微小卫星姿态确定与磁控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在卫星技术日益成熟和发展的今天,微小卫星以其低成本、短周期等特点受到许多研究机构和大学的关注。但是,由于微小卫星受到物理尺寸、重量、功耗、研制成本等因素的限制,使得微小卫星不能采用传统卫星的设计方法。为了更好的满足微小卫星发展过程中的需求,提高微小卫星的整体性能,本论文立足于工程应用,对磁控微小卫星的姿态确定与控制技术进行了研究,具有重要的工程参考价值。
     在微小卫星的姿态确定上,本论文采用三轴磁强计、模拟太阳敏、微机械陀螺作为姿态敏感器件,建立了卫星姿态运动学、动力学数学模型和姿态敏感器测量模型。考虑到微小卫星姿态确定中的非线性因素和星载计算机的计算速度、存储容量等约束,本论文采用常规的处理非线性问题的扩展Kalman滤波方法进行数据处理和姿态估计,将状态方程、测量方法进行线性化、离散化,推导了线性化模型误差,获得扩展Kalman滤波模型,并通过数字仿真给出了“磁强计+陀螺”、“太阳敏+陀螺”两种姿态敏感器组合下的仿真结果。
     在微小卫星速率阻尼阶段的控制上,本论文采用磁力矩器、冷喷气装置作为执行机构,分别对Minus-dot-B控制器和PID控制器进行了设计,并通过数字仿真给出了“磁力矩器”、“偏置动量轮+磁力矩器”、“微喷气装置+磁力矩器”三种执行机构组合下的仿真结果。仿真结果表明,在Minus-dot-B控制下,卫星速率阻尼的时间较短,但是阻尼精度不高,角速度波动比较大;在PID控制下,卫星速率阻尼时间较长,但是能量消耗少,阻尼精度较高,角速度波动很小。
     在微小卫星三轴稳定阶段的控制上,本论文仍采用磁力矩器、冷喷气装置作为执行机构。针对装有偏置动量轮的卫星,分析了卫星姿态自由运动的特点,分别对俯仰通道和滚动—偏航通道的姿态控制算法进行了研究和设计,给出了利用磁力矩器进行三轴稳定控制的仿真结果。针对无偏置动量轮的卫星,采用“微喷气装置+磁力矩器”作为组合执行机构,对这种执行机构组合下的控制器进行了设计,给出了仿真结果。仿真结果表明,本论文采用的三轴稳定控制方法满足微小卫星姿态控制的精度要求。
     最后,本论文对于姿态确定与控制系统中的重要姿态敏感器——三轴磁强计的测量误差修正方法进行了研究,分析了三轴磁强计测量误差的来源,建立了测量误差修正数学模型,并通过实验对本测量误差修正方法进行了实验验证。实验结果表明,本论文提出的三轴磁强计测量误差修正方法能有效对三轴磁强计的测量输出数据进行修正,提高了其测量精度,为高精度的微小卫星姿态确定与控制提供了良好的姿态敏感器条件。
With the development of satellites, the satellite technology has become more advanced and more sophisticated today. For its low-cost, short-cycle and other features, the small satellite is subject to many research institutions and universities concerned. However, due to the restrictions of the physicial size, the mass, the power, the researching cost and other factors the general designing method which is used in traditional satellites can not be used in small satellites. In order to meet the demands of small satellites in the outgrowth and improve the overall performance, we do researches on the attitude determination and magnetic control technology for small satellites basing on the practical project application point of view. This paper has an important engineering reference value.
     In the small satellite attitude determination part, we use a three-axis magnetometer, a simulating sun sensor and a micromechanical gyroscope as the satellite attitude sensors. We set up the satellite attitude kinematics equation, the dynamics equation and the measuring models of the attitude sensors. Taking the nonlinear elements of the satellite attitude determination, the operating speed of the computer and the memory capacity, and so on into account, we apply the extended Kalman filter method to execute the data processing and the attitude estimation. The extended Kalman filter is ofen used to deal with nonlinear problems. We linearize the state equation and the measuring equation, then discrete them. We also obtain the linearized error model and do digital simulations by two kinds of attitude sensor combinations: a three-axis magnetometer and a gyroscope, a sun sensor and a gyroscope.
