with coronary artery disease in Caerphilly heart study. Circulation, 1995;91:270.
    5. de GasParo M, et al. Proposed update of angiotensin receptor nomenclature Hypertension, 1995;25(5):924.
    6. Timmermans PBMWM and Smith RD. Angiotensin Ⅱ receptor subtypes: selective antagonists and functional correlates. Eur Heart J, 1994;15:79.
    7. Tmmermans PBMWM, et al. Angiotensin Ⅱ receptors and angiotensin Ⅱ receptor antagonists. Pharmacol Rev, 1993;45:206.
    8. Nakajima M, et al. Cloning of cDNA and analysis of the gene for mouse angio-tensin Ⅱ type 2 receptor. Biochem Biophys Res Commun, 1993; 197:393.
    9. Humphrey P, et al. receptor classification and nomenclature:the revolution and resolution. TiPS, 1994;15:203.
    10. Dzau VJ, Re R. Tissue angiotensin system in cardiovascular medicine, a pardigm shift? Circulation, 1994;89:493.
    11. von Lutterotti N, et al. Renin is not synthetized by cardiovascular and extrarenal vascular tissues. A review of experimental evidence. Circulation 1994;89:458.
    12. Fishel RS, et al. Glucocorticoids induce angiotensin-converting enzyme expression in vascular smooth muscle. Hypertension, 1995;25:343.
    13. Baker KM, et al. Cardiac actions of angiotensin Ⅱ: Role of an intracardiac renin-angiotensin system. Annu Rev Physiol, 1992;54:227.
    14. Opie LH Drugs for the heart. 4th ed, Philadelphia: Saunders Co, 1995:105.
    15. Fukamizu A, Murakami k. New aspects of the renin-angiotensin system in blood pressure regulation. Trends Endocrinol Metab, 1995;6:279.
    16. 陈修. 肾素-血管紧张素及其抑制剂. 见:陈修主编. 心血管药理学. (第一版). 北京: 人民卫生出版社, 1989;237.
    17. Struijer-Boudier HAJ, et al. Pharmacology of cardiac and vascular remodeling. Annu Rev Pharmacol Toxicol, 1995;35:509.
    18. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling New Eng J Med, 1994;330:1431.
    19. Grajek S, et al. Hypertrophy or hyperplasia in cardiac muscle: postmortem human morphometric study. Europ Heart J, 1993;14:40.
    20. Sun Y, et al. Bradykinin receptor and tissue ACE binding in myocardial fibrosis: response to chronic angiotensin Ⅱ or aldosterone administeration in rats. J Mol Cell Cardiol, 1995;27:813.
    21. Nakai K, et al. Deletion polymorphphism of the angiotensin I-converting enzyme gene is associated with serum ACE concentration and increased risk for CAD in the Japanese. Circulation, 1994;90:2199.
    22. Cambien F, et al. Plasma level and gene polymorphism of angiotensin- converting enzyme in relation to myocardial infarction. Circulation 1994; 90:669.
    23. Morgan K. Diverse factors influencing angiotensin metabolism dueing ACE inhibition: insights from Molecular biology and genetic study. Brit Heart J 1994;72(Suppl):S3-S10.
    24. Dzau VJ, Pratt RE. Cardiovascular pharmacology of angiotensin congverting enzyme inhibitors. In: Singh BN et al (ed). Cardiovascular Pharmacology and Therapeutics. New York: Churchill Livingstone. 1994:237.
    25. Ondetti MA, et al. Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 1977; 196:441.
    26. Salvetti A, Newer ACE inhibitors. A look at the future. Drugs, 1990;40:800.
    27. Opie H, et al. Drugs for the Heart. New York: saunders, 4th edition. 1995:105.
    28. Unger T, Gohlke P. Converting enzyme inhibitors in cardiovascular therapy: Current status and future potential. Cardiovasc Res, 1994;28:146.
    29. Khan MG. Cardiac drug therapy, 4th ed. London: Saunders, 1995;12.
    30. Pfeffer JM, et al. Angiotensin-converting enzyme inhibition and ventricular remodelling after myocardial infarction. Annu Rev Physiol, 1995;57:805.
    31. Wiemer G, Scholkens BA, Linz W. Endothelial protection by converting enzyme inhibitors. Cardiovasc Res, 1994;28:166.
    32. Drexler H. Endothelial dysfunction in heart failure and potential for reversal by ACE inhibition. Brit Heart J, 1994 (Suppl):S11-S14.
