抗猪传染性胃肠炎病毒S蛋白单克隆抗体的制备与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分别用昆虫细胞杆状病毒表达系统表达的重组猪传染性胃肠炎病毒(Transmissible gastroenteritis virus,TGEV)S蛋白和含有猪传染性胃肠炎病毒TH-98株S基因主要抗原位点的重组质粒PCI-Sa免疫BALB/c小鼠,按常规方法进行细胞融合。间接ELISA方法进行筛选,前者筛选抗原为TGEV细胞培养物上清;后者筛选抗原为纯化的乳酸乳球菌表达重组TGEV S蛋白。采用有限稀释法,经过三次克隆,最终前者获得两株抗TGEV S蛋白的杂交瘤细胞株(C7C882和B5G8G7);后者获得一株抗TGEV S蛋白的杂交瘤细胞株(E6D9A12)。三株杂交瘤细胞分泌的单克隆抗体亚类分别为IgM、IgM、IgG2a类,杂交瘤细胞体外长期培养和冻存均不影响抗体的分泌。杂交瘤细胞的平均染色体数为88±10对,用相应的筛选抗原经间接ELISA检测C7C882、B5G8G7、E6D9A12细胞培养上清的抗体效价分别为1:200、1:100、1:500,腹水抗体效价分别为1:2×10~5、1:1×10~4、1:6×10~5。
     以猪传染性胃肠炎病毒(TGEV)、猪流行性腹泻病毒(PEDV)、猪轮状病毒(PRV)、猪伪狂犬病病毒(PrV)细胞培养物上清液为抗原,与三株杂交瘤细胞上清经间接ELISA检测结果显示,这三株单抗与TGEV显示良好的特异性,而与PEDV、PRV和PrV不存在交叉反应。说明获得的单抗具有高度的特异性。
     用实验获得的单克隆抗体和SP2/0细胞培养上清对感染TGEV的ST细胞培养物进行了间接免疫荧光检测病原的比较研究:间接免疫荧光染色后,与单抗作用的细胞培养物中,多数细胞在其胞浆和细胞膜上出现黄绿色闪亮荧光,且荧光强度强,与SP2/0细胞培养上清作用的细胞培养物未见有黄绿色闪亮荧光,结果表明,利用所制备的抗TGEV S蛋白的单克隆抗体进行间接免疫荧光对病原检测具有较高的特异性。
     以纯化的TGEV为抗原,Dot-ELISA检测实验获得的单克隆抗体与TGEV的反应性,结果三株杂交瘤细胞上清与TGEV反应均出现灰色印记,可判定为阳性;与SP2/0细胞上清反应为阴性。证明单克隆抗体与TGEV具有特异性反应。
     上述实验结果均表明,所制备的抗TGEV S蛋白的单克隆抗体对病原检测具有较强的特异性,为TGEV病原特性的基础性研究和病原的快速检测提供了重要的物质基础。
In this research, recombinant spike protein of transmissible gastroenteritis virus(TGEV) whichwas expressed with baculovirus expression system and a recombinant plasmid named PCI-Sa withprimary epitopes of TGEV were used to immune BALB/c mouses respectively. Cell fusion wasperformed according to the traditional method. Indirect ELISA assay was carried out to screenhybridoma cell lines using supernatant of TGEV propagation as for the first kind of antigen, andpurified recombinant spike protein expressed in Lactococcus lactics for the second kind of antigen.By limiting dilution and 3 serials of clones, 2 hybridoma cell lines (designated C7C8B2 andB5G8G7) producing antibodies against TGEV were obtained, and 1 hybridoma cell line(designated E6D9A12) secreting antibodies recognizing S protein was also gained. Theantibodies of 3 hybridoma cell lines were respective belong to IgM、IgM、IgG2a subgroup. Afterextended culture and several freeze thaw cycles, monoclonal antibodies could still be stablysecreted. The average number of chromosomes in 3 hybridomas was 88±10 couples. Investigatedthrough indirect ELISA, the titers of 3 cell-cultured antibodies were measured to be 1:200, 1:100,1:500 and titers of antibodies produced in ascities were respectively 1:2×10~5, 1:1×10~4, 1:6×10~5.
