天然染料敏化太阳能电池的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过改性的溶胶-凝胶法和水热法合成了二种不同尺寸的二氧化钛粒子,将这两种二氧化钛粒子与商用的P25二氧化钛混合,制备了一种具有亚微米尺寸二氧化钛粒子,称为三元包裹型球状二氧化钛(Ternary-encapsulated spherical TiO2, TES-TiO2)。将制备的TES-TiO2通过阴极电泳沉积技术沉积在纳米晶介孔二氧化钛(Mesoporous TiO2, Meso-TiO2)涂敷的掺氟的氧化锡导电玻璃(Fluorine-doped SnO2 glass, FTO)上制备了用于染料敏化太阳能电池的双层二氧化钛电极。与双层Meso-TiO2/P25电极相比,基于Meso-TiO2/TES-TiO2电极的染料敏化太阳能电池的能量转换效率为6.49%,比Meso-TiO2/P25电极的5.94%提高了9.3%。制备的双层Meso-TiO2/TES-TiO2电极在高温煅烧时,同时引入高压电场(High-voltage electric field, HVEF)进行辅助晶化。结果,染料敏化太阳能电池的效率从6.49%变到7.05%进一步提高了8.6%。明显地,与通常应用于染料敏化太阳能电池活性层的20纳米左右的二氧化钛粒子相比,制备的具有亚微米尺寸、疏松多孔的TES-Ti02不仅增加了光散射效应,同时促进了分子染料的吸附和电解质的扩散。再者,HVEF的引入提供了更好的二氧化钛粒子之间的连接,使得电子在二氧化钛中更容易转输,避免了电荷的复合。
     本论文中第一次报道了使用美人蕉、串红和龙葵提取液作为染料敏化太阳能电池光敏剂的研究。通过使用美人蕉、串红、都柿和龙葵作为敏化剂组装成的染料敏化太阳能电池能量转换效率分别为0.29%,0.26%,0.13%和0.31%。我们用傅立叶转变红外光谱和紫外-可见吸收光谱分别研究了这四种天然染料的分子结构和光学吸收,用电化学阻抗光谱分析了电池内部界面的阻抗。结果表明在以都柿为光敏剂的染料敏化太阳能电池中,界面处存在较高的阻抗。
A novel ternary-encapsulated spherical TiO2 (TES-TiO2) with submicron particle sizes was formed by blending commercial P25 TiO2 and two different sizes of TiO2 particles synthesized by modified sol-gel and hydrothermal methods. A double-layered TiO2 electrode for dye-sensitized solar cell (DSSC) was fabricated by depositing TES-TiO2 particles onto nanocrystalline mesoporous TiO2 (Meso-TiO2)-coated Fluorine-doped SnO2 glass (FTO) by a cathodic electrophoresis technique. Compared to double-layered Meso-TiO2/P25 electrodes, the energy conversion efficiency (η) of DSSC from the obtained Meso-TiO2/TES-TiO2 electrode was improved by 9.3%, from 5.94% to 6.49%. When the prepared double-layered Meso-TiO2/TES-TiO2 electrode was calcined at high temperature, a high-voltage electric field (HVEF) was introduced to assist crystallization. As a result,ηwas further enhanced by 8.6%, from 6.49% to 7.05%. Notably, compared to typical 20 run TiO2 nanocrystallites applied in the active layer of DSSC, the prepared loosely porous TES-TiO2 with submicron size increased the light scattering effect and promoted dye molecule adsorption and the diffusion of electrolytes.In addition, introduction of the HVEF provided better connection among TiO2 particles, which facilitated electron transport and avoided charge recombination.
     Study on DSSC with extracts of Canna indica L., Salvia splendens, Solanum nigrum L. as sensitizers is firstly reported in this paper. Solar cells were assembled by using natural dyes extracted from Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. as sensitizers. The energy conversion efficiency of the cells sensitized with dyes of Canna indica L., Salvia splendens, cowberry and Solanum nigrum L. was 0.29%,0.26%,0.13% and 0.31%, respectively. We present FTIR and UV-vis spectroscopy studies of structures and light absorption of these four kinds of natural dyes. The electrochemical impedance spectroscopy (EIS) was used to analyze the interface resistance of cells. The result indicated that high resistance existed in the interfaces of cell with cowberry extract as sensitizer.
