阿维菌素对土壤微生物的影响及在蚯蚓体内蓄积与消除的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正文:阿维菌素类药物(Avermectins,AVMs)是由放线菌(streptomyces avermitilis)产生的一组大环内酯类抗生素,通过阻断虫体神经元之间及节肢动物神经末梢和肌细胞间的神经冲动传导,使虫体麻痹而死。AVMs具有优异的驱虫活性和安全性。是目前广泛使用的畜禽体内外抗寄生虫药物,也是农业上广泛使用的高效杀虫剂。本文就阿维菌素B_(1a)组分(AVM B_(1a))对四种土壤中细菌和真菌的数量、呼吸强度的影响及在蚯蚓(Eisenia fetida)体内的蓄积与消除进行了研究。
     AVM B_(1a)对四种土壤环境中微生物的生长情况及呼吸强度的研究结果表明:只有当土壤中的AVM B_(1a)浓度在83.3mg·kg~(-1)以上时才对土壤细菌的生长表现出明显的抑制作用,但对土壤中真菌不表现抑杀作用。用密闭法对AVM B_(1a)对四种土壤中细菌的呼吸强度的研究结果显示,AVM B_(1a)在1250mg·kg~(-1)以上时对土壤的微生物的呼吸强度有抑制作用,同时发现土壤本身的营养成分对AVM B_(1a)的毒性有影响。采用滤纸接触实验和人工土壤实验测定了AVM B_(1a)对蚯蚓的急性毒性。结果表明,蚯蚓滤纸接触试验的接触毒性LD_(50)为4.63μg·cm~(-2)(48h),人工土壤法试验蚯蚓的LD_(50)分别为24.13mg·kg~(-1)(7d)和17.06mg·kg~(-1)(14d)。
     本研究首次建立了AVM B_(1a)在蚯蚓体内残留的高效液相色谱荧光检测方法。用乙腈作为蚯蚓中AVM B_(1a)的提取剂,在经碱性氧化铝柱和C_(18)柱的分离纯化后,蒸干、衍生化后用HPLC荧光检测器检测。当添加水平为5ng·g~(-1),50ng·g~(-1)和500ng·g~(-1)时,平均回收率分别为104.8%,86.6%和83.0%。变异系数在2.99%~7.34%之间。在蚯蚓组织中的最低检出限为0.5ng·g~(-1),日内变异系数在3.76%~8.05%之间,日间变异系数在2.89%~7.44%之间。
     经对AVM B_(1a)在蚯蚓的体内蓄积研究发现,蚯蚓对土壤中的AVM B_(1a)的摄取迅速,至试验的第9~18d其体内AVM B_(1a)浓度即趋于稳定,在第18d时蚯蚓体内的AVM B_(1a)浓度分别为106.86ng·g~(-1)(低剂量组:0.6mg·kg~(-1)干土)和165.17ng·g~(-1)(高剂量组:3mg·kg~(-1)干土),均低于土壤中的AVM B_(1a)浓度;另外,经19d的消除试验发现,阿维菌素在蚯蚓体内的消除也很迅速,在消除试验的第2d,蚯蚓体内AVM B_(1a)浓度即分别降到5.59ng·g~(-1)(低剂量组)和32.92ng·g~(-1)(高剂量组),至第19d时,蚯蚓体内的AVM B_(1a)的浓度分别为1.03ng·g~(-1)(低剂量组)和2.36ng·g~(-1)(高剂量组)。上述结果表明,AVM B_(1a)在蚯蚓体内不具有明显的蓄积作用,但少量的残留能在蚯蚓体内存留较长时间。
Content: Avermectins (AVMs) belong to a group of compounds called macrocyclic lactones, which are natural products produced by the microorgamanism streptomyces avermitilis. In recent years the AVMs are used as a potent antiparasitic animal health drug in the treatment of parasitic infections for food producing animals. The AVMs are notable pesticides used in agriculture. In this paper, several studies were conducted to evaluate the ecotoxicity of AVM BU on earthworms (Eiseniafetida) and soil microorganisms.