    33. Chen X, et al. Ramipril reverses oxidized LDL-induced inhibition of vasodilation and attenuates atherogenesis in cholesterol-fed rabbits. F ASEB J 1994;8:(Ⅱ):A3842.
    34. Gillis CN, Chen X. Lisinopril and ramiprilat protection of the vascular endothelium against free radical-induced functional injury. J Pharmacol Exper Ther 1992;262:212
    35. Liao DF, Chen X. Prostacyclin-mediated protection of ACE inhibitors against electrolysis-induced free raical injured aortic endothelium. Cardioscience, 1992;3:79.
    36. Linz W, et al. Contribution of kinins to the cardiovascular actions of angiotensin converting enzyme inhibitors Pharmacol Rev, 1995;47:25.
    37. Carretero OA, Scicli AG. The kallikrein-kinin system, In Fozzard et al. The heart and Cardiovascular system. New York: Raven Press. 2nd ed 1992:1851.
    38. Pi XJ, Chen X. Protective effect of captopril and ramiprilat on free radical damage induced by electrolysis in isolated working rat heart. J Mol Cell Cardiol, 1989;21:1261.
    39. Chen X, et al. Lisinopril, ramiprilat and captopril reduce free radical-induced salicylate hydroxylation. Circulation, 1991;84:238:A1125.
    40. Suzuki S, et al. Comparative free radical scavenging action of angiotensin- converting enzyme inhibitors with and without the sulfhydryl radical. Pharmacology, 1993;47:61.
    41. Fliss H. Apoptosis in ischemic and reperfused rat myocardium. Circ Res, 1996,79:949.
    42. Saraste A, Pulkki K, Kallajok M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997,95(2):320.
    43. 罗义, 李卓仁, 郭南山. 心血管疾病中的细胞凋亡. 中华内科杂志, 1998, 37(3):207.
    44. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, 1994,94:1621.
    45. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, 1994;94(4):1621.
    46. Chen C, Ma L, Linfert DR, et al. Myocardial cell death and apoptosis in hibernating myocardium. J Am Coll Cardiol, 1997;30(5):1407.
    47. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res, 1996;79(5):949.
    48. Maulik N, Kagan VE, Tyurin VA, et al. Redistribution of phosphatidyl- ethanolamine and phosphatidylserine precedes reperfusion-induced apoptosis. Am J Physiol, 1998;274(1 Pt 2):H242.
    49. Aito H, Aalto KT, Raivio KO. Biphasic ATP depletion caused by transient oxidative exposure is associated with apoptotic cell death in rat embryonal cortical neurons. Pediatr Res, 2002;52(1):40.
    50. Puka-Sundvall M, Wallin C, Gilland E, et al. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. Brain Res Dev Brain Res, 2000;125(1-2):43.
    51. Fliss H. Accelerated apoptosis in reperfused myocardium: friend of foe? Basic Res Cardiol, 1998;93(2):90.
    52. Sasaki H, Galang N, Maulik N. Redox regulation of NF-kappaB and AP-1 in ischemic reperfused heart. Antioxid Redox Signal, 1999;1(3):317.
    53. Oda E, Ohki R, Murasawa H, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 2000;288(5468):1053.
    54. Bennett M, Macdonald K, Chan SW, et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science, 1998;282(5387): 290.
    55. Burns TF, Bernhard EJ, El-Deiry WS. Tissue specific expression of p53 target genes suggests a key role for KILLER/DR5 in p53-dependent apoptosis in vivo. Oncogene, 2001;20(34):4601.
    56. Maulik N, Sasaki H, Addya S, et al. Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors. FEBS Lett, 2000; 485(1):7.
    57. Webster KA, Discher DJ, Kaiser S, et al. Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest, 1999;104(3):239.
    58. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol, 1998;16:395.
    59. Kasibhatla S, Beere HM, Brunner T, et al. A 'non-canonical' DNA-binding element mediates the response of the Fas-ligand promoter to c-Myc. Curr Biol, 2000;10(19):1205.
    60. Juin P, Hueber AO, Littlewood T, et al. c-Myc-induced sensitization to apoptosis is mediated through cytochrome c release. Genes Dev, 1999; 13(11):1367.
