皮卫星姿态确定与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮卫星以微电子、微机电、纳机电、精密制造等技术为基础,具有成本低、功能密度高、研发周期短、在轨功能针对性强等优点。
     姿态确定与控制子系统是卫星系统的重要组成部分,在一定程度上决定了卫星所能实现的在轨功能。皮卫星平台在质量、体积、功耗、数据存储和运算量等指标上要求严格,研究如何在当前技术水平下,寻找出一种满足系统总体约束和任务要求的ADCS设计方案,是本文的研究目标。
     论文首先对“微系统与微器件功能验证皮卫星”进行任务分析,明确卫星总体对ADCS系统的要求,并在比较多种可能的姿态测量与控制方法之后,提出一种可行的皮卫星ADCS子系统总体方案:以“双矢量敏感(地磁强度矢量+太阳方位矢量)”作为基本姿态测量手段,以“俯仰偏置动量轮、俯仰微喷机构组合三轴磁力矩器”构成控制子系统。
     在姿态测量子系统设计中,依照结构复用设计思想,首次提出将星体表贴太阳电池阵,复用为全向太阳敏感器解算太阳方位矢量,同时采用商用三轴磁强计和样点卡尔曼滤波算法,解决皮卫星在无角速率敏感条件下的姿态测量和姿态确定问题。理论分析和实验结果表明,太阳矢量测量精度<1.5°(1σ),磁场强度矢量测量精度<1.275°(1σ),双参考矢量夹角>31.5°时,可保证双矢量定姿算法精度<3°。启动UKF姿态滤波器后,双矢量可观测时,姿态估计精度<0.5°,角速率估计精度<0.0057°/s;仅磁场强度矢量可观测时,姿态估计精度<3°,角速率估计精度<0.0115°/s。
     在姿态控制子系统设计中,依据设计轨道高度(400km)上的干扰力矩水平(气动干扰力矩约3.3×10~(-8)Nm,磁干扰力矩约1.0×10~(-7)Nm)和总体对ADCS子系统提出的要求,方案中实现了三种执行器件组合的控制系统,包括:微型偏置动量轮(额定转速8600rpm,额定功耗180mW,可提供偏置动量1.441×10~(-3)Nms)、俯仰微喷机构(推力69mN,最小推力脉宽10ms)、三轴磁力矩器(开关式控制,额定磁矩输出5.49×10~(-3)Am~2,开启时瞬态功耗83.2mW)。这是国内首次在皮卫星平台上实现的三轴稳定姿态控制系统。仿真结果证明,星箭分离后,ADCS系统首先利用B磁控速率阻尼控制律(入轨模式),在2个轨道周期内,可将星体角速率从4.7°/s衰减至0.01°/s,平均瞬时功耗320mW;之后,切换至三轴稳定模式,约1个轨道周期后,可将三轴姿态指向稳定到3°以内,该阶段平均功耗270mW;进入任务飞行模式后保持三轴姿态稳定指向,常规干扰水平下磁控平均功耗小于40mW,强干扰条件下磁控平均功耗小于70mW,稳态控制时执行机构总功耗可保证250mW以下。总体对ADCS系统提出的要求基本满足。
     转台实验是验证姿态控制器件和控制方法的有效手段。在专为皮星开发的微型气浮台上,通过设计的单轴控制实验证明:电池片功率信号,能获得1.3°的测角精度;动量论转速在4000rpm~13000rpm范围内线性程度最好,能保证最低500rpm/s的加
Pico-satellites, supported by advanced technologies such as Micro-Electronics, Micro-Electro-Mechanical Systems (MEMS), Nano-Electro-Mechanical Systems (NEMS), and Precision Machining, has many advantages such as low cost, high density of functionality, less Research&Developement time demanded, and mission-oriented features. Attitude Determination and Control Subsystem (ADCS) is one of the most important subsystem, which partly defines the orbital function of satellite. Pico satellite operates under stringent constraints on mass, volume, power, memory, and computational burden. Therefore, it is necessary to study the ADCS design techniques of Pico satellite under such system constraints and mission demands, without the ignorance of feasibility.In this thesis, mission analysis is firstly executed towards a pico-satellite, whose mission target is to achieve the space validation of some micro devices and systems. After that, the system requirements towards ADCS are specified. By analyzing and comparison of many possible sensing and control methods, a feasible scenario of ADCS design for the pico-satellite is outlined, that is: three magnetometers incorporated with the solar cell arrays as the attitude determination subsystem (ADS), and three magnetic torquers incorporated with a momentum biased reaction wheel and a set of micro propellers in pitch direction as the attitude control subsystem (ACS).In ADS degign section, the solar cell arrays are reused as omni-direction sun sensor to measure the sun vector. Intensity vector of geomagnetic field