    The influence of AVM B1a on microbiological population of bacteria and fungi in the soils that came from four different places is studied in this paper. The results show that the inhibition actions of AVM BU for population of bacteria in the soil come into being only under the case that the concentration of AVM B1a is higher than 83.3 mg.g-1. Effect of AVM B1a on the respiration of microbes in the soils for 24 hours has been studied using the method of direct absorption. The results demonstrated that AVM BU had significant inhibition effect on soil respiration in its higher concentrations. The acute toxicity tests of AVM BU on earthworms were performed using the filter paper contact test and artificial soil test. And the half lethal dosage (LD50) of AVM B1a is 4.63 ug.cm-2 (48h) and 24.13 mg.kg-1 (7d) and 17.06 mg.kg-1 (14d), respectively, for the filter paper test and artificial soil test. All above results suggested that the ecotoxicity of AVM B1a in the soil should be affected by the composition of the so
    il.
    A method of determination of AVM BU in earthworms was established by high-performance liquid chromatography (HPLC) with fluorescence detector. Homogenized earthworms sample was extracted by acetonitriie, and cleaned up on alumina B and C18 solid-phase cartridges, followed by derivatization with 1-methylimidazole (1-MIZ) and trifluoroacetic anhydride (TFAA), and analyzed by HPLC with fluorescence detector set at 365 nm excitation and 475 nm emission wavelengths. The average recovery of AVM B,.in earthworms was 104.8%, 86.6% and 83.0%, at the levels of 5 ng.g-1, 50 ng.g-1, 500 ng.g-1. The relative standard deviation (RSD) ranged from 2.99% to 7.34%. The limit of the detection is 0.5 ng.g-1.
    The rapid uptake of AVM BU was observed and steady-state levels were reached within 9-18 days. On the 18th day, the final concentrations of AVM BU in the earthworms were 106.86 ng.g-1 and 165.17 ng.g-1, respectively, in the low dose group and high dose group. Both of the AVM B1a concentrations in the earthworms are lower than that in the artificial soil. After 19-day elimination test, the concentrations of the AVM Bt. in the earthworms were 1.03 ng.g-1 and 2.36 ng.g-1, respectively, in the low dose group and high dose group. The test of bio-enrichment and elimination of AVM B1a in the earthworms showed that there are no significant enrichment of
    
    
    AVM B1a, in earthworms, but the trace amount of AVM B1a can be found for a relative long time in earthworms.
引文
Bouché M. B., Lombriciens de France, Ecologie et Systématique. Ed. I. N. R. A., Ann. Zoo-écol. anim., numréo special, 1972, 72-2:1-671
    Bull D. L., McConnell J. G., Gruber F., Ku. C. C., Arison B. H., Stevenson J. M. and VandenHeuvel W. J. A., Fate of avermecin Bla in soil and plants. J. Agric. Food Chem., 1984, 32:94-102
    Campbell W. C., Ivermectin. An Update Parasitol. Today, 1985, 1:10-16
    Cater, A., E. A. Keeney, T F. Gutheir & H. Timmenga, Heavy metals in earthworms in noncontaminated and contaminated agricultural soil from near Vancouver, Canada. In "Earthworm ecology" (J. E. Satchell ed. ), Chapman & Hall, London, 1983, pp 267-274
    Cerniglia C. E., Kotarskis S., Evaluation of veterinary drug residues in food for their potential to affect human intestinal microflora. Regul. Pharmacol., 1999, 29(3): 238-261
    Charles T. P., Furlong J., A survey of dairy cattle worm control practices in southeast Brazil. Vet. Parasitol., 1996, 65:65-73
    Christensen F. M., Pharmaceuticals in the environment—A human risk. Regul. Toxicol. Pharmacol., 1998, 28(3): 212-221
    Coats J. R., Model ecosystem evaluation of the environmental impacts of the veterinary drug phenothiazine, sulfamethazine, clopidol, and diethylstilbestrol. Environ. Health Perspect., 1976, 18: 167-179
    Cortez J., Hameed R, Bouché M. B., C and N transfer in soil with or without earthworms fed with 14C and 15N-labelled wheat straw. Soil Biol. Biochem., 1989, 21(4): 491-497
    Debeckere M., Environmental pollution: the animal as source, indicator and transmitter. Rudkebusch Y. Veterinary pharmacology toxicology. Lancster: MTB press limited, 1982, pp595-608
    Dijek P.V, van de Voorde H., Sensitivity of environmental microorganism to antimicrobial agents. Appl. Environ. Microbiol., 1976, 31(3): 332-393
    Diserens H., Henzelin M., Determination of abamectin residues in fruits and vegetables by high-performance liquid chromatography. J. Chromatogr., 1999, 833:13-18
    Edwards C. A., Thompson A. R., Pesticides and the soil fauna. Residue Rev., 1973, 45:1-79
    Edwards C. A., Lofty J. R., The influence of arthropods and earthworms upon root growth of direct drilled cereals. J. Appl. Ecol., 1978, 15:789-795
    Edwards C.A., Soil invertebrate controls and microbial interactions in nutrient and organic matter dynamics in natural and agroecosystems. In: Vertebrate as Webmasters in Ecosystems. Coleman D.