    61. Lee Y, Shacter E. Fas aggregation does not correlate with Fas-mediated apoptosis. J Immunol, 2001;167(1):82.
    62. Bratton SB, Cohen GM. Apoptotic death sensor: an organelle's alter ego? Trends Pharmacol Sci, 2001;22(6):306.
    63. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem, 1999;274(29):20049.
    64. Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 1998; 391(6662):43.
    65. Li H, Zhu H, Xu CJ, et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998;94(4): 491.
    66. Gibson ME, Han BH, Choi J, et al. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med, 2001;7(9):644.
    67. De Nadai C, Sestili P, Cantoni O, et al. Nitric oxide inhibits tumor necrosis factor-alpha-induced apoptosis by reducing the generation of ceramide. Proc Natl Acad Sci, 2000;97(10):5480.
    68. Holcik M, Korneluk RG. XIAP, the guardian angel. Nat Rev Mol Cell Biol, 2001;2(7):550.
    69. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 2001;410(6824):112.
    70. Sabbah. H. N., Goldstein. S. Ventricular remodeling: consequences and therapy. European Heart Journal 1993;14 (supplement C):24.
    71. Pfeifer MA, Braunwald E. Ventricular Remodeling after myocardial infarction Experimental observations and clinical implications. Circulation 1990;81:1161.
    72. Marroquin OC, Lamas GA. Beneficial effects of an open artery on left ventricular remodeling after myocardial infarction. Progress in cardiovascular diseases. 2000;42(6):471.
    73. Pfeifer MA, Pfeifer JM: Ventricular enlargement and reduced survival after myocardial infarction. Circulation, 1997;(supplV)75:lV 93, IV97.
    74. Hutchins GM, Bulkley BH. Infarct expansion versus extension: two different complications of acute myocardial infarction. Am J Cardiol 1978;41:1127.
    75. Vannan MA, TaylorDIE. Ventricular remodelhg after myocardial infarction. Br Heart J, 1992;68(3):257.
    76. Eaton LW, Weiss JL, Bulkley BH, et al. Regional cardiac dilatation after acute myocardial infarction. N Engl J Med, 1979;300:57.
    77. Lim MJ, Karolle BL, Wood JL, et al. lschemic expansion during acute myocardial infarction and reversal by coronary reperfusion. Am Heart J 1992;123(6):1456.
    78. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovascular research 2000;46:250.
    79. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res, 1993;271:341.
    80. Willems IEMG, Hcwenith MG, De May JGR, et al. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 1994; 145(4):868.
    81. Gupta KB, Ratcliffe MB, Fallert MA, et al. Changes in the mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 1994; 89:2315.
    82. Dixon ZM, Ju H, Jussal, et al. Effect of ramipril and iosartan on collegan expression in right and left heart after myocardial infarction. Mol Cell Biochem, 1996;165(1):31.
    83. Pfeffer JM, Pfeffer MA, M irsky J, et al. Progressive ventricular dilatation and diastolic wall stress in rats with myocardial infarction and failure. Circulation, 1982;(66 Suppl Ⅱ):66.
    84. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol, 1991;68:7D-16D.
    85. Curan T. In: Reddy EP, et al. eds. The Oncogene Handbook. 1st ed. Amsterdam: Elserer Press, 1988:307.
    86. Zhang P, Hirsch EC, Damier P, et al. C-fos protein-like immuno- reactivity: distribution in the human brain and overexpression in the hippocampus of patients with Alzheimer’s disease. Neuroscience, 1992;46:9.
    87. Herschman HR. Extracelluar signals, transcriptional respones and cellular specifity. Trends Biochems Sci, 1989;14:435.
    88. Marx JL. The fos gene as master switch. Science, 1987;237:854.
    89. Morgan JI, Curran T. Stimulus-transcription coupling in neurons: role cellular immediate-early genes. Trends Neurosci, 1989;12:456.
    90. Sadoshima JI, lzumo S. Molecular characterization of angiotensinⅡ-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Circ Res, 1993;73(3):413.
    91. Rainer RS, Eldridge CS, Gillilank GK, et al. Antisense oligonu-cleotide to c-fos blocks the angiotensinⅡ-induced stimulation of protein sythesis in rat aortic smooth muscle cells. Hypertension, 1990;16(2):326.