     Using the supernatants of TGEV, PEDV, PRV and PrV propagation as antigens, 3 antibodiesall exposed specific recognition characters. And they could not react with PEDV, PRV or PrV. Itwas confirmed that these specific antibodies could be used for TGEV diagnosis.
     Immunofluorescence assays were performed with ST cell monolayers infected with TGEVprobed by the antibodies or supernatant of SP2/0 cell culture. After staining with FITC labeledsecondary antibodies, strong yellow-green fluorescence could be observed in plasma and onmembrane of cells. However, no fluorescence was detected with the addition of supernatant ofSP2/0 cell culture. With recombinant S protein as immunogen, antibodies were found tospecifically bind to pathogens with the confirmation of indirect immunofluorescence assays.
     Using purified TGEV as antigen, dot-ELISA was performed to determine the correlationbetween the monoclonal antibodies and TGEV. It was revealed that the supernatants of 3hybridomas but not supernatant of SP2/0 cell culture could recognize TGEV. The specificity ofantibodies to virus was further ensured.
     All the results indicate that with recombinant S protein as immunogen, the screenedmonoclonal antibodies own rather excellent specificity to TGEV. And this could provide foundationfor TGEV pathogenesis research and rapid diagnosis.
引文
奥斯伯.1998.精编分子生物学实验指南.颜子颖,王海林译.北京:科学出版社.
    巴德年.1998.当代免疫学技术与应用.北京:北京医科大学中国协和医科大学联合出版社,351~361.
    B E斯特劳,S D阿莱尔,W L蒙加林等.2002.猪病学(第八版).北京:中国农业大学出版社,305~339.
    曹军平,朱爱萍,肖作焕等.2000.猪传染性胃肠炎的诊断与防制.中国动物检疫.
    曹殿军,刘明,王莉林等.1997.中国畜禽传染病.94(3):21~24.
    郭富生,尹燕博,徐兰芳等.2003.SPA-ELISA监测猪传染性胃肠炎病毒血清抗体水平的研究.中国动物检疫.20(8):24-27.
    Heddy Zola原著.1991.单克隆抗体技术手册.南京:南京农业大学出版社.
    何孔旺,林继煌,还红华等.2001.猪传染性胃肠炎病毒弱毒株ST细胞培养特性及致病性研究.中国兽医科技.31(8):8~9.
    J.萨姆布克,E F弗里奇,T曼尼阿萨斯.1993.分子克隆实验指南.金冬雁,黎孟枫等译.第二版.北京:科学出版社.
    金伯泉.2002.细胞和分子免疫学实验技术.西安:第四军医大学出版社,16.
    姜骞,李一经.2005.抗猪传染性胃肠炎病毒重组N蛋白单克隆抗体的制备及其部分特性鉴定.中国预防兽医学报.27(2):102~104.
    李军,林继煌,陆承平等.2001.RT-PCR检测猪传染性胃肠炎病毒.中国兽医学报.21(3):246~248.
    陆苹,赵辉.1993.抗猪传染性胃肠炎病毒单克隆抗体的研究及应用.上海农学院学报.11(4):257~260.
    潘孝成,祁克宗,孙国仁等.2005.兽药单克隆抗体研究进展.动物医学进展.26(4):31~33.
    钱永清,闻人楚,许大新等.1999.猪流行性腹泻病毒的分离培养与鉴定.上海农业学报.(2):41~42.