引文
[1]P. Wang, S. M. Zakeeruddin, I. Exnar and M. Gratzel. High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte[J]. Chem. Commun.,2002,24:2972-2973.
    [2]M. A. Green, K. Emery, D. L. King et al. Solar Cell Efficiency Tables[J]. Prog. Photovolt:Res. Appl.,2007,15 (1):35-40.
    [3]B. O'Regan, M. Gratzel. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature,1991,353:737-740.
    [4]M. K. Nazeeruddin, A. Kay, I. Rodicio et al. Conversion of Light to Electricity by Cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) Charge-Transfer Sensitizers (X=Cl-, Br-, I-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes[J]. J. Am. Chem. Soc.,1993,115 (14):6382-6390.
    [5]M. Gratzel. Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cell[J]. J. Photochem. Photobiol. A:Chem.,2004,164 (1-3): 3-14.
    [6]M. K. Nazeeruddin, F. D. Angelis, S. Fantacci et al. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers[J]. J. Am. Chem. Soc.,2005,127 (48):16835-16847.
    [7]Y. Chiba, A. Islam, Y. Watanabe, R. Komiya et al. Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%[J]. Japanese Journal of Applied Physics Part 2-Letters and Express Letters,2006,45 (24-28):638-640.
    [8]S. Dai, J. Weng, Y. F. Sui et al. Dye-Sensitized Solar Cells, from Cell to Module[J]. Sol. Energy. Mater. Sol. Cells.,2004,84 (1-4):125-133.
    [9]M. Gratzel. The Advent of Mesoscopic Injection Solar Cells[J]. Prog. Photovolt:Res. Appl.,2006,14 (5):429-442.
    [10]K. Kalyansundaram, M. Gratzel. Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices[J]. Coord. Chem. Rev.,1998,177 (1):347-414.
    [11]K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe et al. Efficient Photosensitization of Nanocrystalline TiO2 Films by Tannins and Related Phenolic Substances[J]. J. Photochem. Photobiol. A:Chem.,1996,94 (2-3):217-220.
    [12]S. Hao, J. Wu, Y. Huang and J. Lin. Natural Dyes as Photosensitizers for Dye-Sensitized Solar Cell[J]. Solar Energy,2006,80 (2):209-214.
    [13]孙世国,徐勇前,时磊等.纳米晶体太阳能电池及染料敏化剂[J].染料与染色,2003,40(6):309-313.
    [14]孔凡太,戴松元.染料敏化太阳能电池研究进展[J].化学进展,2006,18(11):1409-1424.
    [15]L. Kavan, M. Gratzel. Highly Efficient Semiconducting TiO2 Photoelectrodes Prepared by Aerosol Pyrolysis[J]. Electrochim. Acta,1995,40 (5):643-652.
    [16]S. Uchida, R. Chiba et al. Application of Titania Nanotubes to a Dye-Sensitized Solar Cell[J]. Denki Kagaku oyobi Kogyo Butsuri Kagaku,2002,6:418-420.
    [17]A. Islam, H. Sugihara and H. Arakawa. Molecular Design of Ruthenium(II) Polypyridyl Photosensitizers for Efficient Nanocrystalline TiO2 Solar Cells[J]. J. Photochem. Photobiol. A:Chem.,2003,158 (2-3):131-138.
    [18]A. Kay, M. Gratzel. Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder[J]. Sol. Energy. Mater. Sol. Cells.,1996,44(1):99-117.
    [19]张正华,李陵岚,叶楚平等.有机太阳能电池与塑料太阳能电池[M].北京:化学工业出版社,2006.155-156.
    [20]K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottrgoda et al. An Efficient Dye-sensitized Photoelectrochimical Solar Cell Made from Oxides of Tin and Zinc[J]. Chem. Commun.,1999,1:15-16.
    [21]B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin et al. Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics[J]. Adv. Mater.,2000,12 (17):1263-1267.
    [22]P. Guo, M. A. Aegerter. Ru(Ⅱ) Sensitized Nb2O5 Solar Cell Made by the Sol-gel Process[J]. Thin Solid Films,1999,351 (1-2):290-294.