    92. Sadoshima JI, lzumo S. Signal transduction pathways of angiotensin Ⅱ-induced c-fos gene expression in cardiac myocytes in vitro. Circ Res 1993;73(3):424.
    93. Sadoshima J, Izumo S. Signal transduction pathway of AngⅡ-induced c-fos gene expression in cardiac myocytes in vitro: Role of phospholipid-derived second messengers. Circ Res, 1993;73:424.
    94. Zhou G, Brilla CG, Weber KT. Aagiotensin II-mediated stimulation of collagen synthesis in cultured cardiac fibroblasts. FASEB J, 1992;6:1914.
    95. Brilla CG, Zhou G, Matsubara L, et al. Collagen metabolism incultured adult fat cardiac fibroblasts: Response to angioteasinⅡ and aldosterone. J Mol Cell Cardiol, 1994;26(6):809.
    96. Wei CM, Lerman A, Rodeheffer RJ, et al. Endothelin in human CHF. Circulation, 1994;89(4):1580.
    97. Kent R, Hooher JK, Cooper GIV. Load responsiveness of protein- synthesis in adult mammalian myocardium: Role of cardiac deformation linked to sodium influx. Circ Res, 1989;64(1):74.
    98. Baker KM, Chernin MI, Wixon SK, et al. Renin angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 1990;259(2):H324.
    99. Baker KM, Aceto JF. AngioteasiaⅡ stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol, 1990;259(2):H610.
    100. 李法琦, 陈运贞. 细胞凋亡在心血管疾病中的研究现状. 重庆医科大学学报, 1999;24(1):103.
    101. Richardo HB, Hailey LS, Xie SS, et al. In situ apoptosis assay for the detectionof early acute myocardial infarction. American J of Pathol 1996; 149:821.
    102. Narula J, Haider N, Virmani R, et al. Apoptosis in ceardiomcytes in end- stage heart failure. N Engl J Med, 1996;335:1181.
    103. Olitvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 hetermodimerizes in vivo with a conserved homolog, Bax, that accelerate programmed cell death. Cell, 1993;74:609.
    104. Anversa P, Oliveiti G, Meggs LG, et al. Cardiac anatomy and ventricutar loading after myocardial infaract. Circulation, 1993;87:22-27.
    105. Hamet P, Tedgui A, Fontaliran F, et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. Hypertension, 1995;26:642.
    106. Boluyt MO, Pulkki K, Kallagoki M, et al. Apoptosis in human acute myocardial infarction. Eur Heart J, 1995;16(supp N):19.
    107. Teiger E, Burleson KA, Kioner RA, et al. Repelfusion injury induces apoptesis in myocardium of cardiomyocyte. J Clin Invest, 1994,94:1621.
    108. Katz AM, Sklar J. Nrcleotide sequence of t (14:18) chromosal breakpoint in follicular lymphoma and demastration of breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA, 1985;82:7439.
    109. Naruta J, Haider N, Virmani R, et al. Apoptosis of cardiomcytes in age heart failure. N Engl J Med, 1996;335:1181.
    110. Mallat Z, Tedgui A, Fontaliran F, et al. Evidence of apoptosis in arrhythmogenic rightventricular dysplasia. The NeW England Journal Of Medicine, 1996;335(16):1190.
    111. 黄晓明, 高翼之. Bc1-2 及其相关蛋白与细胞凋亡的调节. 国外医学分子生物学分册, 1997;19(1):16.
    112. Jun M, Yukihiro H, Michiya O, et al. Expression of bc1-2 protein, an inhibitor of apoptosis, and bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Cirulation, 1996; 94(7):1506.
    113. 顾本清. 在心肌梗塞中凋亡的诱导和其巨噬细胞一氧化氮合成酶的可能关系. 国外医学分子生物学分册, 1997;19(2):95.
    114. Wei Cheng, Jan K, James A, et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp Cell Res, 1996;226:316.
    115. Hockenbery D M, Oltvai Z N, Yin Y M, et al. Bc1-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993;75:241.
    116. 罗羽慧, 李法琦. 凋亡基因 Fas 系统与心力衰竭. 中国循环杂志, 2001; 16(4):312.
