航天器功能行为虚拟原型建模方法及实现技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器设计面临任务复杂度增加、设计周期缩短、研制经费受限等多重压力,传统的设计理念已不再适应经济发展和军事应用的需要。虚拟原型技术的迅速发展,为以“快、好、省”为核心的新的设计理念以及基于并行工程的新的设计方法提供了良好的技术基础。本文以构建支持航天器设计、研制的功能行为虚拟原型为研究目的,就相关的建模/仿真方法、实施框架、软件实现等进行了深入的研究。主要内容包括:
     针对涉及多能量领域交互作用的复杂物理系统建模需要,提出了一种扩展的多端口建模方法(Extended Multiport Approach,简称XMPA)。该方法将模块之间的交互作用区分为能量流交互和信号流交互,相应的交互界面分别称之为能量端口和信号端口,其中信号端口又区分为事件端口和连续信号端口。以此为基础,提出了一个物理系统虚拟原型的形式化定义,给出了物理系统虚拟原型的层次化模型。进一步,从基于虚拟原型仿真的实际需求出发,定义了物理系统虚拟原型的视图模型,每一个视图均对应于虚拟原型的一个实现。针对航天器混合动态行为特征建模的需要,提出一种新的混合自动机形式化模型,即多端口混合自动机(Multiport Hybrid Automata,简称MPHA)。该模型分别用事件动作和连续变量描述系统状态的离散跃变和连续动态特性,不同模块之间的事件交互通过事件端口实现,而连续交互作用则通过连续信号端口或能量端口实现。进而,定义了MPHA之间的连接运算。该模型可方便地描述系统或模块内部的混合动态特性,同时可描述系统与其环境之间的多种形式的交互作用以及系统的层次化结构。
     基于软件集成的思想,提出了一个支持多能量领域物理系统功能行为建模与仿真的软件环境实现框架。该框架以Modelica语言和其应用环境Dymola以及Matlab/Simulink为底层建模工具,采用DCOM技术支持分布式仿真。为更好地支持多端口混合自动机建模,论文对Modelica库进行了扩展,以Modelica语言定义了事件端口和三维机械连接端口;给出了一条将Simulink模型快速转换为DCOM组件的技术途径。
     作为应用实例,基于扩展多端口建模方法,研究并实现了一种航天器姿态控制系统功能行为虚拟原型。该虚拟原型包括如下四个组件:结构与机构分系统组件、姿态确定与控制分系统组件、C&DH组件和本地环境组件,组件之间通过端口连接。每个组件都封装了若干数学模型,包括太阳光压力矩模型及考虑动量轮轴承摩擦、飞轮质量分布不均匀、飞轮弹性变形等因素的动量轮系统动力学模型,等等。运用Modelica语言建立了航天器系统的层次化功能结构模型,并定义了各级系统的MPHA模型;进而,综合运用Dymola和Simulink环境,将上述四个组件分别封装为DCOM组件,并将这些DCOM组件组装为一个航天器姿态控制系统功能行为虚拟原型;利用此虚拟原型,分别针对太阳光压力矩、动量轮系统内干扰、飞轮低速摩擦特性补偿、飞轮角动量之磁卸载及控制器切换等进行了仿真实验,验证了模型和虚拟原型建模方法的正确性、有效性。
     实现了一个支持航天器姿态确定与控制分系统设计、分析的虚拟原型环境。该环境由相对独立的两部分组成,即建模仿真环境与航天器运行可视化环境。
     建模仿真环境在模块库支持下工作,每个模块均封装为组件,并以Simulink模块和DCOM组件两种形式存在。用户可方便地对模块库进行管理,如添加新模型、对原有模型进行修改或升级等。软件支持两种运行方式:基于Matlab引擎的单机运行和基于DCOM组件的分布式运行。用户通过选择各种不同的功能部件或方法,并设置、修改相关的参数,得到一个一致的ADCS方案,进而对其运行状况进行仿真分析。
     航天器运行可视化环境基于Win32多线程机制构建,在外部仿真程序生成之数据的驱动下,以在线或离线方式演示航天器的轨道和(或)姿态运动,以及不同有效载荷的实时对地观测范围。其中涉及的实体模型运用OpenGL和MultiGen Creator建立;同外部仿真程序之间的通信通过SOCKET接口实现。该可视化环境已成功应用于多卫星系统仿真和航天器姿态运动仿真。
     上述研究成果为建立航天器功能行为虚拟原型奠定了方法论基础,为基于系统集成的实现技术探索了一条可行途径,对完全建立和实现航天器功能行为虚拟原型具有重要的指导意义和参考价值。
Spacecraft designers are faced with such new challenges as more complex space missions, shorter design durations and more tightening budgets. The traditional design philosophy becomes insufficient for the needs of the economic development and military applications. At the same time, the“faster, better, cheaper”philosophy is spreading in the design community. And the rapid development of virtual prototyping offers a technical basis for the concurrency engineering based innovations in design methodologies. With the goal of constructing functional-behavioral virtual prototypes (VPs) to support spacecraft design, this dissertation discussed the relevant techniques such as modeling/simulation methodologies, realization frameworks, software implementations, etc.