    [23]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Lett., 2006,6 (2):215-218.
    [24]M. Y. Song, Y. R. Ahn, S. M. Jo et al. TiO2 Single-Crystalline Nanorod Electrode for Quasi-Solid-State Dye-Sensitized Solar Cells[J]. Appl. Phys. Lett.,2005,87: 113113.
    [25]M. Adachi, Y. Murata, J. Takao et al. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the "Oriented Attachment" Mechanism[J]. J. Am. Chem. Soc.,2004,126 (45):14943-14949.
    [26]M. Y. Song, D. K. Kim, K. J. Ihn et al. Electrospun TiO2 Electrodes for Dye-Sensitized Solar Cells[J]. Nanotechnology,2004,15 (12):1861.
    [27]Z.-S. Wang, H. Kawauchi, T. Kashima and H. Arakawa. Significant Influence of TiO2 Photoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell[J]. Coord. Chem. Rev.,2004,248 (13-14):1381-1389.
    [28]S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki and S. Yoshikawa. Single-and Double-Layered Mesoporous TiO2/P25 TiO2 Electrode for Dye-Sensitized Solar Cell[J]. Sol. Energy Mater. Sol. Cells,2005,86 (2):269-282.
    [29]L. Hu, S. Dai, J. Weng, S. Xiao et al. Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules[J]. J. Phys. Chem. B,2007,111: 358-362.
    [30]S. Nakade, Y. Saito, W. Kubo et al. Influence of TiO2 Nanoparticle Size on Electron Diffusion and Recombination in Dye-Sensitized TiO2 Solar Cells[J]. J. Phys. Chem. B, 2003,107:8607-8611.
    [31]G. Benko, B. Skarman, R. Wallenberg et al. Particle Size and Crystallnity Dependent Electron Injection in Flurorescein 27-Sensitized TiO2 Films[J]. J. Phys. Chem. B,2003,107:1370-1375.
    [32]N.-G. Park, J. van de Lagemaat and A. J. Frank. Comparison of Dye-Sensitized Rutile-and Anatase-Based TiO2 Solar Cells[J]. J. Phys. Chem. B,2000,104: 8989-8994.
    [33]N. Papageorgiou, C. Barb6 and M. Gratzel. Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films[J]. J. Phys. Chem. B,1998,102:4156-4164.
    [34]M. Wei, Y. Konishi, H. Zhou et al. Highly Efficient Dye-Sensitized Solar Cells Composed of Mesoporous Titanium Dioxide[J]. J. Mater. Chem.,2006,16:1287-1293.
    [35]P. Wang, S. M. Zakeeruddin, P. Comte et al. Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals[J]. J. Phys. Chem. B,2003,107: 14336-14341.
    [36]L. Yang, Y. Lin, J. Jia et al. Light Harvesting Enhancement for Dye-Sensitized Solar Cell by Novel Anode Containing Cauliflower-like TiO2 Spheres[J]. J. Power Sources,2008,182 (1):370-376.
    [37]S. Hore, C. Vetter, R. Kern et al. Influence of Scattering Layers on Efficiency of Dye-Sensitized Solar Cells[J]. Sol. Energy Mater. Sol. Cells,2006,90 (9):1176-1188.
    [38]Y. Lin, Y. T. Ma, L. Yang et al. Computer Simulations of Light Scatterng and Mass Transport of Dye-Sensitized Nanocrystalline Solar Cells[J]. J. Electroanal. Chem.,2006, 588(1):51-58.
    [39]Y. J. Kim, Y. H. Lee, M. H. Lee et al. Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interficial layer of Long-Range Ordered Mesoporous TiO2 Thin Film[J]. Langmuir,2008,24 (22):13225-13230.
    [40]H. Yu, S. Zhang, H. Zhao, G. Will and P. Liu. An Efficient and Low-Cost TiO2 Compact Layer for Performance Improvement of Dye-Sensitized Solar Cells[J]. Electrochim. Acta,2009,54 (4):1319-1342.
    [41]G. Amy, J. Cho. Interactions between Natural Organic Matter and Membrance: Rejection and Fouling[J]. Water Science and Technology,1999,40(9):131-139.