    
    C., Hendrix P. F., Eds. CABI, Publishing. Oxford, 2000, pp141-159
    Egerton J. E., Ostlind D. A., Blair L. S., Easy C. H., Suhayda D., Cifelli S., Riek R. F., Campbell W. C., Avermectins, new family of potent anthelmintic agents: efficacy of the Bla component. Antimicrob. Agents Chemother., 1979, 15:372-378
    Fisher M. H., Mrozik H., Chemistry. In: lvermoctin and Abamectin. Ed. Campbell, W. C. Springer-Verlag, New York, 1989, pp1-23
    Gruber V. E, Halley B. A., Hwang S. C., Ku C. C., Mobility of avermectin Bla in soil. J. Agric. Food Chem., 1990, 38:886-890
    Halley B. A., Jacob T. A., Lu A. Y. H., .The environmental impact of the use of ivermectin: environment effects and fate. Chemosphere, 1989, 18:1543-1563
    Halley B. A., VandennHeuvel W. J., Wislock P. G., Environmental effects of the usage of avermectin in livestock. Vet. Parasitol., 1993, 48(1-4): 109-125
    Hailing-Sorensen B., Nors Nielsen S., Lanzky, P. F., Ingerslev E, Holten Lutzhoft H. C., Jorgensen S. E., Occurrence, fate and effects of pharmaceutical substance in environment- a review. Chemosphere, 1998, 36(2): 357-393
    Hirsch R., Ternes T., Haberer K, Kratz K. L., Occurrence of antibiotics in the aquatic environmental. Soil Total Environ., 1999, 225(1-2): 109-118
    Hirsch R., Ternes T. A., Haberer K, Mehlich A., Ballwanz F., Kratz K L., Determination of antibiotics in different water compartments via liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A, 1998, 815(2): 213-223
    Honeyman M. S., Sustainability issues of US swine production. J. Anim. Sci., 1996, 74(6): 1410-1417
    Hunter J. E., Bennett M., Hart C. A., Apramycin resistance Escherichia coli isolated from pigs and a stockman. Epidemiol. Infect., 1994, 112:473-480
    Hunter J. E., Shelley J. C., Walton J. R., Hart C. A., Bennett M., Apramycin resistance plasmids in Escherichia coli: possible transfer to Salmonella typhimurium in calves. Epidemiol. Infect., 1992, 108(2): 271-278
    Ikeda T., Zhao X., Nagata K., Kono Y., Shono T., Yeh J. Z., Narahashi T., Fipronil modulation of gamma-aminobutyric acid(A) receptors in rat dorsal root ganglion neurons. J. Pharmacol. Exp. Ther., 2001, 296(3): 914-921
    Ingerslev F., Holten Lutzhoft H.-C., Halling-Sorensen B., Humant anvenste lagenmidlers vejtil miljoet er gennem resningsanlagget. Dansk kemi, 1999, 80 (6-7), 22-25
    Jacobsen P., Berglind L., Persisitence of oxytetracycline in sediments from fish farm. Aquaculture, 1988, 70:365-370
    Jongdlied A. W., Lenis N. P., Environmental concerns about animal manure. J. Anim. Sci., 1998, 76(10):
    
    2641-2648
    Jorgensen S. E., Halling-Sorensen B., Drug in the environment. Chemosphere, 2000, 40(7): 691-699
    Jorgensen S. E. (Ed.), Modelling the fate and effect of toxic substances in the environment, development in environmental modelling, vol.6, Elsevier, Amsterdam, The Netherlands, 1984, pp342
    Kuperman R. G., Edwards C. A., Effects of acidic deposition on soil invertebrates and microorganisms. Rev. Environ. Contam. Toxicol., 1997, 148:35-137
    Madsen M., Gronvold J., Nansen P., Holter P., Effects of treatment of cattle with some anthelmintics on the subsequent degradation of their dung. Acta. Veterinaria. Scandinavia., 1988, 29(3): 515-517
    Mckellar Q. A., Benchaoui H. A., Avermectins and milbermycins. J. Vet. Pharmacol. Ther., 1996, 19: 331-351
    Miller T. W., Chaiet L, Cole D. J., Cole L. .J, Flor J. E., Goegelman R. T., Gullo V. P., Joshua H., Kempf A. J., Krellwitz W. R, Monaghan R. L., Ormond R. E., Wilson K. E., Albers-schonberg G., Putter I., Avermectins, new family of potent anthelmintic agents: isolation and chromatographic properties. Antimicrob. Agents Chemother., 1979, 15(3): 368-371
    Miner J. R, Alternatives to minimize the environmental impact of large swine production units. J. Anim. Sci., 1999, 77(2): 440-444.