    117. Romeo F, Li D, Shi M, et al. Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc Res 2000;45:788.
    118. Yoshikawa T, Baba A, Akaishi M, et al. Neurohumoral activations in congestive heart failure: correlations with cardiac function, heart rate variability, and baroreceptor sensitivity. Am Heart J, 1999;137:666.
    119. Pierzchalski P, Reiss K, Cheng W, et al. p53 induces myocyte apoptosis via the activation of the renin-angiotensin system. EXp Cell Res 1997; 234(1):57.
    120. Kirshenbaum LA, de Moissac D. The Bcl-2 gene product prevents program reed cell death of ventricular myocytes. Circulation, 1997;96(5):1580.
    121. Led A, Liu Y, Malhotra A, et al. Pacing-induced heart failure dogs enhances the expression of p53 and p53-dependent genes ventricular myocytes. Gircu lation, 1998;97(2):194.
    122. Leri A, Claudi PP, Li Q, et al. Stretch-mediated release of angiotensin Ⅱ induces myocyte apoptosis by activating p53 that enhances the local renin-angiotenain system and decreases the Bcl-22-to-Bax protein ratio in the cell. Jchin Invest 1998;101(7):1326.
    123. Sharpe N. Ventricular remodeling following myocardial infarction. Am J Cardiol, 1992;70(10):20.
    124. Siu SC, Nidorf SM, Galambos GS, et al. The effect of late patency of the infarct-related coronary artery on left ventricular morphology and regional function after thombo1ysis. Am Heart J, 1992;124(2):265.
    125. Bonaduce D, Petretta M, Villari B, et al. Effects of late administration of thssuetype plasminogen activator on left ventricular remodeling and function after myocardial infarction. J Am Cell Cardiol, 1990;16(7):1561.
    126. Marino P, Zondla L, Zardini P. Effect of strepotokinase on left ventricular remodeling and function after myocardial infarction: The GISSI trial. J Am Coll Cardiol, 1989;14(5):1149.
    127. Aleksandar D, Aleksandar N, Jelera, et al. Acute and longterm effect of thrombolysis after anterior wall acute myocadial infarction with serial assessment of infarct expansion and late ventricular remodeling. Am J Cardiol, 1996;77:446.
    128. Hokimoto S, Yasue H, Fujimoto K, et at. Expression of angiotensin- converting enzyme in remaining viable myocytes of human ventricle after myocadial infarction. Circulation, 1996;94(7):1513.
    129. Jugdutt BL. Effect of nitrates on myocardial remodeling after acute myocadial infarction. Am J Cardiol, 1996;77(13):17.
    130. Doughty RN, Whalley GA, Gamble G, et al. Left ventricular remodeling with carvedilol in patients with congestive heart failure due to ischemic heart disease. Austrilia-New Zealand Heart Failure Research Collaborative Grope. J Am Cell Cardiol, 1997;29(5):1060.
    131. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of spirono-lactone in preventing myocardial fibrosis in systemic arterial hypertension. Am J Cardiol, 1993;71(3):12.
    132. Cittadini A, Grossman JD, Napoli R, et al. Growth hormone attenuates early left ventricular remodeling and improves cardiac function in rats with large myocadial infarction. JACC, 1997;29(5):1109.
    133. Mcdonald KM, Rector MT, Carlyle PF, et al. Angiotension-converting enzyme inhibition and beta-adrenoceptor blockaderegress established ventricular remodeling in a canine model of discrete myocardial damage. J Am Coll Cardiol, 1994;24(7):1762.
    134. Jain P, Brown E J, Langenback EG, et al. Effects of milrinoneon left ventricular remodeling after acute myocardial infarction. Circulation, 1991; 84(2):796.
    135. lliceto S, gcrution D, Bmzzi P, et al. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-carnitine Ecocardiografia Digitalizata Infarto Miocarico (CEDIM) Trial. J Am Coll Cardiol, 1995;26(2):380.
    136. Charles C J, Donald RA, lkram H, et al. Arginine Vasopressin V1-Receptor Antagonism in an Ovine Model of Acute Myocardial infarction. J Cardiovasc Pharmacol, 1998;32(5):777.
    137. Yang BC, PhilliPs M, Ambuehl PE, et al. Increase in angiotensin Ⅱ type Ireceptor expression immediately after ischemia reperfusion in isolated rat hearts. Circulation, 1997,96(3):922-926.