     In order to model the complex physical systems of multi-energy domain, a novel modeling methodology named the extended multiport approach (XMPA) was presented. In this methodology, the interactions between components are classified as energy interchanging and signal interacting, through the corresponding interfaces, energy ports and signal ports, respectively. The signal ports are further classified as event ports and continuous signal ports. Then, the whole system is constructed by connecting the involved components through their ports. From such concepts, a formal definition of VP was put forward. With this notion, the system hiberarchy can be described definitely. Furthermore, the virtual prototype view model was addressed, and each view is an implementation of the concerned VP.
     A formalized model of hybrid automata, namely the Multiport Hybrid Automata (MPHA), was introduced. In the MPHA, discrete transitions and continuous dynamics are described by Actions and Variables respectively. And the event interactions between subsystems are realized through the corresponding event ports, while the continuous ones through continuous signal or energy ports. Then, the connection operation between MPHAs was defined. Such notions are capable of describing the various interactions between subsystems, the hybrid dynamics inside a system or a block and the system hierarchy as well.
     A framework supporting the functional-behavioral modeling and simulation was presented. The Modelica language together with Dymola, a Modelica based software, and the Matlab/Simulink platform compose the modeling layer of the environment. And the DCOM technique was adopted to support distributed simulation. Additionally, the Modelica library was extended and a methodology for quickly translating Simulink models to DCOM components was developed.
     As an instantiation, one XMPA based functional-behavioral VP of some spacecraft attitude control system was implemented. This VP is composed of four modules as followed, the structures-and-mechanisms subsystem module, the attitude determination and control subsystem (ADCS) module, the C&DH module and the local environment (LoE) module. These modules are connected through their ports. Each module contains several mathematical models, i.e. the sunlight-pressure torques acted on a spacecraft with a cubical body, a planar antenna array and a pair of symmetrical solar sails and the momentum-wheel dynamics with bearing frictions, flywheel imbalances and structural vibrations considered, etc. The spacecraft’s hiberarchy was depicted in Modelica. And the MPHA models of all levels of the system were defined. Then, respectively, the above four modules were compiled into DCOM components, of which the VP was constructed. Several simulations were conducted to investigate the sunlight-pressure torques, inner disturbances of reaction wheels, compensation for reaction-wheel frictions, momentum dumping using magnetic torquers and switching between controllers. Through such simulations, the above models and the VP modeling methodologies were validated.
     A VP environment supporting spacecraft ADCS design and analysis was implemented. This environment contains two parts, the modeling and simulation (M&S) environment and the spacecraft working visualization environment.
     The M&S environment runs on the basis of associated functional modules. For each module, there are two forms of existence, Simulink blocks and DCOM components. It is easy for the user to add new models, modify and update existing ones. Correspondingly, the software provides two running modes, the single-computer running in a Matlab engine and the distributed running basing on DCOM components. With this software, it is convenient to construct an ADCS configuration and analyze the system’s performance.