     In the small satellite velocity damping control part, we adopt magnetic torque rods and micro thrusters as actuators. We have designed the Minus-dot-B controller and the PID controller. We give the simulating results of different actuator combinations. The results show that the time for the velocity damping process is shorter under the control of Minus-dot-B, but the accuracy is not high. The angle velocity fluctuation of the satellite is relatively large. Under the control of PID, the time for the velocity damping process is longer and the energy depletion is smaller with a higher accuracy. The angle velocity fluctuation is very small.
     In the small satellite three-axis stabilized control part, we still use the magnetic torque rods and the micro thrusters as the actuators. For the small satellite with a biased momentum wheel, we analyze the free attitude movement features and respectively design the pitch path controller and the roll-yaw path controller. Then we give the smulating results of the three-axis stabilized control. For the satellite without the biased momentum wheel, we design the controller by the actuator combination of micro thrusters and magnetic torque rods. The results show that the three-axis stabilized controlling method meets the accuracy demand of the satellite attitude control.
     Finally, we do researches on the correcting method of the measuring error for the three-axis magnetometer, which is the key attitude sensor in the satellite attitude determination and control system. We introduce the basic magnetic experiment equipment and the applied three-axis magnetometer. We analyze the error sources and build the correcting model. Then we test and verify the method through experiments. The experiment results show that the method promoted in this paper can improve the measuring accuracy largely and supply the small satellite attitude determination and control system with good sensor conditions.
引文
[1]Dussy S, Durrant D, Moy T, et al. MEMS gyro for space applications Overview of European activities [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, AIAA 2005-6466, 2005.
    [2]Venturini C C, Abramowitz L R, Johansen J D, et al. CubeSat Developmental Programs -Working with the Community [C]. AIAA SPACE 2009 Conference & Exposition, Pasadena, California, AIAA 2009-6501, 2009.
    [3]Koudelkaa O, Eggera G, Jossecka B, et al. TUGSAT-1/BRITE-Austria—ThefirstAustriannanosatellite [J]. Acta Astronautica, 2009, 64: 1144~1149.
    [4]Lan W, Brown J, Toorian A, et al. CubeSat Development in Education and into Industry [C]. AIAA Space 2006 Conference, San Jose,California, AIAA 2006-7296, 2006.
    [5]Steele B, McCormick C, Brandt K, et al. Utilization of the Multiple Access Communications Satellite (MACSAT) in Support of Tactical Communications [C]. AIAA Space Programs and Technologies Conference, Huntsville,AL, AIAA 92-1565, 1992.
    [6]Bratm C B, Davis R, Itchkawich T, et al. MIGHTYSAT I: TRANSITIONING SPACE TECHNOLOGY TO THE WARFIGHTER [C]. AIAA Space Technology Conference&Exposition, Albuquerque,NM, AIAA 99-4484, 1999.
    [7]Freeman L J. MIGHTYSAT II SOARS BEYOND EXPERIMENTAL OBJECTIVES:PRELIMINARY RESULTS [C]. AIAA Space Technology Conference&Exposition, Albuquerque,NM, AIAA 2001-4629, 2001.
    [8]Nugent R, Munakata R, Chin A, et al. The CubeSat: The Picosatellite Standard for Research and Education [C]. AIAA SPACE 2008 Conference & Exposition, San Diego, California, AIAA 2008-7734, 2008.
    [9]Sarda K, Eagleson S, Caillibot E, et al. Canadian advanced nanospace experiment 2: Scientific and technological innovation on a three-kilogram satellite [J]. Acta Astronautica, 2006, 59: 236~245.
    [10]Rankin D, Kekez D D, Zee R E, et al. The CanX-2 nanosatellite: Expanding the science abilities of nanosatellites [J]. Acta Astronautica, 2005, 57: 167~174.