is obtained by three-axis magnetometers. These two measurements are integrated into a double-reference-vector attitude algorithm and attitude parameters can be computed. When the Sun vector error less than 1.5°, the magnetic vector error less than 1.275°, and the angle between the two reference vectors larger than 31.5°, the total attitude error can be confined to 3°. By introducing the Unscented Kalman Filter (UKF) into the ADS, better performance can be achieved: when double vector is available, the attitude precision better than 0.5° and the angular velocity estimation error below 0.0057°/s can be observed; when magnetic vector
    is available only, the attitude precision 3° and the angular velocity estimation error 0.0115° Is can be achieved.In ACS design section, according to the disturbing level at 400km height (the disturbance torque caused by aero drag and residual magnetic moment is about 3.3x1O~8JV7?j andl.0xl0~7vVm respectively) and the system requirements, three attitude actuators are implemented : (1) a micro momentum-biased reaction wheel, mounted along the negative direction of pitch axis, with nominal power dissipation of 180mW and nominal momentum bias 1.441 X 10"3Nms at speed of 8600rpm; (2) a set of micro propeller in pitch, with nominal thrust 69mN and minimum pulse width 10ms; (3) three magnetic torquers, which operate in ON-OFF mode, with maximum magnetic moment ±5.49xlO~3Am2 and power consumption 83.2mW for each . This is the first instance of three-axis-stabilization ACS in Chinese pico-satellite. Simulation results reveal that: (1) After release from launcher, ADCS works under the rate-damping mode firstly. By B control law, this mode can damp the body rate from 4.7° Is to 0.01° Is in 2 orbit periods with averaged power consumption of 320mW. (2) After that ADCS switches to the three-axis-stabilizing mode. By using the nutation damping and precession control laws, this mode can stabilize the satellite attitude to 3° in 1 orbit periods, with averaged power consumption less than 250mW. Such performance meets the requirements of mission and satellite platform.Experiments on air bearing table is very straightforward and efficient to demonstrate the effectiveness of ADCS components and control law. By single-axis air bearing test, the precision of attitude determination using both voltage and current information of multiple solar panels is proved to be better than 1.3°. In 4000-13000rpm range, the momentum wheel has best linearity in voltage-speed relation, and acceleration of 500rpm/s can be ensured, corresponding to control torque of 8.38xlO°./vm to the satellite. MEMS gyro and infrared sensor are also tested. The result has shown that: the Gyro can sensing the rotation rate in effect, the infrared sensor can catch the pass-by of infrared emitter correctly. Most orbital operations of ADCS are validated through the air-bearing experiment.