     A spacecraft working visualization environment based on the Win32 multi-thread mechanism was realized. The geometric entities used were modeled by OpenGL and MultiGen Creator. Driven by data from other simulation programs, the software is able to provide animations of the orbital and/or attitude motions of spacecrafts, as well as coverage areas of various onboard payloads, either online or offline. The communication between the environment and other programs was accomplished though SOCKETs. This environment has been successfully applied in simulations of multi-satellite systems and spacecraft attitude dynamics.
     Through the above investigations, the methodologies for constructing functional-behavioral VPs of spacecrafts were established and a feasible implementation approach based on system integration techniques was explored. Such achievements, in the sense of implementing whole functional-behavioral VPs of spacecrafts, are significative and valuable.
引文
[1] 张云玉,熊光楞,李伯虎.并行工程方法、技术与实践.自动化学报,1996,22(6):745-753.
    [2] 熊光楞,李伯虎,柴旭东.虚拟样机技术.系统仿真学报,2001,13(1):114-117.
    [3] 闵桂荣.空间技术的成就及发展趋势.见:徐福祥主编.卫星工程学讲义.中国空间技术研究院,1999:1-7.
    [4] 吴开林.卫星“通用化、系列化、组合化” .见:徐福祥主编.卫星工程学讲义.中国空间技术研究院,1999:374-379..
    [5] Kerttula M , Tokkonen T . Virtual design of multiengineering electronics systems.Computer, Nov.2001:71-79.
    [6] Winner R I, Dennel J P, Pertend H E, et al.The role of concurrent engineering in weapon system acquisition.IDA Report R-338.Alexandria, VA: Institute for Defense Analysis, 1988.
    [7] 朱文海.并行工程关键使能技术及其发展趋势.现代防御技术,2001,29(2):56-62.
    [8] Nils Beyer, Frithjof Weber,Jerome Arrault,Frederic Rodrigues.An approach for a practical communication system for supporting and managing concurrent product development . Proceedings of the 5th International Conference on Concurrent Enterprising: The Concurrent Enterprise in Operation.15-17 March 1999, Hague, Netherlands, 1999, pp.317-324.
    [9] 杨伟.并行工程概念分析.航天工艺,1997,(4):50-54.
    [10] Kikuo Fujita, Shin’ichi Kikuchi.Distributed design support system for concurrent process of preliminary aircraft design.Proceedings of the TMCE 2002, April 22-26, 2002, Wuhan, China.
    [11] 赵文辉.电子产品并行设计方法及虚拟原型仿真环境研究.工学博士学位论文.国防科学技术大学研究生院,2002.
    [12] 潘雪增.并行工程原理及应用.北京:清华大学出版社,1997.
    [13] 周鸿伟.武器系统总体概念设计集成技术研究.工学博士学位论文.国防科学技术大学研究生院,2002.
    [14] Fandai, Wolfgang Felger, Martin Gobel.Applying virtual reality to electronic prototyping-concept and first results: Virtual prototyping: Virtual environments and the product design process.Chapman and Hall Press, 1995.
    [15] Kerttula M,Salmela M,Heikkinen M.Virtual reality prototyping - a framework for thedevelopment of electronics and telecommunications products.Proceedings of 8th IEEE International Workshop on Rapid System Prototyping,1997.
    [16] http://www.adams.com/mdi/product/vproto.htm.
    [17] RASSP Taxonomy Working Group (RTWG) .VHDL Modeling Terminology and Taxonomy (Version 3.1) . http://www.atl.lmco.com/projects/rassp2/taxon/ index.html.May 26, 2000.
    [18] Defense Systems Management College . Virtual prototyping: concept to production.DSMC Press, 1994.
    [19] Defense Systems Management College . Simulation based acquisition: A new approach.Report of the Military Research Fellows, DSMC, 1997-1998.
    [20] 杨强.基于虚拟原型的产品建模与特征生成方法研究.工学博士学位论文.国防科学技术大学研究生院,2000.