    [11]Sugawara Y, Sahara H, Nakasuka S, et al. A satellite for demonstration of Panel Extension Satellite [J]. Acta Astronautica, 2008, 63: 228~237.
    [12]王平,孙宁,李华旺等.创新一号小卫星星载计算机控制系统设计[J].计算机工程,2006,32(18):255~257.
    [13]张滨楠,孟庆伟.哈工大“试验卫星一号"工程项目中的“无缝之网"[J].自然辩证法研究,2007,23(11):51~55.
    [14]陈金树.“纳星一号"测控与通信地面站[C]:“第十届全国遥感遥测遥控学术研讨会”论文集.
    [15]王文福,张兵,杨俊发.NS-1卫星的三轴稳定控制技术[C]:全国第十二届空间及运动体控制技术学术年会论文.
    [16]Bar-Itzhack I Y, Harman R R. Optimized TRIAD algorithm for attitude determination [C]. AIAA/AAS Astrodynamics Conference, San Diego, CA, AIAA 96-3616, 1996.
    [17]Markley F L, Crassidis J L, Cheng Y. Nonlinear Attitude Filtering Methods [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, AIAA 2005-5927, 2005.
    [18]Mortari D. Euler-q Algorithm for Attitude Determination from Vector Observations [J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, 1998, 21(2): 328~334.
    [19]Xiong K, Liang T, Yongjun L. Multiple model Kalman filter for attitude determination of precision pointing spacecraft [J]. Acta Astronautica, 2011, 68: 843~852.
    [20]Zhang H, Ke X, Jiao R. Experimental Research on feedback Kalman Model of MEMS Gyroscope [C]. The Eighth International Conference on Electronic Measurement and Instruments, 1-4244-1135-1/07, IEEE, 2007.
    [21]Guo H, Wu Z, Xin B, et al. Vehicle Velocities Estimation Based on mixed EKF [C], 978-1-4244-8738-7/11, IEEE, 2011.
    [22]Chen R H, Ng H K, Speyer J L, et al. Health Monitoring of a Satellite System [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, AIAA 2004-5121, 2004.
    [23]Mohammed A M S, Benyettou M, Boudjemai A, et al. Simulation of microsatellite attitude using Kalman filtering in orbit results [J]. Simulation Modelling Practice and Theory, 2008, 16: 257~277.
    [24]徐福祥.用地球磁场和重力场成功挽救风云一号(B)卫星的控制技术[J].宇航学报,2001,22(2):1~11.
    [25]郑育红,王平.一种用磁力矩器控制卫星姿态的新方法[J].宇航学报,2000,21(3):94~99.
    [26]Lovera M, Astol A. Spacecraft attitude control using magnetic actuators [J]. Automatica, 2004, 40: 1405~1414.
    [27]黄琳,荆武兴.关于剩磁对卫星姿态确定与控制影响的研究[J].航空学报,2006,27(3):390~394.
    [28]Asthana C B. Auto-Tuned PID Controllers for Full Flight Simulators [C]. AIAA Modeling and Simulation Technologies Conference, Chicago,IIIinois, AIAA 2009-5924, 2009.
    [29]LI X F, ZOU L H. Optimization design of PID controller and its application [C]. 2011 Third International Conference on Measuring Technology and Mechatronics Automation, 2011.
    [30]Elmali H, Olgac N. Satellite attitude control via sliding mode with perturbation estimation [J]. Control Theory Appl., 1996, 143(3): 276~282.
    [31]Fragopoulos D, Innocenti M. Stability considerations in quaternion attitude control using discontinuous Lyapunov functions [J]. Control Theory Appl, 2004, 151(3): 253~258.
    [32]Zeng M, Zhang X. Fuzzy Control of satellite Attitude Maneuver based on T -8 Model [C]. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), 978-1-4244-6542-2, IEEE, 2010.
    [33]Petermann B. Attitude Control of Small Satellites Using Fuzzy Logic[D]. McGill University, 1997.
    [34]Kazemian H B. Developments of fuzzy PID controllers [J]. Expert Systems, 2005, 22(5): 254~264.