    138. Harada K, Komuro I, Hayashi D, et al. Angiotensin Ⅱ tyPe receptor is involved in the occurrence of reperfusion arrhythmias. Circulation, 1998, 97(4):315-317.
    139. Weidenbach R, Schulz R, Gres P, et al. Enhanced reduction of myocardial infarct size by combined ACE inhibition and AT1 receptor antagonism.Br J Pharmacol, 2000,131(l):138-144.
    140. Lindpainter K. Selective activation of cardiac angiotensinogen geneexpression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol, 1993,25:133-5.
    141. Reiss K. Ang Ⅱ recePtors, c-myc, c-unin myocytes after myocardial infarction and ventricular failure. Am J Physiol, 1993,264:H760.
    142. Kambayasbi Y, Bardhan S, Takahashi S, et al. Molecular clong of novel angiotensin I receptor inform involved in phosPho-tyrosine phosphate inhibition. J Biol Chem, 1993;308:325.
    143. 黄若文, 姜馨, 吕卓人. 对血管紧张素Ⅱ受体拮抗剂的争议和热点问题的评估. 中华老年心脑血管病杂志, 2006,8(10).
    144. Andreas J, Rainer S, Hilmar D, et al. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2- receptor activation, brdykinin and Prostaglandins in Pigs. J Am Coll Cardiol, 1998,32:1787-9.
    145. Liu YH, Yang XP, Sharov VG, et al. Effects of angiotensin- converting enzyme inhibitors and Angiotensin Ⅱ type 1 receptor antagonists in rats with heart failure. role of kinins and Angiotensin Ⅱ type 2 receptoes. J Clin Invest, 1997,99:1926-35.
    146. 睢大员, 曲绍春, 于小风, 等. 刺五加叶皂苷对大鼠心肌缺血再灌注损伤的保护作用. 中国中药杂志, 2004,29(1):71.
    147. 武淑芳, 睢大员, 于晓风, 等. 西洋参叶二醇组皂苷抗实验性心肌缺血作用及其机制. 中国药学杂志, 2002;37(2):100.
    148. 姜红玉, 睢大员, 于晓风, 等. 刺五加叶皂苷对实验性脑缺血大鼠血液流变学及血小板功能的影响. 吉林大学学报 (医学版), 2004,30(3):384.
    149. 中国药理学会. 药理学进展 (心血管药理分册), 北京: 人民卫生出版杜, 1980:63.
    150. 杨继声, 卢兴, 张万年. 心肌梗塞后影响左室功能因素的实验研究. 中华心血管病杂志, 1987,(5):294.
    151. 王迎平, 陈玉华, 徐端正. 丹参酮ⅡA 磺酸钠对心肌梗塞犬血流动力学及心梗范围的作用. 上海第一医学院学报, 1980,7(5):347.
    152. 王波, 陈修. 抗心肌缺血药实验方法述评. 药学通报, 1987,(10):583.
    153. 曾贵云. 药理学进展. 北京: 人民卫生出版杜, 1979:121-127.
    154. Brown G., Bo1son E., Peterson R.E., et al. The mechanisms of nitroglylerin activity: stenosis vasodilatation as a major compoment of drug response. Circulation, 1981,64:1089.
    155. Wilson K, Haws AS, Lazenby D, et al. Myocardial reperfusion injury. J Thorac Cardiovasc Sury, 1999,102:297.
    156. Yoshizum i M, Kitagaw T, Mawuda Y, et al. Effect of amiloride on ischemia and reperfusion injury in isolated, perfused rat hearts [J]. Scand Cardiovasc J, 1998,32(3):167.
    157. Aoyagi T, Sugiura S, Eto Y, et al. Inhibition of carniline synthesis protects against left ventricular dayfuction in rats with myocardialischemia. J Cardiovasc Pharmacol, 1997,30(4):468.
    158. 谭齐贤. 临床血液学和血液检验. 人民卫生出版社, 2003:288.
    159. 周涛, 秦国伟. 肉碱对大鼠心肌缺血时红细胞膜流动性的影响. 现代医药卫生, 2006,22(24):3726.
    160. 张静然, 梁玲, 戴耀宗. 隐性心肌缺血者血脂及血液流变学指标的检测及意义. 微循环学杂志, 2006,16(4):53.
    161. Tarpey MM, Fridovich L. Methods of detection of vascular reactive species: nitric oxide, supemxide, hydrogen peroxide and peroxynitrite. Circ Res, 2001,89:224.