引文
[1] 叶龙,国外微小卫星技术的发展,国际太空,2000(07)
    [2] 戴铭珏,小卫星越来越受宠,北京空间科技信息研究所快讯,http://www.cast.ac.cn/xwzx/
    [3] 余金培,杨根庆,梁旭文,现代小卫星技术与应用,上海:上海科学普及出版社,2004
    [4] 石卫平,潘坚,微小卫星的发展,国际太空,2001(09)
    [5] 庞之浩,“新盛世”宇航计划启动,人民日报,1998.11.26
    [6] 江燕,新盛世计划的第5颗卫星ST-5—“纳卫星星座开拓者”,国际太空,2003(04)
    [7] 卫兴,纳卫星与皮卫星的发展近况,国际太空,2001(09),pp:4-6
    [8] H.Heidt, J. Puig-Suari, A. Moore, S.Nakasuka, R.Twiggs, Cube Sat: Anew Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation, Proceedings of the 14th Annual AIAA/USU Small Satellite Conference, Logan, UT, Aug. 2000
    [9] PolySat-Cal Poly State University Picosatellite Project, http://polysat.calpoly.edu/
    [10] CubeSat Program, http://cubesat.calpoly.edu/_new/index.html
    [11] CubeSat P-Pod Deployer Requirements, http://cubesat.calpoly.edu
    [12] P-POD Mechanical Assembly Procedures (PMAP), http://cubesat.calpoly.edu
    [13] Rockot Multiple Orbit Mission hits different Orbits, http://www.eurockot.com/
    [14] 航天快讯,http://www.simit.ac.cn/kx/hangyexx/0410103.html
    [15] The Aerospace Corporation News, http://www.aero.org/news/current/picosat.html
    [16] DTUsat project home page, http://dtusat.dtu.dk/
    [17] PACE Lab Website at NCKU, http://www.iaalab.ncku.edu.tw/pace/
    [18] Tokyo Institute of Technology LSS CubeSat CUTE-I, http://lss.mes.titech.ac.jp/ssp/cubesat/index_e.html
    [19] QuakeSat Project: An innovative satellite designed to collect earthquake related signals from space, http://www.quakefinder.com/quakesat.htm
    [20] AAU CubeSat Project-Student Satelitte, http://www.cubesat.auc.dk/
    [21] University of Tokyo CubeSat Project, http://www.space.t.u-tokyo.ac.jp/cubesat/
    [22] NemaSat::Worms in space, http://ssdl-delta.stanford.edu/nemasat/main/index.php
    [23] 晓雨,欧空局的空间科学探测计划,中国航天,1998(01)
    [24] ESA SMART-1 factsheet, http://www.esa,int/export/SPECIALS/SMART-1/SEMSDE1A6BD_0.html
    [25] 阿里亚娜-5火箭升空三分钟后爆炸星箭俱毁,http://www.people.com.cn.,
    [26] SMART-1 Summary, http://sci.esa.int/science-e/www/object/index.cfm
    [27] Surrey Satellite Technology Ltd, http://www.ee.surrey.ac.uk/
    [28] 我国一箭双星成功发射两颗科学实验小卫星,中国航天,2004(05),pp:3-4
    [29] 邓明泉,尤政,张晓敏,皮型卫星的发展与MEMS卫星设计,中国航天,2003(07),pp:32-36
    [30] 林来兴,现代小卫星与纳卫星技术发展(1),国际太空,2002(08),pp:25-28
    [31] 林来兴,现代小卫星与纳卫星技术发展(1),国际太空,2002(09),pp:27-30
    [32] 余文革,钟先信,李晓毅,刘积学,皮卫星发展展望,压电与声光,2004,26(4),pp:289-292
    [33] 詹亚峰,马正新,曹志刚,现代微小卫星技术及发展趋势,电子学报,2000,28(7),pp:235-239
    [34] 屠善澄,陈义庆,严拱添,李铁寿,李宝绶,卫星姿态动力学与控制(1),北京:宇航出版社,1999,pp:8-15,
    [35] 屠善澄,陈义庆,刘良栋,李捷,刘国汉,严拱添,李铁寿,李宝绶,卫星姿态动力学与控制(2),北京:宇航出版社,1999,pp:2-22,58-87,167-280
    [36] 章仁为,卫星轨道姿态动力学与控制,北京:北京航空航天大学出版社,1998
    [37] Wertz, James R. (Edited by), Spacecraft Attitude Determination and Control, Dordrecht: D. Reidel Publishing Company, 1978
    [38] 黄圳圭,航天器姿态动力学,长沙:国防科技大学出版社,1997,pp:103-166,169-188,212-221