    [35]Raimondi F M, Melluso M. Fuzzy EKF Control for Wheeled Nonholonomic Vehicles [C], 1-4244-0136-4/06, IEEE, 2006.
    [36]Lee J, Diersing R W, Won C. Satellite Attitude Control Using Statistical Game Theory [C]. 2008 American Control Conference, Westin Seattle Hotel, Seattle, Washington, USA, 978-1-4244-2079-7/08, AACC, 2008.
    [37]Silani E, Lovera M. Magnetic spacecraft attitude control: a survey and some new results [J]. Control Engineering Practice, 2005, 13: 357~371.
    [38]Wu B, Cao X, Li Z. Multi-objective output-feedback control for microsatellite attitude control: An LMI approach [J]. Acta Astronautica, 2009, 64: 1021~1031.
    [39]Matthews K R, Motiwala S A. Experimental Methods in Attitude Control [C]. AIAA SPACE 2011 Conference & Exposition, Long Beach, California, AIAA 2011-7186, 2011.
    [40]Maqsood I, Akram T. Development of a Low Cost Sun Sensor Using Quadphotodiode [C], 978-1-4244-5037-4/10, IEEE, 2010.
    [41]李东.皮卫星姿态确定与控制技术研究[D].上海:中国科学院上海微系统与信息技术研究所,2005.
    [42]Shuster M D. A Survey of Attitude Representations [J]. Journal of the Astronautical Sciences, 1993, 41(4): 439~517.
    [43]Sadaoui D, Boukabou A, Merabtine N, et al. Predictive synchronization of chaotic satellites systems [J]. Expert Systems with Applications, 2011, 38: 9041~9045.
    [44]Ortega P, López-Rodríguez G, Ricart J, et al. A Miniaturized Two Axis Sun Sensor for Attitude Control of Nano-Satellites [J]. IEE SENSORS JOURNAL, 2010, 10(10): 1623~1632.
    [45]张利宾,杨旭,杨涤.三轴稳定微小卫星主动磁阻尼姿态控制[J].上海航天,2008(6):29~33.
    [46]刘星.UKF和EKF在卫星姿态确定中的应用研究[D].北京:中国科学院,2007.
    [47]王斌,董云峰.磁力矩器的刚度控制技术及应用[J].北京航空航天大学学报,2008,34(6):686~689.
    [48]Springmann J C, Cutler J W. Magnetic Sensor Calibration and Residual Dipole Characterization for Application to Nanosatellites [C]. AIAA/AAS Astrodynamics Specialist Conference, Toronto, Ontario Canada, AIAA 2010-7518, 2010.
    [49]Fosbury A M, Nebelecky C K. Spacecraft Actuator Alignment Estimation [C]. AIAA Guidance, Navigation, and Control Conference, Chicago, Illinois, AIAA 2009-6316, 2009.
    [50]黄琳,荆武兴.关于磁强计与磁力矩器分时工作方案的研究[J].航天控制,2005,23(5):37~41.
    [51]谢祥华.微小卫星姿态控制系统研究[D].南京:南京航空航天大学,2007.
    [52]刘海颖.微小卫星姿态控制系统关键技术研究[D].南京:南京航空航天大学,2008.
    [53]Weidong H, Yulin Z. Rate damping control for small satellite using thruster [J]. Acta Astronautica, 2004, 55.
    [54]王新屏,张显库,张丽坤.H∞鲁棒滤波器与Kalman滤波器的对比[J].系统工程与电子技术,2003,25(10):1267~1269.
    [55]丁明理,王祁.模糊逻辑在NGIMU/GPS组合中的应用[J].哈尔滨工业大学学报,2006,38(12):2044~2048.
    [56]于延波,房建成.基于UKF的航天器最小参数姿态矩阵估计方法[J].宇航学报,2006,27(1):12~15.
    [57]张翠,崔培玲,杨照华等.基于UKF的微小卫星姿态确定方法研究[J].航天控制,2010,28(2):12~16.