    冉智光,王玉春,刘晓滨等。1997.猪传染性胃肠炎病毒血凝作用.中国兽医科技.27(9):3~4.
    任晓峰,尹杰超,司微等.2006.猪传染性胃肠炎病毒TH-98株S基因核酸疫苗的构建及其免疫效力.中国兽医科学.36(03):203~206.
    任晓峰.2001.猪传染性胃肠炎病毒TH-98株S基因的克隆与鉴定.东北农业大学硕士学位论文.
    斯特劳,阿莱尔,蒙加林等.2000.猪病学.北京:中国农业大学出版社,316~319.
    苏万国,康永兰,邹勇等.2000.猪传染性胃肠炎病毒在PK15和ST细胞上的增殖特性比较.上海畜牧兽医通讯.40.
    唐丽杰.2001.RT-PCR方法快速诊断猪传染性胃肠炎.黑龙江畜牧兽医.12:26~27.
    唐丽杰,欧笛,葛俊伟等.2007.表达猪传染性胃肠炎病毒s基因的重组乳酸乳球菌的构建及免疫原性分析.微生物学报.47(2):340~344.
    王凯,金宁一,鲁会军等.2005.禽流感病毒H7亚型血凝素单克隆抗体的制备.中国预防兽医学报.27(11):454~456.
    王继科,刘常明,马思奇等.1991.猪传染性胃肠炎和猪流行性腹泻病毒免疫电镜的诊断研究.传染病.2:22~25.
    王树成,赵祥平,董志珍等.1997.二种方法检测猪传染性胃肠炎病毒抗体的比较.中国畜禽传染病.2:31~33.
    魏旭芳,陈强,魏一生.2005.临床用于治疗癌症的单克隆抗体.国外医学.预防.诊断.治疗用生物制品分册.(4):173~176.
    薛庆善.2001.体外培养的原理与技术.北京:科学出版社,948.
    殷震,刘景华.1997.动物病毒学(第2版).北京:科学出版社,681~688.
    朱立平,陈清学.2000.免疫学常用实验方法.北京:人民军医出版社,441~442.
    张净,夏谦,高晓燕等.1996.用阻断酶联免疫吸附试验检测猪传染性胃肠炎病毒抗体和猪呼吸道冠状病毒抗体.中国兽医科技.26(2):24~25.
    张柄丽,唐丽杰等.2006.猪传染性胃肠炎S基因AD抗原位点在昆虫杆状病毒系统中的表达.中国兽医杂志.42(8):22~24.
    郑福英,刁有祥等.2003.应用间接免疫荧光法检测新型鸭瘟病毒.中国兽医科技.33(10):47~50.
    周宗安译.1991.单克隆抗体技术手册.南京:南京大学出版社,48~87.
    周仲芳,李力复,颜思通等.1997.用固定细胞阻断酶联免疫吸附试验鉴别诊断猪传染性胃肠炎病毒和猪呼吸道冠状病毒的感染.中国兽医杂志.23(12):5~7.
    周仲芳,李力复,罗长保等.2000.利用重组抗原建立间接酶联免疫吸附试验检测猪传染性胃肠炎血清抗体.中国兽医杂志.26(10):12~14.
    邹勇,唐永兰等.2002.ELISA鉴别检测猪流行性腹泻病毒、猪传染性胃肠炎病毒和轮状病毒抗体水平的研究.上海畜牧兽医通讯.(6):12~13.
    Almazan F, Galan C, Enjuanes L. 2004. The Nucleoprotein Is Required for Efficient Cornavirus Genome Replication. J Virol. 78(22): 12638~12688.
    Anton I M, Sune C, Meloen R H et al. 1995. A Transmissible Gastroenteritis Coronavirus Nucleoprotein Epitope Elicits T-helper Cells That Collaborate in the in vitro Antibody Synthesis to the Three Major Structure Viral Proteins. Virol. 212:746~751.
    Ballesteros L, Sanchez C, Enjuanes L. 1997. Two Amino Acid Changes at the N-teminus of TGEV Spike Protein Result in the Loss of EntericTropism. Virology. 227(2): 378~388.
    Baudoax P, Carrat C, Besnardeau L. 1998. Coronavirus Pseudo Palticles Formed with Recombinant M and E Protein Induce Alpha-interferon Synthesis by Leukocyte. J Virol. 72(11): 8636~8643.
    Benfield D A, Jackwood D J, BaeI et al. 1991. Detection of Transmissible Gastroent-eritis Virus Using cDNA Probes.ArchVirol. 116: 91~106.
    Brian D A, Baric R S. 2005. Coronavirus Genorae Structure and Replication. Crur Top Microbiol Immunol. 287: l-30.
    