    [39] Jan H. Hales, Martin Pedersen, Two-Axis MOEMS Sun Sensor for Pico Satellites, Proceedings of the 16th Annual AIAA/USU Small Satellite Conference, Logan, UT, Aug. 2002
    [40] 中华人民共和国国家军用标准,卫星坐标系,GJB 1028-90
    [41] John L. Crassidis, F. Landis Markley, Unscented Filtering for Spacecraft Attitude Estimation[J], Journal of Guidance, Control, and Dynamics, 2003, 26 (4), pp.536-542
    [42] 周江华,苗育红,王明海,姿态运动的Rodrigues参数描述,宇航学报,2004,25(5),p:514-519
    [43] 刘延柱,航天器姿态动力学,北京:国防工业出版社,1995
    [44] Barry S.Leonard, NPSAT1 Magnetic Attitude Control System, Proceedings of the 16th Annual AIAA/USU Small Satellite Conference, Logan, UT, Aug. 2002
    [45] IGRF2000 coefficients data sheet, Goddard Space Flight Center, http://nssdc.gsfc.nasa.gov/space/model/models/igrf.html
    [46] James R.Wertz,Wiley J.Larson编,王长龙,张照炎,陈义庆等译,航天任务的分析与设计,北京:航空工业出版社,1992.
    [47] 施敏,半导体器件物理与工艺,第2版,苏州:苏州大学出版社,2002,pp:308~318
    [48] Michael Swartwout, Tanya Olsen, Christopher Kitts. The Omni-Directional Differential Sun Sensor. Proceedings of the 31st Annual International Telemetry Conference: Reengineering Telemetry, Las Vegas, NV, October 30-November 2, 1995.
    [49] 周健,朱振才,王建宇,利用磁强计数据确定卫星三轴姿态的方法,宇航学报,2001,22(2),pp:106-110
    [50] 陈士橹等,近代飞行器飞行力学,西安:西北工业大学出版社,1987
    [51] 秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理,西安:西北工业大学出版社,1998,pp:86-92
    [52] Julier, S.J., The Scaled Unscented Transformation, Proceedings of the American Control Conference, American Automatic Control Council, Evanston, IL, 2002, pp.1108-1114
    [53] Julier, S.J., Uhlmann, J.K., and Durrant-Whyte, H.E, A NewApproachfor Filtering Nonlinear Systems, Proceedings of the American Control Conference, American Automatic Control Council, Evanston, IL, 1995, pp. 1628-1632
    [54] Wan, E.A., R. van der Merwe, The Unscented Kahnan Filter, In Kalman Filtering and Neural Networks, S. Haykin (ed.), Wiley Publishing, 2001.
    [55] Wan, E.A., R. van der Merwe, The Unscented Kalman Filter for Nonlinear Estimation. In Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control(AS-SPCC), IEEE Press, 2000.
    [56] Psiaki, M.L., Martel, F., and Pal, RK., Three-AxisAttitude Determination via Kalman Filtering of Magnetometer Data, Journal of Guidance, Control, and Dynamics, Vol. 13, No.3, 1989, pp: 506-514
    [57] Todd E. Humphreys, Attitude Determination for Small Satellites With Modest Pointing Constraints , Proceedings of the 17th Annual AIAA/USU Conference on Small Satellites, Sept.2003, Logan, Utah State University
    [58] Sonia Marques, Roberts Clements, Pedro Lima, Comparison of Small Satellite Attitude Determination Methods, AIAA-2000-3948
    [59] Jiun-Jih Miau, Jyh-Ching Juang, Hung-Lin Chiu, Jung-Kuo Tu, et al, A University Pico-Satellite Program: PACESat, http://www.dlr.de/iaa.symp/
    [60] R Wang and Y. B. Shtessel, Satellite Attitude Control via Magnetorquers Using Switching Control Laws, Proceedings of IFAC World Congress, Beijing, July 1999.