    [58]靳永强,刘向东,侯朝桢.基于UKF的无陀螺姿态确定[J].航天控制,2007,25(4):31~35.
    [59]潘泉,杨峰,叶亮等.一类非线性滤波器UKF综述[J].控制与决策,2005,20(5):481~494.
    [60]Xu J, Dimirovski G M, Member, et al. UKF Design and Stability for Nonlinear Stochastic Systems with Correlated Noises [C]. Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans,LA,USA, 2007.
    [61]宁晓菊,梁军利.基于UKF的高斯和滤波算法[J].计算机仿真,2006,23(12):100~103.
    [62]胡傲,冯新喜,李鸿艳等.基于UKF的曲线模型自适应跟踪算法[J].探测与控制学报,2010,32(3):73~77.
    [63]张翠,崔培玲,杨照华等.基于UKF的微小卫星姿态确定方法研究[J].航天控制,2010,25(2):12~16.
    [64]Oh S, Johnson E N. Development of UAV Navigation System Based on Unscented Kalman Filter [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, AIAA 2006-6351, 2006.
    [65]Crassidis J L, Markley F L, Cheng Y. Survey of Nonlinear Attitude Estimation Methods [J]. JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS, 2007, 30(1): 12~28.
    [66]张军辉,李响.改进的粒子滤波算法性能分析[J].郑州轻工业学院学报(自然科学版),2009,24(2):73~75.
    [67]相威,汪立新,林孝焰.几种改进的粒子滤波算法性能比较[J].计算机仿真,2009,26(4):120~124.
    [68]林玉荣,邓正隆.二阶插值非线性滤波在卫星姿态确定中的应用[J].哈尔滨工业大学学报,2006,38(3):343~347.
    [69]赵晓伟.深空探测器自主导航的非线性滤波算法研究与仿真[D].青岛:青岛科技大学,2008.
    [70]Madyastha V K, Ravindra V C, Mallikarjunan S, et al. Extended Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation [C]. AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, AIAA 2011-6615, 2011.
    [71]FarhadBayat, HosseinBolandi, Jalali A. A heuristic design method for attitude stabilization of magnetic actuated satellites [J]. Acta Astronautica, 2009, 65: 1813~1825.
    [72]Jensen S R. The Attitude Determination and Control System of The Toroid Satellite[D]. Logan: Utah State University, 2007.
    [73]王献忠.陀螺与磁强计组合定姿及工程应用分析[J].航天控制,2009,27(5):43~47.
    [74]杨艳.小卫星磁控系统设计仿真研究[D].北京:中国科学院空间科学与应用研究中心,2006.
    [75]匡正德.卫星高精度姿态确定中的非线性滤波方法研究[D].长沙:国防科学技术大学,2009.
    [76]Reyhanoglu M, Drakunov S. Attitude Stabilization of Small Satellites Using Only Magnetic Actuation [C], 978-1-4244-1766-7/08, IEEE, 2008.
    [77]张锐,谢祥华,张静.基于主动磁控制的微小卫星姿态控制[J].宇航学报,2009,30(1):193~197.
    [78]Ang K H, Chong G, Li Y. PID Control System Analysis, Design, and Technology [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13(4): 559~576.
    [79]Wang Z, Zhao Z, Qin Y, et al. A new predictive PID control algorithm [C]. 2010 International Conference on Educational and Network Technology, 978-1-4244-7662-6, IEEE, 2010.
    [80]Hua S, Dai Y. Fuzzy PID Control and Simulation Experiment on Permanent Magnet Linear Synchronous Motors [C]. 2010 International Conference on Electrical and Control Engineering, 978-0-7695-4031-3/10, IEEE, 2010.
    [81]Han Y, Jinling J, Guangjian C, et al. Temperature Control of Electric Furnace Based on Fuzzy PID [C]. 2011 International Coriference on Electronics and Optoelectronics, 978-1-61284-276-9111, IEEE, 2011.
    [82]吴德会,黄松岭,赵伟.基于FLANN的三轴磁强计误差校正研究[J].仪器仪表学报,2003,30(3):449~453.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700