    [21] 施普尔,克劳舍著,宁汝新等译.虚拟产品开发技术.北京:机械工业出版社,2000.
    [22] 李思昆,郭阳,杨强,赵文辉.面向并行设计的虚拟原型技术研究.计算机辅助设计与图形学学报,1999,11(3) .
    [23] Roger S.Pressman 著,梅宏译.软件工程:实践者的研究方法(第 5 版).北京:机械工业出版社,2002:226.
    [24] James Rumbaugh, et al.Object-Oriented Modeling and Design.Prentice Hall,1991.
    [25] 邓良松,刘海岩,陆丽娜.软件工程.西安:西安电子科技大学出版社,2000:194.
    [26] 张海藩.软件工程导论.北京:清华大学出版社,1998:203.
    [27] http://xjcxp.mblogger.cn/posts/8603.aspx.
    [28] http://www.huihoo.com/enterprise/model.html.
    [29] http://xjcxp.mblogger.cn/posts/8595.aspx.
    [30] GJB3385-98 测试与诊断术语[S].北京:国防科学技术委员会.
    [31] 刘 秀 罗 , 刘 宝 宏 . 数 字 化 真 实 世 界 — — CGF 行 为 建 模 问题.http://17de.com/Library/dis/CGF_concept.html.
    [32] James R. Wertz, Wiley J. Larson.Space mission analysis and design (Third Edition).Microcosm Press and Kluwer Academic Publishers, 1999: 353-518.
    [33] Olivier de Weck.Reaction wheel disturbance analysis: Test data evaluation of baseline reaction wheel (ITHACO E-Wheel) for the Next Generation Space Telescope (NGST) Program.Memorandum MIT-SSL-NGST-98-1, October 29, 1998.
    [34] ITHACO Space Systems, Inc.Interface control document for the type E reaction wheel assembly.Report 95158, Prepared by ITHACO Space Systems, Inc.February 18,2000.
    [35] 赵坚成.航天器结构与机构.见:徐福祥主编.卫星工程学讲义.中国空间技术研究院,1999.
    [36] 马世俊,韩国经,李文滋等.卫星电源技术.北京:宇航出版社,2001.
    [37] 屠善澄,鲍百容,潘科炎等.卫星姿态动力学与控制(3).北京:宇航出版社,2003.
    [38] 杨大明编著.空间飞行器姿态控制系统.哈尔滨:哈尔滨工业大学出版社,2000.
    [39] 屠善澄,邹广瑞,潘科炎等.卫星姿态动力学与控制(2).北京:宇航出版社,1998.
    [40] 闵桂荣,郭舜.航天器热控制(第二版).北京:科学出版社,1998.
    [41] http://www.lmsintl.com.
    [42] John D. Binder.Desktop CAD: Autodesk defining the market.Aerospace America, Apr. 1995, pp.18-20.
    [43] MSC.Software.ADAMS/Controls: Integrating system-level motion simulation and control system design to improve the completeness and accuracy of your virtual prototypes.http://www.mscsoftware.com.
    [44] John D. Binder.Cutting time and cost with virtual prototyping.Aerospace America, Sep. 1998, pp.8-10.
    [45] http://www.ptc.com/.
    [46] http://www.sdrc.com/.
    [47] John D. Binder.Riding a new WAVE in product design.Aerospace America, April 1999, pp.18-20.
    [48] John D. Binder.CATIA assembles next-generation aircraft.Aerospace America, Mar. 1997, pp.18-20.
    [49] John D. Binder.Updating aircraft design tools.Aerospace America, Apr. 2001, pp.20-22.
    [50] John D. Binder.Aherpa: Climbing mountains for PDM.Aerospace America, Apr. 1997, pp.16-18.
    [51] John D. Binder.Factory layout software arrives.Aerospace America, Apr. 1998, pp.17-19.
    [52] John D. Binder.Building the digital factory.America, Oct. 1999, pp.22-24.
    [53] John D. Binder.Simple and quick reverse engineering.Aerospace America, Mar. 1998, pp.17-19.