    [42]A. Kay, M. Gratzel. Artificial Photosynthesis.1. Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins[J]. J. Phys. Chem., 1993,97:6272.
    [43]S. Yoshitaka and H. Tamiaki. Facile Synthesis of Chlorophyll Analog Possessing a Disulfide Bond and Formation of Self-Assembled Monolayer on Gold Surface[J]. J. Photochem. Photobiol. B:Biology,2004,73 (1-2):29-34.
    [44]Y. Amao and T. Komori. Bio-photovoltaic Conversion Device Using Chlorine-e6 Derived from Chlorophyll from Spirulina Adsorbed on a Nanocrystalline TiO2 Film Electrode[J]. Biosensors and Bioelectronics,2004,19 (8):843-847.
    [45]Y. Amao and Y. Yamada. Near-IR Light-Sensitized Voltaic Conversion System Using Nanocrystailline TiO2 Film by Zn Chlorophyll Derivative Aggregate[J]. Langmuir,2005,21 (7):3008-3012.
    [46]曹玲玲,藤月莉,陆慧等.叶绿素铜钠盐敏化Sn02超微粒薄膜的光电转换性能[J].华东理工大学学报,1998,24(5):106-110.
    [47]孙磊,苑伟政,乔大勇.染料共敏化纳米晶太阳能电池的性能研究[J].光电子技术,2005,25(3):150-153.
    [48]刘宝琦,赵晓鹏.混合植物染料敏化的太阳能电池性能[J].光子学报,2006,35:184-187.
    [49]P. Markakis. Anthocyanins as Food Color[M]. New York:Academic Press,1982.
    [50]J. C. Nerine. Ultrafast Electron Injection:Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode[J]. J. Phys. Chem. B,1997,101:9342-9351.
    [51]G. G. Christian, S. P. Andre and Y. M. I. Neyde. Natural Extracts vs Ruthenium Polypyridinic Dyes for Sensitization of Photoelectrochemical Solar Cells[A]. Proceeding of the 14th International Conference on Photochemical Conversion and Storage of Solar Energy, Sapporo,2002.
    [52]J.-J. Yun, H.-S. Jung, S.-H. Kim et al. Chlorophyll-Layer-Inserted Poly(3-hexyl-thiophene) Solar Cell Having a High Ligh-to-Current Conversion Efficiency Up to 1.48%[J]. Appl. Phys. Lett.,2005,87:123102.
    [53]K. Tennakone, G R. R. A. Kumara, I. R. M. Kottegoda and K. G U. Wijayantha. The Photostability of Dye-Sensitized Solid State Photovoltaic Cells:Factors Determing the Stablility of the Pigment in a Nanoporous n-TiO2/Cyaniding/p-CuI Cell[J]. Semicond. Sci. Technol.,1997,12 (1):128-132.
    [54]C. G. Garcia, A. S. Polo and N. Y. Murakami Iha. Fruit Extracts and Ruthenium Polypyridinic Dyes for Sensitization of TiO2 in Photoelectrochemical Solar Cells[J]. J. Photochem. Photobiol. A:Chem.,2003,160:87.
    [55]C. G. Garcia, A. S. Polo and N. Y. Murakami Iha. Photoelectrochemical Solar Cell Using Extract of Eugenia Jambolana Lam as a Natural Sensitizer[J]. An. Acad. Bras. Cienc.,2003,75:163.
    [56]P. M. Sirimanne, M. K. I. Senevirathna, E. V. A. Premalal et al. Utilization of Natural Pigment Extracted from Pomegranate Fruits as Sensitizer in Solid-State Solar Cells[J]. J. Photochem. Photobiol. A:Chem.,2006,177:324.
    [57]K. Wongcharee, V. Meeyoo and S. Chavadej. Dye-Sensitized Solar Cell Using Natural Dyes Extracted from Rosella and Blue Pea Flowers[J]. Sol. Energy Mater. Sol. Cells,2007,91:566.
    [58]G. Calogero and G. D. Marco. Red Sicilian Orange and Purple Eggplant Fruits as Natural Sensitizers for Dye-Sensitized Solar Cells[J]. Sol. Energy Mater. Sol. Cells, 2008,92:1341.