    Miyazaki A., Amano T., Saito H., Nakano Y., Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms, Chemosphere., 2002, (47): 65-69
    Mokhtar S., Brhsirr N., Sherbini E., Qualitative and quantitative evaluation of aerobic microflora of the colon in bilharzial patients before and after prasiquantel therapy. Egyptian J. Bilharziasis, 1988, 10(1): 111-120
    Montigny D. P., Liquid chromatographic determination of ivermectin in animal plasma with trifluoroacetic anhydride and N-methylimidazole as the derivatization reagent. J. Pharmaceut. Biomed. Anal., 1990, 8(6): 507-511
    Mrozik H., Eskola P., Reynolds G. F., Photoisomers of avermectins. J. Org. Chem., 1988, 53:1820-1823
    Onishi J. C., Miller T. W., The lack of antifungal activity by avermectin Bla. J. Antibiot., 1985, 38: 1568-1572
    Payne L. D., Hicks M. B., Wehner T. A., Determination of abamectin and/or ivermectin in cattle feces at low parts per billion levels using HPLC with fluorescence detection. J. Agric. Food Chem., 1995, 43:1233-1237
    Pell A. N., Manure and microbe: public and animal health problem. J. Am. Vet. Med. Assoc., 1997, 210(9): 1288-1289
    Pivnichny J. V., Shim J. S., Zimmerman L.A., Direct determination of avermectins in plasma at
    
    nanogram levels by high-performance liquid chromatography. J. Pharm. Sci. 1983, 72(12): 1447-1450
    Pollmeier M., Maier S., Moriarty K., DeMontigny P., High-performance liquid chromatographic assay for the determination of a semisynthetic avermectin analog (eprinomectin) in bovine milk at parts per billion levels—method development and validation. J. Chromatogr., 2002, 772:99-105
    Radix P., Leonard M., Papantoniou C., Roman G., Saouter E., Gallotti-Schmitt S., Thiebaud H., Vasseur P., Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol. Environ. Saf., 2000, 47(2): 186-194
    Ribera D., Narbonne J. F., Arnaud C., Saint-Denis M., Biochemical responses of earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biol. Biochem., 2001, 33:1123-1130
    Ridadill-Smith T. J., Survival and reproduction of Musca vetustissima Walker (Diptera: Muscidae) and a scarabaeine dung beetle in dung of cattle treated with avermectin Bla. J. Aust. Entomol. Soc., 1988, 27:175-178
    Salisbury C. D., Modified method for the determination of ivermectin residues in animal tissues. J. AOAC Int., 1993, 76 (5): 1149-1151
    Samuelsen O. B., Torsvik A., Long-range changes in oxytetracycline concentration and bacterial resistance toward oxytetracycline in a fish sediment after medication. Soil Total Environ., 1992, 114:25-36
    Shoop W. L., Morzij H., Fisher M. H., Structury and activity of avermectins and milbemycins in animal health. Vet. Parasitol., 1995, 59:139-156
    Soderlund D. M., Adams P. M., Bloomquist J. R., Differences in the action of avermectin B_(?), on the GABA_A receptor complex of mouse and rat. Biochem. Biophys. Res. Commun., 1987, 146: 692 - 698
    Soderlund D. M., Bloomquist J. R., Wong F., Payne L. L., Knipple D. C., Molecular neurology: implications for insecticide action and resistance. Pestic. Sci., 1989, 26 (4): 359 - 374.