    [54] John D. Binder.Deneb: Bright star of manufacturing software.Aerospace America, Mar. 1999, pp.18-20.
    [55] John D. Binder.ANSYS: Swanson’s dream becomes reality.Aerospace America, July 1997, pp.20-22.
    [56] John D. Binder.SolidWorks turns in solid performance.Aerospace America, June 1998, pp.20-22.
    [57] John D. Binder.An active way to program applications.Aerospace America, Sep. 2000, pp.24-26.
    [58] John D. Binder.Algor finite element modeling tools aid aerospace.Aerospace America, May 1995, pp.16-18.
    [59] Tae Hyong Chong, Inho Bae, Gyung-Jin Park.A new and generalized methodology to design multi-stage gear drives by integrating the dimensional and configuration design process.Mechanism and Machine Theory, 2002, 37(3): 295-310.
    [60] Vijay K.Madisetti, Yong-Kyu Jung, Moinul H.Khan, Jeongwook Kim, Theodore Finnessy.Reengineering legacy embedded systems.IEEE Design & Test of Computers, April-June 1999: 38-47.
    [61] Christopher Konarski, Neil Peruffo, Ron Warren.The need for speed: IBM’s raw process time reduction means faster turnaround time for customers.MicroNews, Fourth Quarter 2001, pp.8-10.
    [62] Pascal Nsame, Harry Linzer, Mark Kautzman, John Lavere, Gary Kling, Kathy McGroddy, Tom Gueriero.Taking the lead #1: System-on-a-chip solutions deployed to IBM worldwide ASIC design centers.MicroNews, Fourth Quarter 2001 pp.11-15.
    [63] Etienne Hirt, Michael Scheffler, Gerhard Troster.Virtual prototyping for high density packaging systems . IEEE Transactions on Advanced Packaging, 2001, 24(3): 392-400.
    [64] Martin R. Stytz, Sheila B. Banks, Troy D. Johnson, John M. Lewis, Scott A. Rothermel.The virtual SpacePlane.IEEE Computer Graphics and Applications, March-April 2001: 42-52.
    [65] Ed P. Andert Jr., David A. St. Louis.Integrated simulation solutions for manufacturing and design.02AMTC-4.
    [66] Qiong Li.Developing Modeling and simulation methodology for virtual prototype power supply system.PhD dissertation.Virginia State University, 1999.
    [67] Grace M. Bochenek, James M. Ragusa.Virtual (3D) collaborative environments: An improved environment for integrated product team interaction.Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS’03), 2002 IEEE.
    [68] Adam B. Cooper, Panayiotis Georgiopoulos, Ieremy J. Michalek, Panos Y. Papalambros . A simulation-based vehicle design strategy for acquisition andrequirements validation.SAE Int. SAE Paper 04ANNUAL-807.Ned.
    [69] H. Criscimagna.RAC’s selected topics in assurance related technologies.8(2):1-6.
    [70] Ed P. Andert Jr., David Morgan.Collaborative virtual prototyping and test.Conceptual Systems & Software.http://www.consys.com.
    [71] 宫民,张宇宏,王行仁.SBD 技术及其在自动飞行系统设计中的应用.北京航空航天大学学报,1999,25(3).
    [72] John Krouse . ADAMS aerospace solutions: Managing risk in landing gear design.http://www.adams.com.
    [73] 杨骏.电脑模拟造飞机:全数字化设计成为一种新潮流.科技日报,2004-6-15(2).
    [74] 王摘.全数字化飞机设计成为一种新潮流.军民两用技术与产品,2004,(7).
    [75] http://www.arnold.af.mil/.
    [76] John E. Hamm.Ground testing.Aerospace America, December 2004, pp.81.
    [77] Michael T. Heath, William A.Dick . Virtual prototyping of solid propellant rockets.Computering in Science & Engineering, March-April 2000: 21-32.
    [78] Center for Simulation of Advanced Rockets.2002-03 Annual report.November 2003.http://www.csar.uiuc.edu.