    [59]宁光辉,赵晓鹏.一种新型的染料敏化紫外光电池[J].光子学报,2003,32(6) : 665-668.
    [60]D. Qing and R. Joseph. Photosensitization of Nanocrystalline TiO2 Films by Pomegranate Pigments with Unusually High Efficiency in Aqueous Medium[J]. Chem. Commun.,2001,24:2142-2143.
    [61]G. R. A. Kumara, S. Kaneko, M. Okuya et al. Shiso Leaf Pigments for Dye-Sensitized Solid-State Solar Cell[J]. Sol. Energy Mater. Sol. Cells,2006,90: 1220-1226.
    [62]M. S. Prasad, S. Indika, T. Kirthi. An Enhancement of Photo Properties of Solid-State TiO2/Dye/CuI Type Cells by Coupling Mercurochrome with Natural Juice Extracted from Pomegranate Fruits[J]. Chemistry Letters,2005,34:1568-1569.
    [63]Q. Dai and J. Rabani. Photosensitization of Nanocrystalline TiO2 Films by Anthocyanin Dyes[J]. J. Photochem. Photobiol. A:Chem.,2002,148:17.
    [64]K. Tennakone, G. R. R. A. Kumara, K. G. U. Wijayantha et al. Nano-Porous Solid-State Photovoltaic Cell Sensitized with Tannin[J]. Semiconductor Science and Technology,1998,13:134-138.
    [65]E. Rodolfo, Z. Inti, L. S. Jorge et al. Nanocrystalline TiO2 Photosensitized with Natural Polymers with Enhanced Efficiency from 400 to 600nm[J]. Sol. Energy Mater. Sol. Cells,2005,85:359-369.
    [66]Y. L. Gao. Interaction of Carotenoids and Cu2+ in Cu-MCM-41: Distance-Dependent Reversible Electron Transfer[J]. J. Phys Chem. B,2003,107: 2459-2465.
    [67]E. Yamazaki, M. Murayama, N. Nishikawa et al. Utilization of Natural Carotenoids as Photosensitizers for Dye-Sensitized Solar Cells[J]. Sol. Energy,2007,81: 512.
    [68]P. Liska, K. R. Thampi, M. Gratzel et al. Nanocrystalline Dye-Sensitized Solar Cell/Copper Indium Gallium Selenide Thin-Film Tandem Showing Greater Than 15% Conversion Efficiency[J]. Appl. Phys. Lett.,2006,88:203103.
    [69]L. Zhang, J. Yang, L. Wang et al. Direct Observation of Interfacial Charge Recombination to the Excited-Triplet State in All-trans-Retinoic Acid Sensitized TiO2 Nanoparticles by Femtosecond Time-Resolved difference Absorption Spectroscopy[J]. J. Phys. Chem. B,2003,107 (49):13688-13697.
    [70]J. Pan, Y. Xu, L. Sun et al. Carotenoid and Pheophytin on Semiconductor Surface: Self-Assembly and Photoinduced Electron Transfer[J]. J. Am. Chem. Soc,2004,126 (10):3066-3067.
    [71]Y.-X. Weng, L. Li, Y. Liu et al. Surface-Binding Forms of Carboxylic Groups on Nanoparticulate TiO2 Surface Studied by the Interface-Sensitive Transient Triplet-State Molecular Probe[J]. J. Phys. Chem. B,2003,107 (18):4356-4363.
    [72]Q.-L. Zhang, L.-C. Du, Y.-X. Weng et al. Particle-Size-Dependent Distribution of Carboxylate Adsorption Sites on TiO2 Nanoparticle Surfaces:Insights into the Surface Modification of nanostructured TiO2 Electrodes[J]. J. Phys. Chem. B,2004,108: 15077-15083.
    [73]Z.-S. Wang, K. Hara, Y. Dan-oh et al. Photophysical and (Photo)Electrochemical Properties of a Coumarin Dye[J]. J. Phys. Chem. B,2005,109 (9):3907-3914.
    [74]L. P. Huang, L. P. Liu, Z. L. Li et al. Research and Prospect of Canna Plant[J]. Anhui Agri. Sci. Bull.,2007,13:89.