    [61] Mark L. Psiaki, Magnetic Torquer Attitude Control via Asymptotic Periodic Linear Quadratic Regulation, AIAA-2000-4043
    [62] Zhang Fan, Shang Hua, Mu Chundi, Lu Yuchang, An Optimal Attitude Control of Small Satellite with Momentum Wheel and Magnetic Torqrods, Proceedings of the 4th World Congress On Intelligent Control and Automation, June 10-14, 2002, Shanghai, RR.China, pp: 1395-1398
    [63] Winiewski R., Linear Time Varying Approach to Satellite Attitude Control using only Electromagnetic Actuation, Proceedings of the AIAA Guidance, Navigation, and Control Conf., Aug.1997, New Orleans, pp: 243-251
    [64] Martel F., Pal P.K., Psiaki M.L., Active Magnetic Control System for Gravity Gradient Stabilized Spacecraft, Proceedings of the 2nd Annual AIAA/USU Conf. on Small Satellites, Sept. 1988, Logan, Utah
    [65] Psiaki M.L., Magnetic Torquer Attitude Control Via Asymptotic Periodic Linear Quadratic Regulation, Journal of Guidance, Control, and Dynamics, Vol.24, No.2, 2001, pp: 386-394
    [66] Technical report of Comell University, Design and Experimental Testing of the Fully Magnetic Attitude Control System for the Small Satellites, http://www.technion.ac.il/ASRI/projects/psiaki/Psiaki.html
    [67] M.Guelman, R. Waller, A. Shiryaev, M. Psiaki, Design and Testing of magnetic Controllers for Satellite Stabilization, Acta Astronautica, 2005, 56 (1), pp: 231-239.
    [68] Rafal Wisniewski, Satellite Attitude Control Using Only Electromagnetic Actuation, Phd thesis, Aalborg University, 1996
    [69] Rafal Wisniewski, F. Landis Markley, Optimal Magnetic Attitude Control, 14th Word Congress, Beijing, China, 5-9 July 1999
    [70] R. Wisniewski, M. Blanke, Three-axis Attitude Control Based on Magnetic Torquing, Automatica (35), no.7, pp. 1201-1214, July 1999.
    [71] Wisniewski R., J. Stoustrup, Periodic H2 Synthesis for Spacecraft Attitude Control with Magnetometers. Journal of Guidance, Control, and Dynamics, 27 (5), Sep-Oct 2004
    [72] Sun Zhaowei, Yang Di, Research on Attitude System of Active Magnetic Control Small Satellite, Proceedings of the 12th Annual AIAA/USU Small Satellite Conference, Logan, Utah, Sep. 1998
    [73] Ping Wang, Yuri B. Shtessel, Yong-qian Wang, Satellite Attitude Control Using only Magnetorquers, Proceedings of AIAA Guidance, Navigation, and Control Conference, Boston, MA, August 10-12, AIAA paper # 98-4430, pp. 1490-1498, 1998.
    [74] Vladimir A. Bushenkov, Michael Yu. Ovchinnikov, Georgi V. Smirnov, Attitude Stabilization of a Satellite By Magnetic Coils, Acta Astronautica, 2002, 50(12), pp: 721-728
    [75] 杨旭,孙兆伟,杨涤,具有主动磁控的重力梯度稳定系统的研究,飞行力学,1998,16(1),pp:90-95
    [76] 林来兴,多用途重力梯度和磁控三轴稳定小型卫星公用平台,中国空间科学技术,1997(3),pp:39-43
    [77] Michal Ovchinnikov, Vladimir Pen'kov, Olle Norberg, Stas Barabash, Attitude Control System For the First Swedish Nanosatellite"MUNIN", Acta Astronautica, 2000, 46 (2-6), pp: 319-326
    [78] 侯建文,FY-1C卫星姿态控制系统,上海航天,2001(2),pp:33-43
    [79] 胡明月,郭树玲,卫星轨道姿态控制系统的仿真软件支撑环境,系统仿真学报,1995(6),pp:26-30
    [80] 李太玉,张育林,卫星姿控实物仿真系统中的磁线圈分析,国防科技大学学报,2001,23(2),pp:6-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700