    [79] 源 清 , 肖 文 . 近 年 来 汽 车 工 业 CAD/CAM/CAE 选 型 趋 向 . http:// www.szcad.net/new_forum/.
    [80] The American Society of Mechanical Engineers.Virtual engineering on the right track.http://www.memagazine.org/.
    [81] P. Eisenstein.Virtually automotive.World Traveler Magazine, May 1997.
    [82] Mikko Lehtonen . Virtual prototyping, VTT research programme (1998-2000).Technical Research Centre of Finland, Espoo Finland, 2001.
    [83] 迅 联 公 司 . 中 国 第 一 辆 自 主 开 发 的 国 际 水 平 多 用 途 车 —— 挑 战者.http://www.21car.com/mcxs/photo/mc5.htm.
    [84] http://www.cenews.com.cn/news/2004-12-03/40990.php.
    [85] http://tech.enorth.com.cn/system/2003/08/11/000612604.shtml.
    [86] 杨海成.基于虚拟样机的系统仿真技术.中国机械工程.1998,9(11).
    [87] 肖田元,韩向利等.国家 CIMS 工程中心的虚拟制造基地及研究进展.高技术通讯,1999,9(1):1-6.
    [88] 严隽琪,范秀敏,马登哲.虚拟制造系统的体系结构研究.机械工业自动化,1999,21(2):1-5.
    [89] 曹岩,王宏,袁清珂等.虚拟制造及其关键技术.机械工业自动化,1999,21(1):3-6.
    [90] 黄浩东,王醒华,陈宗基.虚拟原型技术及其在控制系统中的应用.系统仿真学报,1998,10(6):55-59.
    [91] 王松山,郝建平.基于交互特征的虚拟维修样机建模[J].计算机仿真,2004,22(12):139-142.
    [92] 王松山.虚拟维修样机技术研究与系统实现.工学博士学位论文.军械工程学院,2005.
    [93] 赵雯,王维平,朱一凡,胡晓峰.协同虚拟样机技术研究.系统仿真学报,2001,13(1):128-130.
    [94] Michel Lebrun, Claude Richards.How to create good models without writing a single line of code.5th Scandinavian International Conference on Fluid Power, Linkoping, Sweden, May 1997.
    [95] http://www.mathworks.com/.
    [96] http://www.ni.com/matrixx/.
    [97] http://mscsoftware.com/.
    [98] Peter Breedveld.Port-based modeling of mechatronic systems.Proceedings 4th Mathmod, Vienna, February 2003.
    [99] http://www.egr.msu.edu/~rosenber/ENPORT/.
    [100] Francis Lorenz, Patrick Erhard.MSI: a multi-formalism modelling and simulation environment.9th European Simulation Symposium and Exhibition, Simulation in Industry.Passau, Germany, October 19-22, 1997.
    [101] http://www.20sim.com/.
    [102] Rajarishi Sinha, Christiaan J. J, Vei-Chung Liang, Pradeep K. Khosla.Modeling and simulation methods for design of engineering systems.Journal of Computing and Information Science in Engineering, Vol.1, March 2001: 84-91.
    [103] Antonio Diaz-Calderon, Chtistiaan J. J, Pradeep K. Khosla.On the synthesis of system-level dynamic equations for mechatronic systems.Technical Report ICES 04-06-99, Institute for Complex Engineered Systems, Carnegie Mellon University, 1999.
    [104] R. David.Modeling of hybrid Petri Nets.Proc. 6th Int. Work. Petri Nets and Performance Models, PNPM97, 1997: 47-57.
    [105] Herman Mann. A versatile modeling and simulation tool for mechatronics control system development.Proc. 1996 IEEE Int. Symp. On CACSD, Dearborn MI, pp.524-529.
    [106] Herman Mann.Mixed energy-domain multipoles and multiports.Proc. 1995 IEEE Int. Symp. On Circuits and Systems, Seattle WA, pp.676-679.
    [107] 蔡廷文,蔡立.液压系统多级模型的研究.中国机械工程,2003,14(18):1536-1539.