    Carman S et al. 2002. Field Validation of Acommercial Blocking ELISA to Differentiate Antibody to Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus and to Identify TGEV-infected Swine Herds. J Vet Diagn Invest. 14 (2) : 97—105.
    
    Cavanagh D, Brian D A, Brinton M A, et al. 1994. Revison of the Taxonomy of the Corona Virusses. Torovirus and Arterivirus Genera.Arch Vird. 135(1/2): 227-237.
    
    Carlos M. Sanchez, Izeta A, Jose M. Sanchez-Morgado, Alonso S, Sola I, Balasch M, Plana-Duran J and E uanes L. 1999 . Targeted Recombination Demonstrates that the Spike Gene of Transmissible Gastroenteritis Coronavirus is a Determinant of Its Enteric Tropism and Vilulence Joulmal of Virol. 73: 7607—7618.
    
    Christine K, Graham D, Yolken R, et al. 1997. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of TGEV. Journal of Virol. 71(4): 3285-3287.
    
    Correa I, Gebauer F , Bullido M J, et al. 1990. Localization of Antigenic Sites of the E2 Glycoprotein of Transmissible Gastroenteritis Coronavirus. J Gen Virol. 71(2): 271—279.
    
    Delmas B, Gelfi J, Laude H. 1986. Antigenic Structure of Transmissible Gastroenteritis Virus. J Gen Virol. 67: 1405-1418.
    
    Delmas B, Rass chaert D, Gtodet M, et al. 1990. Four Major Antigenic Site of the Coronavirus Transmissible Gastroenteritis Virus are Located on the Amino-terminal Half of Spike Glycoprotein S. Journal of Gen. Virol. 1313-1323.
    
    Enjuanes L ,Vander Zeijst B A. 1995. Molecular Basis of Transmissible Gastroenteritis Coronavirus Epidemiology. In S G Sidell(ed), the Coronaviridae. New York: Plenum Press. P: 337-376.
    
    Escors D, Laude H, Enjuanes L. 2001. The Membrane M protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability. J. Virol. 75 (3) : 1312—1324.
    
    Gebauer F, Willem P A, Correa I et al. 1991. Residues Involved in the Antigenic Sites of Transmissible Gastroenteritis Coronavirus S Glycoprotein. Virol. 183: 225—238.
    
    Gomez N, Carrillo J, et al. 1998. Expreession of Immunogenic Glycoprotein S Polypeptides from TGEV in Transgenic Plants . Virology. 249(2): 352—358.
    
    Godet M, Gros Claude J. 1994. Major Receptor-binding and Neutralization Determinants are Located within the Same Domain of the Transmissible Gastroenteritis Virus (coronavirus) Spike Protein.J Virol. 68(12): 8008—8016.
    
    Hegyi A, Ziebuhr J. 2002. Conservation of Substrate Specificities among Coronavirus Main Proteases . J Gen Virol. 83(3): 595—599.
    
    Jones T, Shenk T .1997. Transmissible Gastroenteristis Virus of Pigs. Veterinary Record. 141(16): 427—428.
    Jung K, Kim J et al. 2003. Differentiation Between Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus in Formalin-fixed Paraffin-embedded Tissues by Multiplex RT-nested PCR and Comparison with Insitu Hybridization. J Virol Methods. 108 (1) : 41—47.
    
    Kim L, Chang K O et al. 2000. Development of a Reverse Transcription-nested Polymerase Chain Reaction Assay for Differential Diagnosis of Transmissible Gastroenteritis Virus and Porcine Respiratory Coronavirus from Feces and Nasal Swabs of Infected Pigs. J Ve tDiagn Invest. 12 (4) : 385—388.
    
    Krempl C, Schultze B, Laude H and Herrler G 1997. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with Enteropathogenicity of Transmissible Gastroenteritis Virus. Journal of Mirol. 71(4): 3285-3287.
    
    Laude L, Godet M, Bernard S et al. 1995. Functional Domains in the Spike Protein of Transmissible Gastroenteritis Virus. Adv Exp Med Biol, 380: 299—304 .
    