    [75]T. Kondo, M. Yoshikane, K. Yoshida and T. Goto. Structure of Anthocyanins in Scarlet, Purple, and Blue Flowers of Salvia[J]. Tetrahedron Lett.,1989,30:6729.
    [76]M. P. Kahkonen, J. Heinamaki, V. Ollilainen et al. Berry Anthocyanins:Isolation, Identification and Antioxidant Activities[J]. J. Sci. Food Agric.,2003,83:1403.
    [77]I. Zhitomirsky. Cathodic Electrodepostion of Ceramic and Organoceramic Materials. Fundamental Aspects[J]. Adv. Colloid Interface Sci.,2002,97:279-317.
    [78]L. Besra, M. Liu. A Review on Fundamentals and Applications of Electrophoretic Deposition (CPD)[J]. Prog. Mater. Sci.,2007,52:1-61.
    [79]L. Yezek, R. L. Rowell, M. Larwa and E. Chibowski. Colloids Surfaces A: Physicochem. Eng. Aspects,1998,141:67.
    [80]H. Zhang and J. F. Banfield. Understanding Polymorphic Phase Transformation Behavior during Growth of Nanocrystalline Aggregates:Insights from TiO2[J]. J. Phys. Chem. B,2000,104 (15):3481-3487.
    [81]H.-J. Koo, Y. J. Kim, Y. H. Lee et al. Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells[J]. Adv. Mater., 2008,20:195-199.
    [82]Q. Zhang, T. P. Chou, B. Russo et al. Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed.,2008, 47:2402-2406.
    [83]Z. Chen, Y. Tang, H. Yang. Nanocrystalline TiO2 Film with Textural Channels: Exhibiting Enhanced Performance in Quasi-Solid/Solid-State Dye-Sensitized Solar Cells[J]. J. Power Sources,2007,171:990-998.
    [84]J. van de Lagemaat, N.-G Park and A. J. Frank. Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques[J]. J. Phys. Chem. B,2000,104 (9):2044-2052.
    [85]C. Longo, A. F. Nogueira and Marco-A. De PaoliH. Cachet. Solid-State and Flexible Dye-Sensitized TiO2 Solar Cells:a Study by Electrochemical Impedance Spectroscopy[J]. J. Phys. Chem. B,2002,106 (23):5925-5930.
    [86]W. H. Lai, Y. H. Su, L. G. Teoh and M. H. Hon. Commercial and Natural Dyes as Photosensitizers for a Water-Based Dye-Sensitized Solar Cell Loaded with Gold Nanoparticles[J]. J. Photochem. Photobiol. A:Chem.,2008,195:307.
    [87]M. S. Roy, P. Balraju, M. Kumar and G. D. Sharma. Dye-Sensitized Solar Cell Based on Rose Bengal Dye and Nanocrystalline TiO2[J]. Sol. Energy Mater. Sol. Cells., 2008,92:909.
    [88]C.-P. Hsu, K.-M. Lee, Joseph T.-W. Huang et al. EIS Analysis on Low Temperature Fabrication of TiO2 Porous Films for Dye-Sensitied Solar Cells[J]. Electrochimica Acta,2008,53:7514.
    [89]M. C. Bernard, H. Cachet, P. Falaras. Sensitization of TiO2 by Polypyridine Dyes[J]. J. Electrochem. Soc.,2003,150:E155.
    [90]T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin et al. Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes[J]. J. Electrochem. Soc.,2006,153:A2255.
    [91]A. Hauch, A. Georg. Diffusion in the Electrolyte and Charge-Transfer Reaction at the Platinum Electrode in Dye-Sensitized Solar Cells[J]. Electrochimica Acta,2001,46: 3457.
    [92]P. Zoltowski. On the Electrical Capacitance of Interfaces Exhibiting Constant Phase Element Behaviour[J]. J. Electroanal. Chem.,1998,443:149.
    [93]J. Bisquert, G. Gracia-Belmonte, P. Bueno et al. Impedance of Constant Phase Element (CPE)-Blocked Diffusion in Film Electrodes[J]. J. Electroanal. Chem.,1998, 452:229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700