    [108] http://icosym.cvut.cz/dyn/.
    [109] Peter Schwarz.Physically oriented modeling of heterogeneous systems.3rd IMACS Symposium of Mathematical Modeling (MATHMOD), Wien, 2.-4. Feb. 2000, pp.309-318.
    [110] http://www.amesim.com/.
    [111] http://www.analogy.com/products/mixedsignal/saber/.
    [112] http://www.iti.de/simulation/.
    [113] http://www.flowmaster.com/.
    [114] J. C. Strauss, et al . The SCI continuous system simulation language (CSSL).Simulation, 1967, 9, pp.281-303.
    [115] The IEEE 1076.1 (VHDL-AMS) Working Group . IEEE 1076 (VHDL) standard.http://www.eda.org/vhdl-ams/.
    [116] H. Elmqvvist, S. E. Mattsson, M. Otter. Modelica: the new object-oriented modeling language.12th European Simulation Multi-conference, Manchester, UK, 1998.
    [117] http://www.ultramarine.com/g_info/moses/m_over.htm.
    [118] http://www.cs.tu-berlin.de/~smile/ess97.
    [119] http://www.ida.liu.se/~pelab/omath/.
    [120] A.P.J. Breunese, J.F. Broenink.Modeling mechatronic systems using the SIDOPS+ language.3rd International Conference on Bond Graph Modeling and Simulation, Phoenix, Arizona, January 12-15, 1997.
    [121] P. C. Piela, T. G. Epperly, K. M. Westerberg, A. W. Westerberg.ASCEND: An object oriented computer environment for modeling and analysis: the modeling language.Computers and Chemical Engineering, 1991, 15(1): 53-72.
    [122] David M. Russell.Engineering enterprise systems.Space Business International, Quarter 2, 1999.
    [123] 郑大钟,赵千川.离散事件动态系统.北京:清华大学出版社,2001.
    [124] 张广泉,沈一栋.混合系统的形式化模型.重庆大学学报(自然科学版),1999,22(6):53-58.
    [125] 薛乐,廖沫,魏晨,陈宗基.混合系统及其建模.系统仿真学报,2004,16(3):375-380,404.
    [126] 陈宗基,杨振宇.混合系统的描述、分析与设计.高技术通讯,1997,(11):50-55.
    [127] 张学军,谢剑英.混合系统在 Matlab 环境下的建模、仿真与自动验证.系统仿真学报,2001,13(2):195-198.
    [128] 郑伟,周伯昭.混合系统的面向对象仿真.系统工程与电子技术,2003,25(3):247-249.
    [129] Karl Henrik Johansson.Hybrid control systems.UNESCO Encyclopedia of Life Support Systems.
    [130] Karl Henrik Johansson.Modeling of hybrid systems.UNESCO Encyclopedia of Life Support Systems.
    [131] John Lygeros, Karl Henrik Johansson, Slobodan N. Simic, Jun Zhang, S. Shankar Sastry.Dynamical properties of hybrid automata.IEEE Transactions on automatic control, 2003, 48(1): 2-17.
    [132] N.A. Lynch, R. Segala, F.W. Vaandrager.Hybrid I/O automata.Information and Computation, 2003, 185(1):105-157.
    [133] N.A. Lynch, R. Segala, F.W. Vaandrager, H.B. Weinberg.Hybrid I/O automata.Report CSI-R9907, Computer Science Institute, University of Nijmegen, April 1999.
    [134] 熊光楞,郭斌,陈晓波,蹇佳.协同仿真与虚拟样机技术.北京:清华大学出版社,2004.
    [135] http://www.modelica.org/.
    [136] http://www.dynasim.se/.
    [137] Modelica Association.Modelica? - a unified object-oriented language for physical systems modeling: Language specification (Version 2.0) . July 10, 2002.http://www.modelica.org.
    [138] P. Mosterman, M. Otter, H. Elmqvvist.Modeling Petri Nets as local constraint equations for hybrid systems using Modelica.Proceedings of the Summer Computer Simulation Confrence 98.Reno, Nevada, USA, July 19-22, 1998.