    162. 虹彬, 温进坤, 韩梅. 氧化应激与动脉粥样硬化. 中国动脉硬化杂志, 2001,9(4):360.
    163. Cracowski JL, Stanke-Labesque F, Souvignet C, et al. Isoprostanes: new markers of oxidative stress in human diseases. Presse Med, 2000,29:604.
    164. Zhang Cx, Yang J, Jennings LK. Leukocyte-derived myelopemxidase amplifies high glucose Induced endothelial dysfunction through interaction with high-glucose-stimulated vascular non-leukocyte- derived reactiveoxygen species. Diabetes, 2004,53:2950.
    165. Oroge W. Oxidative stress and aging. Adv Exp Med Biol, 2003,543:191.
    166. Kalousova M, Zinla T, Tesar V, el al. Protein turnover by the proteasome in aging and disease. Free Radic Biol Med, 2002,32:1084.
    167. Collins T, Read MA, Neish As, et al. Transcriptional regulation of endothelial cell adhesion molecules: Nf-kappa B and cytokine-inducible enhancers. FASEB J, 1995,9(10):899.
    168. 孙文清, 冯大明, 唐朝克, 等. 血管组织肾素-血管紧张素系统激活对活性氧及一氧化氮生成的影响. 中国动脉硬化杂志, 2006,l4(1):29.
    169. Bratton SB, MacFarlane M, Cain K, et al. Protein complexes activate distinct caspase cascades in death receptorand stress induced apoptosis. Exp Cell Res, 2000,256(1):27.
    170. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem, 1999,68:383.
    171. Wallach D, Varfolomeev EE, Malinin NL, et al. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol, 1999,17:331.
    172. Zhou H, Henzel WJ, Liu XS, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome C-dependent activation of caspase-3. Cell, 1997,90:405.
    173. Li D, Tomson K, Yang B, et al. Modulation of constitutive nitric oxide synthase, bcl-2 and Fas expression in cultured human coronary endothelial cells exposed to anoxia-reoxygenation and angiotensin II: role of AT1 receptor activation. Cardiovasc Res, 1999,41(1):109-115.
    174. Obata T, Yamanaka Y. Protective effect of imidaprilat, an angiotensin conrerring enzyme inhibitor on OH generation in rat myocardium. BiochimBiophys Acta, 1999,1472(1-2):62-70.
    175. Takemura C, Ohno M, Fujiwara H. Ischemic heart disease and apoptosis. Rinsho Byori, 1997,45(47):606-613.
    176. Izumiya Y, Kim S, Izumi Y, et al. Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling. Circ Res, 2003,93(9):874.
    177. Glezerman I, Patel H, Glicklich D, et al. Angiotensin-converting enzyme inhibition induces death receptor apoptotic pathways in erythroid precursors following renal transplantation. Am J Nephrol, 2003,23(4):195.
    178. Liu JJ, Peng L, Bradley CJ, et al. Increased apoptosis in the heart of genetic hypertension, associated with increased fibroblasts. Cardiovasc Res, 2000, 45(3):729.
    179. Steindel M, DiasNeto E, Pinto CJ, et al. Randomly amplified polymorphic DNA (RAPD) and isoenzyme analysis of Trypanosoma rangeli strains. Eukaryot Microbiol, 1994,41(3):261.
    180. Shi mizu M, Sjoquist PO, Wang QD, et al. Effects of angiotensin ATl receptor blocker candesartan on myocardial ischemic/reperfusion injury. J Am See Nephrol, 1999,10 (Suppl) 11:s137.
    181. Takeda H, Haneda T, Mkuchi K, Protective, et al. effect of the angiotensin converting enzyme inhibiter captopril on postischemic myocardial damage in perfused rat heart. Jpn Cir, 1997,61(8):687.
    182. Muller CA, Opie LH, Peisach M, et al. Chronic oral pretreatment with the angiotensin converting enzyme inhibitor, trandilapril decrease ventricular in acute ischeamic and repefusion. Eur Heart J, 1994,15(7):988.
    183. Nishizaka Y. The family of prtoein kinase C for signal transduction. J AMA, 1989,262:1826.
    184. Doff JL, Marrero MB, Paxton WG, et al. AngiotensinⅡsignal transduction and the mitogenactiroted protein kinase pathway. Cardiovas Res, 1995, 30:511.