    Stockdill S. M. J., Cossens G. G., Earthworms a must of maximum production. New Zeal. J. Agric. Res., 1969, 119:61-67
    Tway T. C., Wood J. S. Jr., Downing G. V., Determination of ivermectin m cattle and sheep tissue using high performance liquid chromatography with fluorescence detection. J. Agric. Food Chem., 1981, 29:1059-1063
    van Loveren H., Ross P. S., Osterhans A. D., Contaminant-induced immunosuppression and mass mortalities among harbor seals. Toxicol. Lett., 2000, 112-113(8): 319-324
    Virginia F., Gruber V. F., Bruce A., Halley B. A., Hwang S. C., Ku C. C., Mobility of Avermectin B_(?) in Soil. J. Agric. Food Chem., 1990, 38:886-890
    
    
    Wei G. Z., Li J. S., Improved method for determination of abamectin and ivermectin in cattle plasma J. AOAC Int., 2001, 84 (6): 1730-1734.
    Wislocki P. G., Dybas R.A., Environment aspects of abamectin use in crop protection. Ivermectin and Abamectin. Springer, New York, 1989, pp182-200
    Wollenberger L., Hailing-Sorensen B., Kusk K.O., Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere, 2000, 40 (7): 723-730
    Zang Y., Zhong Y., Luo Y., Kong Z. M., Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida. Environ. Pollut., 2002, 108:271-278
    Young H. K., Antimicrobial resistance spread in aquatic environments. J. Antimicrob. Chemother., 1993, 31(5): 627-635
    陈杖榴,杨桂香,孙永学,黄显会,曾振灵.兽药残留的毒性与生态毒理研究进展,华南农业大学学报,2001,22(1):88-91
    邓建福,王振中,张友梅.重金属污染对土壤动物群落生态影响的研究,环境科学,1996,17(2):1-5
    董书芸.环境污染物对鱼类免疫功能影响的研究进展,环境与健康杂志,1996,13(6);282-284
    高吉喜,沈英娃,曹洪法.中国生态毒理学研究现状,环境科学研究,1997,10(3):54-58
    胡照农,吴文君,姬志勤.天然杀虫神经活性物质作用机理研究进展,农药,2001,40(6):1-5
    扈洪波,朱蓓蕾,李俊锁.阿维菌素类药物的研究进展,畜牧兽医学报,2000,31(6):520-529
    李俊锁,钱传范.牛组织中阿维菌素残留的ELISA研究,畜牧兽医学报,1997,28(1):77-83
    李俊锁,邱月明,王超.兽药残留分析,上海科学出版社,2001,501-537
    廖瑞章,沈桂琴.紫色土中重金属和砷对土壤呼吸强度的影响,农业环境保护,1991,10(4):153-157
    刘洁生,肖丹,叶丛容.敌百虫对鲤鱼组织乙酰胆碱脂酶和腺三磷酯酶的影响,环境科学研究,1997,3:21-24
    邱江平.蚯蚓及其在环境保护上的应用,上海农学院学报,1999,17(3):227-232
    邱江平.蚯蚓及其在环境保护上的应用,上海农学院学报,1999,17(4):301-308
    吴春先,吕潇,慕立义,慕卫,陈子雷.灭线磷对土壤呼吸强度的影响,农药科学与管理,2002,23(4):23-25
    修瑞琴,许永香,高世荣等.砷与镉、锌离子对斑马鱼的联合毒性试验,中国环境科学,1998,18(4):349-352
    许建平,李德葆,吕忠平.新型抗生素类杀虫药物阿弗米丁研究与应用概况,浙江农业科学,1996,(3):136-137
    许炼峰.镉对砖红壤微生物的影响,农业环境保护,1993,12(4):145-149
    许再福.生物药物素AVERMECTINS及其在农业害虫防治中的应用,微生物学通报,1995,2 2
    
    (2):112-115
    杨居荣,葛家二.砷及重金属对土壤微生物的影响,环境科学学报,1982,2(3):190-197
    杨居荣,任燕,刘虫工.砷对土壤微生物及土壤生化活性的影响,土壤,1996,2:101-104
    张敏恒.新型高效广谱杀虫杀螨剂阿维菌素.农药,1998,37(3):36-37
    张友梅,王振中,邢协加.土壤污染对蚯蚓的影响,湖南师范大学自然科学学报,1996,19(3):84-90
    张跃华,罗志文,赵永勋.阿维菌素对土壤微生物的活性影响 佳木斯大学学报(自然科学版)2002,20(1):49-51
    朱鲁生,徐玉新,王玉军,李光德,张玉风.马拉硫磷、氰戊菊酯及其混剂对土壤微生物影响研究,山东农业大学学报(自然科学版),2000,31(1);35-37
    朱南文,胡茂林,朱廷耀.甲胺磷对土壤微生物活性的影响,农业环境保护,1999,18(1):4-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700