    Laviada M D, Videgain S P, Moreno L, et al. 1990. Expression of Swine Transmissible Gastroenteritis Virus Envelope Antigens on the Surface of Infected Cell: Epitopes externally exposed. Virus Res .16: 247—254.
    
    Liu C, Kokuho T, Kubota T, et al. 2001. A Serodiagnostic ELISA Using Recombinant Antigen of S Swine Transmissible Gastroenteritis Virus Nucleoprotein[J]. J Vet Med Sci. 63(11): 1253— 1256.
    
    Lowings P, Laude H , Charley B .1997. Discrimination Between Transmissible Gastroenteritisvirus Isolates . Archives of Virol. 142(8) .1703—1722.
    
    Martin Alonso J M, Balbin M, Garwes D J et al. 1992. Antigenic Structure of Transmissible Gastroenteritis Virus Nucleoprotein. Virology. 188: 168—174.
    
    Ortego J, Escors D. et al. 2002. Generation of a Replication-competent propagation-deficient Virus Vector Based on the Transmissible Gastroenteritis Coronavirus Genome . J Virol. 76(22): 18-29.
    
    Paton D, Bridges A, Cartwright F et al. 1997. Detection of Transmissible Gastroenteristis Virus by RT-PCR and Differentiation from PRCV. Journal of Virological Methods. 66 (2): 303 - 309.
    
    Pauls S. Masters. 2006. The Molecular Biology of Coronaviruses. Advances in Virus Research. 66: 193-292.
    
    Rodak L, Smid B, Nevorankova Z et al. 2005. Use of Monoclonal Antibodies in Blocking ELISA Detection of Transmissible Gastroenteritis Virus in Faeces of Piglets. J Vet B Infect Dis Vet Public Health. 52 (3) : 105-111.
    
    Riffault S, Grosclaude J, Vayssier M et al. 1997. Reconstitued Coronavirus TGEV Virosomes lose the Virus Ability to Induce Porcine Interfer-on-alpha production.VetRes. 28 (2) : 105—114.
    
    SanChez C M, Izeta A, Sanchez-Morgado J M et al. 1999. Targeted Recombination Demonstrates that the Spike Gene of Transmissible Gastroenteritis Coronavirus is Adeterminant of its Enteric Tropism and Virulence. J Virol, 73 (8) : 7607—7618.
    Sirinarumitr T, Paul P S et al. 1997. An overview of Immunological and Genetic methods for Detecting Swine Coronaviruses, Transmissible Gastroenteritis Virus, and Porcine Respiratory Coronavirus Intissues. Ad Exp Med Biol. 412: 37—46.
    
    Simikins R A, Weilnau P A, Bias J et al. 1992. Antigenic Variation among Transmissible Gastroenteritis Virus (TGEV) and Porcine Respiratory Coronavirus Stains Detected with Monoclonal Antibodies to the S Protein of TGEV. Am J Vet Res. 53: 1253-1258.
    
    Sune C, Jimenez G, Correa I, et al. 1990. Mechanisms of Transmissible Gastroenteritis Virus Coronavirus Neutralization. Virology. 177: 559—569.
    
    Taniguchi R, Takahashi A, Hayashidani H, et al. 2004. Sequence Comparison of the ORF 7 Region of Transmissible Gastroenteritis Viruses Isolated in Japan. J Vet Med Sci. 66(6): 717—719.
    
    Wesley RD, Woods RD, Cheung AK. 1990. Genetic Basis for the Pathogenesis of Transmissible Gastroenteritis Virus. J Virol. 64(10): 4761—4768.
    
    Wood R D. 2001. Efficiency of a Transmissible Gastroenteritis Coronavirus with an Altered ORF_3 gene. Can J Vet Res . 65(1): 28—32.
    
    Wuru T, Chen H, Hoddgson T et al. 2001. Localization to the Nucleolus is a Common Feature of Coronavirus Nucleoproteins and the Protein may Disrupt Host Cell Division. J Virol. 75 (19): 9345-9356.
    
    Wolf J A, Malone R W, Williams P, et al. 1990. Direct Gene Transfer into Mouse Muscle in Vivo. Science. 247: 1465—1468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700