    185. 袁勇, 刘伊丽. 血管紧张素Ⅱ及其受体和拮抗剂. 心血管医学进展, 1998, 19(2):83.
    186. Zughaib ME, Sun JZ, et al. Effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. Hypertension, 1996,27(1):7.
    187. Mancia G, Levy BL, et al. Recent advance in ACEI inhibitor in the treatment and heart failure. Am J Cardiol, 1993,71(17):8E.
    188. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, 1994,94:1621.
    189. 睢大员, 吕忠智, 王黎, 等. 益心口服液对大鼠急性心肌梗死范围及血液流变学的影响. 中国实验方剂学杂志, 1996,2(3):14.
    190. Rohde LE, Aikawa M, Cheng GC, et al. Echocardiography-derived left ventricular end-systolic regional wall stress and matrix remodeling after experimental myocardial infarction. J Am Coll Cardiol, 1999,33:835.
    191. 张沛, 扬跃进, 宋来凤, 等. 大、中、小剂量依那普利防治大鼠急性心肌梗塞左心室重构的作用对比. 中国循环杂志, 2001,16(4):255.
    192. Pfeffer JM, Pfeffer MA, Braunwald E, et al. Hemodynamic benefits and prolonged survival with long-term captopril therapy in rats with myocardial infarction and heart failure. Circulation, 1987,75:149.
    193. Pfeffer JM, Pfeffer MA, Braunwald E, et al. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Cir Res, 1985,57:84.
    194. Jugdutt MA, Schwarz-Michorowski BL, Khan MI, et al. Effect of long-term captopril therapy on left ventricular remodeling and function during healing of canine MI. J Am Coll Cardol, 1992,19:713.
    195. Grossman W, Jones D, Mc Laurin LB. Wall stress and patterns of hyper- trophy in the human left ventricle. J Clin Invest, 1975,56:56.
    196. Burton AC: The importance of the shape and size of the heart. Am Heart J, 1957,54:801.
    197. 吴扬, 潘敬运. 血管紧张素Ⅱ对培养新生大鼠心肌细胞 MHC 基因表达的影响. 中国病理生理杂志, 1998,14(2):126.
    198. Simm A, Diez C. Density dependent expression of PDGFA moduates the angiotensin Ⅱdependent proliferation of rat cardiac fibroblasts. Basic Res Cardiol, 1999,94:467-471.
    199. Bouzegrhane F, Thibault G. Is angiotensin Ⅱa proliferative factor of cardiac fibroblasts? Cardiovasc Res, 2002,53:304-312.
    200. Kim S, Iwao H. Molecular and cellar mechanisms of angiotensin Ⅱmediate cardiovascular and renal diseases. Pharmacol Rev, 2000,52:11-34.
    201. Yousef ZR, Redwood SR, Marber MS. Post infarction left ventricular remodeling: Where are the theories and trials leading us? Heart, 2000,83: 76-80.
    202. Ganguly P K, Sherwood G R. Noradrenaline turnover and metabolism in myocardium following aortic constriction in rats. Cardiovasc Res, 1991, 25:579.
    203. Dhalla A K, Dawan K S. Antioxidant changes in hypertrophied and failing guinea pig hearts. Am J physiol, 1994,266(35):H1280.
    204. 郑云敏, 汪水孝, 叶复来. 实验性心肌肥厚与氧自由基的关系. 中华心血血管病杂志, 1993,21(6):379.
    205. Kaneko M, Singal P K, Dhalla N S. Alterations in heart sarcolemmal Ca2+-ATPase and Ca2+-binding activities due to oxygen free radicals. Basc Res Cardiol, 1990,85:45.
    206. Morgan HE, Baker KM. Cardiac hypertrophy: Mechanical, neural and endocrine dependence. Circulation, 1991,83:13.
    207. Kitakaze M, Node K, Takashima S, et al. Cellular mechanisms of cardio- protection afforded by inhibitors of angiotensin converting enzyme in ischemic hearts: rote of bradykinin and nitric oxide. Hypertens Res, 2000, 23(3):253.
    208. Gallagher AM, Yu H, Printz MP. Bradykinin-induced reduction in collagen gene expression involve prostacyclin. Hypertension, 1998,32:81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700