    [139] J.A.Ferreira, J. P. Estima de Oliveira.Modeling hybrid systems using statecharts and Modelica.7th IEEE International Conference on Emerging Technologies and Factory Automation, Barcelona, Spain, 18-21 Oct. 1999.
    [140] Don Box, Keith Brown, Tim Ewald.Effective COM.Addison Wesley Longman, 1999.
    [141] Thuan L. Thai.Learning DCOM.O’Reilly & Associates, Inc., 1999.
    [142] 苏金明,黄国明,刘波.MATLAB 与外部程序接口.北京:电子工业出版社,2004.
    [143] MathWorks Inc.Matlab6.5 联机帮助文档.
    [144] 李连军,戴金海.小 SAR 卫星偏航导引控制.上海航天,2004,21(6):10-14.
    [145] 屠善澄,陈义庆,潘科炎等.卫星姿态动力学与控制(1).北京:宇航出版社,1999.
    [146] 杨嘉墀,范剑峰,范秦鸿等.航天器轨道动力学与控制(上).北京:宇航出版社,1995.
    [147] 李连军,戴金海.双翼箱式航天器太阳光压干扰力矩模型.航天控制,2005,23(4):13-17,31.
    [148] Rebecca A. Masterson, David W. Miller.Development of empirical and analytical reaction wheel disturbance models.GSFC Contract Review, May 27, 1999.
    [149] John B S.Reaction wheel low-speed compensation using a dither signal.Journal of Guidance Control and Dynamics, 1993,16(4): 617-622.
    [150] 王炳全,崔祜涛,杨涤.轻型高精度卫星的变结构姿态控制器.航空学报,2000,21(5):417-420.
    [151] 陈非凡,张高飞,陈益峰.小卫星动量轮非线性特性建模与仿真方法.宇航学报,2003,24(6):651-655.
    [152] 梅晓榕,兰朴森,柏桂珍.自动控制元件及线路.哈尔滨:哈尔滨工业大学出版社,1997.
    [153] 王炳全,李瀛,杨涤.改善反作用轮低速性能的观测补偿器方法.空间科学学报,1999,19(4): 362-367.
    [154] 高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996:234-241.
    [155] 刘林.航天器轨道理论.北京:国防工业出版社,2000:297,256.
    [156] 李连军,戴金海.利用 OpenGL 实现卫星系统可视化仿真模型的研究.计算机仿真,2004,21(10):34-37.
    [157] 李连军,戴金海.面向卫星系统仿真的可视化环境.计算机仿真,2003,(增刊):478-480.
    [158] 贺勇军,戴金海,李连军,王海丽,张玉锟.多卫星系统综合效能仿真分析软件技术报告.长沙:国防科学技术大学航天与材料工程学院,2001.
    [159] 李连军,刘忠仕.AD100/SGI NT 高速链路与实时通讯软件包设计技术报告.长沙:国防科学技术大学航天与材料工程学院,2000.
    [160] 刘忠仕,李连军,戴金海.AD100 与 SGI NT 实时通信的实现.计算机仿真,2001,18(6):80-82.
    [161] 贺勇军.面向效能优化的复杂多卫星系统综合建模与仿真方法研究.工学博士学位论文.国防科学技术大学研究生院,2004.
    [162] 贺勇军,戴金海,李连军.复杂多卫星系统的综合建模与仿真.系统仿真学报,2004,16(5):871-875.
    [163] 贺勇军,戴金海,李连军.多卫星系统综合建模与仿真环境的设计与实现.计算机仿真,2004,21(5):28-31,35.
    [164] 李连军,孟云鹤.合成孔径雷达卫星姿态控制系统偏航导引研究技术报告.国防科学技术大学航天与材料工程学院,2003.
    [165] 陈琪锋,李连军,孟云鹤.航天装备体系优化评价技术——卫星制导、导航与控制分系统模型及软件技术报告.中国国防科学技术报告.国防科学技术大学航天与材料工程学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700